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In the present paper, a new efficient technique is described for solving nonlinear mixed partial integrodifferential equations with
continuous kernels. Using the separation of variables, the nonlinear mixed partial integrodifferential equation is converted to a
nonlinear Fredholm integral equation. Then, using different numerical methods, the Bernoulli polynomial method and the
Chebyshev polynomials of the sixth kind, the nonlinear Fredholm integral equation has been reduced into a system of
nonlinear algebraic equations. The Banach fixed-point theory is utilized in order to have a conversation about the nonlinear
mixed integral equation’s solution, namely, its existence and uniqueness. In addition, we talk about the convergence and
stability of the solution. Finally, a comparison between the two different methods and some other famous methods is presented

through various examples. All the numerical results are calculated and obtained using the Maple software.

1. Introduction

The mixed integral equations (MIEs) in location and time
have captured the interest of numerous authors in recent
years. In [1], Tohidi et al. investigated a collocation tech-
nique for solving the generalized pantograph problem that
depended on the Bernoulli operating matrix. Yousefi utilized
the Legendre wavelets to evaluate a computational solution
to Abel’s integral problem in [2]. Mahdy et al. introduced
a computational technique for solving MIEs with singular
kernels in [3]. Alhazmi and Abdou in [4] used the Toeplitz
matrix approach for resolving nonlinear fractional mixed
integrodifferential equations. Jan in [5] used the Toeplitz
matrix approach for resolving MIE. In [6], Basseem and Ala-
lyani introduced the Toeplitz and Nystrom methods for
solving quadratic nonlinear mixed integral equations
(NMIEs). In [7], Tahmasbi talked about a new way to use
numbers to solve second-order linear Volterra integral equa-
tions. Maleknejad and Rahimi discuss a change to block

pulse functions to demonstrate how they may be utilized
to determine numerical Volterra integral equations of the
first kind [8].

Many researchers dealt with the Chebychev polynomials
of the first, second, third, and fourth kinds, while the sixth
type was not dealt with by many; for example, in [9], Atta
et al. presented the solution to the hyperbolic telegraph
problem by using shifted CP6K. In [10], Sadri and Amini-
khah used CP6K for solving fractional partial differential
equations (FPDEs). The solution to fractional integrodiffer-
ential equations is obtained by Yaghoubi et al. in their paper
[11], which introduces shifted CP6K.

The Bernoulli collocation approach was utilized by Doha
et al. in [12] for the purpose of solving hyperbolic telegraph
equations. In their study [13], Dascioglu and Sezer looked at
the use of BPM in the resolution of high-order modified
pantograph models. In [14], Mirzaee utilized BPM for the
purpose of solving integral algebraic problems. In [15],
Wang et al. provide a description of the Bernoulli
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polynomial approximation approach for resolving the Vol-
terra integral equations multidimensional with variable-
order weakly singular kernels. In [16], Bazm provides a
description of the Bernoulli polynomials (BPs) as an
approach for finding the numerical solution to certain types
of linear and nonlinear integral equations. A description of
the identification of the BPs using the Raabe functional
equation may be found by Farhi in [17]. Some identities
for BPs that involve the Chebyshev polynomials are
described by Kim et al. in [18]. In [19], Maleknejad et al. give
a numerical solution to the Volterra kind integral problem of
the first type with a wavelet base. In [20], Abdou provided
the FIE together with its potential kernel and its structural
resolvent. For mixed (1 + 1) dimensional integral equations
with substantially symmetric singular kernels, Alhazmi
et al. described the computing techniques [21]. Mahdy
et al. described the computational method in [22] for resolv-
ing mixed Volterra-Fredholm integral equations in three
dimensions. Mahdy and Mohamed presented about utilizing
the Lucas polynomials to solve the Cauchy integral problems
[23]. Pachpatte provided a description of the multidimen-
sional integral equations and inequalities in [24]. Appell
et al. discussed integrodifferential equations and partial inte-
gral operators in [25]. The Volterra-Fredholm integral equa-
tion in two variables is discussed by Pachpatte in [26].
Guenther and Lee discussed integral equations and math-
ematical physics partial differential equations in [27]. To
calculate the nonlinear Volterra-Fredholm integral equa-
tions numerically, Brunner applied the combination
methods as described in [28]. Al-Bugami talked about
how to wuse numerical methods to solve a two-
dimensional mixed integral problem involving cracks on
the surface of finite multiple layers of compounds [29].
The mathematical physics special function formulae and
theorems are introduced by Magnus et al. in [30]. Costa-
bile et al. developed a novel method for dealing with the
Bernoulli polynomials in [31]. For the numerical solution
of the mixed Volterra-Fredholm integral equations, He
et al. have enhanced block-pulse functions in [32]. The
nonlinear one-dimensional Burgers’ equation has a spec-
tral solution, which Abd-Elhameed reported in [33] as a
novel formula for the derivatives of sixth-kind Chebyshev
polynomials. In [34], Lu discussed a few Bernoulli polyno-
mial characteristics and their generalization. See the books
Wazwaz in [35] and Rahman in [36] for numerous addi-
tional integral equations and their applications using vari-
ous techniques.

The following is how the rest of this paper is structured.
The NMIE and specific cases are presented in Section 2. The
existence of the nonlinear MIE and its unique and only solu-
tion are topics discussed in Section 3. The convergence and
stability of the solution are the topics that will be covered
in Section 4. Section 5 separates the variables used in the
transformation of the nonlinear MIE into the NFIE. The
technique of error has been studied in Section 6. BPM
applied for solving the NFIE in Section 7. CP6K applied
for solving the NFIE in Section 8. In Section 9, we give some
numerical examples for your consideration. In Section 10,
we provide the conclusion.
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2. The Nonlinear MIE and Special Cases

Take a look at the nonlinear partial integrodifferential equa-
tion that is presented below

% {%} B F(t)JOk(x’J’)Y(ﬂ(y, t)dy. (1)

Under the condition
1(x, 0) = u(x), (2)

where k(x,y), f(x,t), G(t), and F(t) are known functions
and #(x, t) is the unknown function.

Equation (1) is very important in many applications of
nanofluid mechanics, genetic engineering, engineering,
biology, applied science, and quantum engineering. This
equation has been treated using integral methods, and
we discovered that it is easier than treating it with differ-
ential methods.

Integrating (1) w.r.t t and using (2), we get

1% 1) = £ (3. 1) + 8(G(t), n(x 1)) [M}

+8(G(1), (% t>>j j F(2)k(x, )y (n(y» 7)) dydr.
3)

The preceding equation may also be rewritten in the
form that is shown below

n(x.t) = f(x 1) + D(x)8(G(1), n(x, 1))

+8(G(t)n(x, t))j j F(o)k(x y)y(1( 7)) dyer,

oJo
(4)
at D(x) = [u(x) - f(x, 0)/6(G(0), (x, 0))].
Formula (4) represents a nonlinear MIE in time and
position.

The importance of (4) comes from special cases that can
be derived from it Special cases:

(i) If u(x)=f(x,0), the nonlinear quadratic integral
equation that we have is as follows

M £) = (5, £) + 8(G(t) n( r))jOLFu)k(x,y)y(n(y, 7))dydr.
(5)

For a constant time, Equation (5) yields

1

¥(x)=g(x) + A(?’(X))J k(o y)y(¥(y))dy.  (6)

0

Abdel-Aty et al. [37] discussed numerically the solution
of Equation (6) using the Chebyshev polynomial of the first
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kind. In addition, Abdel-Aty and Abdou [38] discussed the
phase lag solution of (6) using the homotopy perturbation
method. Awad et al. [39, 40] solved the quadratic integral
equation of (6) when the nonlinear term outside the integra-
tion takes square power in [39] and cubic power in [40].

(ii) If f(x, t) =0,7(x, 0) = u(x), we have

1 1) = Dy ()3(G(1), (. )
+8(G(1), (% t))jOLFw)k(x,y)y(n(y, 7))dydr,
@)

where D, (x) = [u(x)/S(G(O)’, 7(x,0))].
While when f(x,t) =0, there is a

1 ) = 8(G(1), (% t))jojoﬂr)k(x,y)y(n(y, 7))dyds.
(®)

The above formula is called a nonlinear mixed homoge-
neous quadratic integral equation.

3. Existence and Unique Solution of
Equation (4)

In this part, with the help of the Banach fixed point notation,
we demonstrate that there is a unique solution to the nonlin-
ear MIE (4). For this aim, we state

Theorem 1 (Banach’s Fixed-Point Theorem (Contraction
Theorem)). Let X = (X, d) be a nonempty, complete metric
space and T : X — X be a contraction mapping on X. Con-
sequently, T has only one fixed point.

Definition 2. The norm in L,[0, 1] x C[0, T] we define the
norm of the function H(x, t) in the space L,[0, 1] x C[0, T]

as f(x,t) € L,[0,1] x C[0, T] and its norm is ||f(x,¢)| =
maXOSthfg{f;fz(x, T)dx}md‘l’ <E.

To determine the existence and uniqueness solution of
Equation (4), in view of the Banach fixed-point theory, in
the design of an integral operator, we write (4) as follows:

n(x £) = Wn(x, t) = f (%, t) + D(x)8(G(1), n(x 1)) )
+0(G(t),n(x 1)) Wn(x, 1),

Wit )= ||| Eoke o0y (0

0J0

Then, assume the following conditions:
(i) VC=max {C,, C,, G5}, [k(x, y)| < Cy, |F(t)| < Cy, |G(
)] <Cy;|D(x)| <D

(ii) f(x,t)€L,[0,1] x C[0,1] and its norm is |[f(x,1)]|
= maxoggjg{j(l}fz (x, T)dx}md‘r <E

(ili) VA > max {A,, A, }, the decreasing function #(x, t)
satisfies

Gi-a) [y(1(x. )] < A (. 1)

(iii-b) [yr, (%, y) = yn, (%, y)[ < Ay [, (s £) = 11, (x, £)]

(iv) VB> max {B,, B, }, the decreasing function 7(x, t)
satisfies

(iv-a) [6(G(t), n(x, t))| < By[n(x, 1)

(iv-b) [8(G(t), 1, (x, 1)) = 8(G(2), 1y (%, £))| < By [y (%, 1)
=1 (% 1)]

Theorem 3. Under the conditions (i)-(iv), the nonlinear
mixed integral problem has a single unique solution

1-BD

T< —.
ABC?

(11)

In order to demonstrate that the theorem is true, we
must first demonstrate Lemma 4.

Lemma 4. The integral operator (9) is bounded.

Proof. Since

Wi(x,£) = £ (x,1) + DE)S(G(), n(x 1)) + 6(G(1), (x, 1)) Wi ().

(12)

Then

[Wr(e )] < |1f (5 D)l + [DE)S(G(8), n(x. 1)) (13)
+[18(G(t), n(x. 1)) W (x, t)]].

Using conditions (i), (ii), (iii-a), and (iv-a), we follow

[[Wn(x, 1)|| < E+ DB|ln(x, t)|| + Blln(x, t)[| Wn(x )],

| Wa(, ]| < max C2AT||(x, )]
(14)

Hence, we have
HWI/]()C, t)H <E+DB|5(x,t))|| + ABC*T||n(x, t)||*>.  (15)

Since, #(x,t) is a decreasing function, consequently,

In(e. )1 < [InCx, 1)

| Wn(x, t)|| <E+ (DB+ ABC*T)||5(x, t))- (16)

The last inequality (16) demonstrates that the operator
W maps the ball S, into itself, where

E
(1- (BD+ABC’T))

(17)

r=



Since, r > 0 and E > 0, therefore, we must have

1-BD
T<m. (18)

Lemma 5. The integral operator (9) is continuous.

Proof. To prove the continuous of the integral operator, we
assume

=D(x){8(G(t), m, (% 1))
=8(G(t), 1y (3 1))} + (8(G(8), 7y (%, 1))
- Wiy (1) = 8(G(1), 1, (%, 1)) Wiy (%, 1))

(19)

W (11, (3%, £) = 1 (% 1))

Adapting the above equation to take the form

N < IDE)[B(G(E), 1y (x: 1))
=8(G(1), my (% 1)) |
+IS(G(0), m (x ) [ W (x: 1)
=1, (6 D)l + [18(G(1), 7, (% 1))
=8(G(1), my (6 ) W (1, (x, 1)) |-
(20)

| W (1, (x, £) =y (x, t

Using the norm properties and with the aid of conditions
(i)-(iv), and given this, it is safe to suppose that 7, (x, t) and
1, (x, t) for t € [0, T] and T < 1 are two monotonic decreasing
functions, thus we are able to

|| < BD||n,(x, t) = 17,(x, £) |
+BAC*T||n, (x, t)

=1, ( ) l[J7, (% 1) =

H W(’ﬁ(x’ t) =1y (x,t

My (% 1)
(21)

Therefore, the inequality stated above leads to

))|| < [BD+ BACT] |, (x, £) = 1, (x, 1)
(22)

||W (my (% £) =1y (x, ¢

which leads to the continuity condition. And then under the
condition

BD+BAC*T <1. (23)

A contraction operator is denoted by the value (9) in the
integral operator. U

4. Solution Convergence and Stability

Assume that the family of solutions takes the form #(x, t) =

{106 1)1y (x5, 8), -5,y (36 )5, (2, 8), o} = {( D
Mo (% 1) = f (3. 1) + D(x)8(G(t), 75 (x, 1)), and |5 (x, 1) || < |
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(x5 )| + [D)[|G(2), 1o (%, 1) || < E+ AD||o (x, 1) <E/1 - A
D, (AD<1).

Pick up two functions {#, (x, t),7,_; (x, t)} € {n,(x, )}
M,(% 1) = f(%, 1) + D(x)8(G(t), 7, (%, 1))
+8(G(t),1,(x, t Ji F(t

Ny (6 8) = f (2, £) + D(x)8(G(8), 1,4 (%, 1))
+8(G(t),n,(x, t

o] frewe

V(1,1 (0 7)) dydr,

V(1,2 (3 7)) dydr.
(24)
Thus, we have

My (% 1) = 1,1 (%, 1) = D(x)[8(G(t), 7,(x. 1)) ~

+8(G(t), 1, (%, 1) JJ

- dydr - 8(G(t), ., (% t))[O[OF(T)k(x,y)
Y, (0 T))dydT + 8(G(1), 1,1 (% 1))
: j j F@)k(x )y, 1 05 7))
0J0
- dydr - 8(G(t), 1, (1))

- J;LF(T)k(x)y)V(m_z(% o)) dydr.

O(G(1): 11,1 (- 1))]

rln 1()/ T))

(25)

Adapting the above equation

(117, (% 8) =11,y (%, £) || < BD|11,, (%, ) =11,y (x, 1)
+ABC*T |, (x, t)]| |1, (x. 1)
- }/In—l(x’ t)HABCZTHrIn(x’ t)””nn—l(x’ t)
- anz(x’ t)”
(26)
Let
an =", (x’ t) ~Hua1 (x’ t)' (27)
Thus, we have
M6 1) = 350, #o(5 0)] = [0 1) < -
=0
(28)

The formula presented above can be adapted to the
following

)] < 5

ABC?*T
~ (BD+ABCT)’ (29)

E
Yo(x,t)]| £ ——.
H O(X )H 1-AD

le
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By induction, we have
1505 6)[ < [PV 1o (%, )] (30)

Finally, we have

J#i65.)] < [ 55 V- a1

This limit ensures that the sequence {¥;(x ; t) } uniformly
converges consistently. Furthermore, the response to inequal-
ity (31) directs us to conclude which the sequence {r7;(x; )} is
a solution that converges on itself. Therefore, given that

n(x;t)= hm 11n(x )= nhmmZ] o (x5 1). (32)

Because ¥;(x ; t) are all continuous, 77(x ; t) has to be con-

tinuous; thus, the infinite series represented by Equation (32)
is uniformly continuous.

5. Separation of Variables

In this part of the article, the strategy of separation of vari-
ables is used to convert the nonlinear MIE (4) into the FIE
in position. In Equation (4), let us suppose the unknown
function and the known function each have one of the next
types, respectively:

n(x 1) =n(x)6(t), f(x 1) = g(x)¢(t),£(0) #0,  (33)

during which {(¢) and g(x) have known functions and 7(x)
is an unknown function.
Substituting from (33) into (4) we obtain

n(x)g(t) = g(x)¢(t) + D(x)8,(G(1), §(1))8,(n(x))
+51(G(t),((f))52('7(x))J E(m)y, (8(7))dr

0

Xfﬂ%ﬁh@@ﬂ@.

0 (34)

The solution of Equation (34) can be found by dividing
both sides by {(t) we get

It is also possible to express the value (35) using a format

1) = 9(x) + D(x)8,(n(x)) (1)
: (36)
+62(71(X))9(t)J k(o212 (1)) dy.

where
(37)

Equation (36) represents the NFIE of the second kind.

6. The Technique of Error

Assume the numerical solution called #,, (x, t) for f, (x,t),
hence, the solution can be approximatively expressed as
follows:

My (%) = f (% 1) + D(x)0,,(G(8), (. 1))

1

#8,(GOne0)| | Foksy) (39
V(10> 7))dydr.

The corresponding error becomes

15 £) = 1, (30 1)] = [ ) = o (5.)]
+D()[(G() (%, 1)) ~ 6, (G(E) (%, 1))
v {6<c<r>,n<x, r>>J j F(r)k(x )y (1(y. 7)) dydr

0J0

- 0u(G(0hnw0) | [ e ks w0 iy .
(39)
Let the estimated error be
Rm ('x’ t) = 1’](36, t) - rlm (X, t)' (40)
Hence, we have
Rm (x’ t) = g('x’ t) + D(x)aerror(G(t)’ n(x, t))
B G010 1) | | PO )1, 102 7))yt
+8,(G(t)(x t))LJOF(T)k(x Do)
= Yu(n(y,7))ldydr
(41)
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p
TaBLE 1: Comparison among absolute errors of Example 1, N =5 by BPM and CP6K.
. T =0.0012 T=022 T=0.4 T=0.62 T=038
BPM CP6K BPM CP6K BPM CP6K BPM CP6K BPCM CP6K

0 1.48x107" 522x107°  435x107 321x107®  1.88x107° 446x107* 513x107°  154x107! 7.37x107°  1.29x 107!
02 145x107" 526x107° 4.28x107" 3.07x107"°  1.84x107° 4.61x1072 490x107° 156x107"  7.25x107  1.69x 107!
04 1.54x10" 593x107°  457x107 350x107  1.95x107° 523x107? 5.003x107° 1.76x107! 7.78x107° 3.04x 107!
06 1.67x107"" 882x107° 4.85x107" 555x107% 2.08x107° 7.62x107"? 511x1071° 262x107"  844x107 573x107!!
08 1.82x107" 1.66x1072 4.98x107" 1.06x1072 2.16x107° 139x107" 513x1071°  4.92x107" 9.05x107° 1.04x 107!
1 2.04x10" 1.66x1072 519%x107"  2.04x1072 230x107° 274x107"  527x107°  9.79%x 107" 9.94x107° 1.79x 107!

x 1071

1.6

1.55

1.5

1.45

0 0

FIGURE 1: BPM’s absolute errors for Example 1 at T =0.001.

Write the above formula in the form

Rm (x’ t) = g(x’ t) + D(x)aerror(G(t)’ ’7("’ t))

S G015 [ ER)

y(n(y, 7))dydr +6,,(G(t), n(x, 1))

- j j F(r)k(% ) [y (10 7)) = Vo (10 7))y,

0J0

(9(xt) = F(x, 1) = Fyy(x: 1)), (43)

Hence, the absolute value of the error convergent is
given using the next inequality

[[F(xt) = Fp(x: 1)
(1- (BD+ABC2T))'

1Ry (2 1) < (44)

The inequality (44) as m — 00, R— zero. From
inequality (44), the error R, (x,t) is convergent under
the condition

FiGUurg 2: For illustrated Example 1, determined by BPM, the
absolute error at T =0.2.

1-BD

T< —.
ABC?

(45)

7. Bernoulli’s Polynomial Method

Bernoulli’s polynomials play an important part in a vast
range of mathematical fields and subfields, including, for
example, the mathematics thesis [37] and complex differen-
tial equations [38].

Any of the Bernoulli polynomials can be displayed by
using the formula [38].

x"*B,, (46)

oo\ k

where =nl/k!(n - k)! and B, (x) has the Bernoulli

polynomial of n™ degree.
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2.x10710
1.8x 10710
1.6 x 10710
1.4x10710
1.2x10710
1.x 10710
8.x 107!
6.x 107!
4.x 107!
2.x 1071

F1GURE 3: For illustrated Example 1, determined by BPM, the absolute error at T = 0.4.

Specifically, if x = 0 in (46), after that B, (0) = B, which is
a description of the Bernoulli numbers and B, = 1.

The following is the formula that shall be used to calcu-
late the Bernoulli numbers:

" fn+1
Z Bk:(l—n)xn>n:0> 1,2, (47)
k=o\ k

The initial few Bernoulli polynomials shall be repre-
sented as

1 1 3 1
Bo(x)zl,Bl(x):x—E,Bz(x):xz—x+ 8,B3(x):x3—5x2+§x,
1 5 1
B4(x):x4—2x3+x2—%,Bs(x):x - —x'+ —x —gx,

5 1 1
Bg(x)=x° =35+ Zx* + —x* - —.
2 2 42

(48)

The following is a truncated version of the estimated
solution to Equation (36) that was provided by BP:

160 =1y (x) = Y. aiBy(x), (49)

where a;,i=0,1,---,M have the unknown coefficients
Bernoulli and B;(x) have BP described in the defini-
tion (46).

FiGURe 4: For illustrated Example 1, determined by BPM, the
absolute error at T = 0.6.

Substituting from (49) into (36), we obtain

Z a;B;(x) = g(x) + D(x)8, (Z{; “iBi(x)) 1(t)
+62<_ZafB,-<x>>o<t>jok<x,y>y2 (50)

M
: (Z “iBi(}’)> dy.
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1.x 1070
9.x 10710 3
8.x 10710 3
7.x10710 '
6.x 10710 . N, __ ’
5. % 10_12 - < ,/;éégggzzil/
4.%x 10710 3 Z
3.x10710
2.x 10710 &3
_10 ] S22
1.x 107 <5
g S22
z'o:’ 0
0 S

0.8

Ficure 5: For illustrated Example 1, determined by BPM, the
absolute error at T =0.8.

0.05

0.04 - - -t

003

0.024 -

0014 i

--~- Approximate
Exact

FIGURE 6: Accurate and approximate resolution of Example 1 by
BPM, T=0.2.

Using the collocation points, we can continue

(b—a)i

X;=a+

,i=0,1,2,, M. (51)

The results that we get are as follows: (M + 1) nonlinear
algebraic equations (SNAE) with (M + 1) unknowns

Journal of Function Spaces

-—— £=0.001
——- =02
t=04

FIGURE 7: Absolute errors were made in Example 1 by BPM.

After solving the above system, we obtain the approxi-
mate solution, and by using (33), we display the numerical
solution of (4) which corresponds to the nonlinear partial
integrodifferential Equation (1).

8. Sixth Type of Chebyshev Polynomials

In the following part of the essay, CP6K is applied to solve
NFIE (36).
Sixth-type Chebyshev polynomials Y;(§) have orthogo-

nal functions on the interval [-1,1] defined according to
the recurrence connection that is as follows:

=LY, (§)=E )22

Y1 (8), Yol®)

(53)

These polynomials have an orthogonal relationship on the
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0.6, the errors absolute that was estimated by

CP6K for the illustrated Example 1.

Ficure 11: At T

=0.2.

EZ

regarding the weight function is w, (&)

In their paper [41], Abd-Elhameed and Youssri dem-
onstrated that CP6K can be represented trigonometrically

as follows:

(54)

Y;(cos 0)

sin ((j +2)60)/2/ sin (260

jeven,

>

)

sin ((j+1)0) + (j+ 1) cos (0) sin

(56)

(j +2)6)/27* (j + 1) cos*(6) sin (6), jodd.

(

{

(55)

1, ieven,
i+3/i+1,iodd.

T
22i+3

i

C)

F1GURE 8: The absolute error, for Example 1 calculated by CP6K, is

F1GURE 9: The error, for Example 1 calculated by CP6K, is T
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FIGURE 12: At T =0.8, the errors absolute that was estimated by

CP6K for the illustrated Example 1.
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--- t=0.001
---t=02
t=04

FIGURE 14: The errors absolute were made of Example 1 by CP6K.

0.01 + - T e

- -~ Approximate
Exact

FIGURE 13: Accurate and approximate resolution of Example 1 by
CP6K, T =0.2.

Lemma 6 (see [42]). Let m be any nonnegative integer. Con-
sequently, CP6K can be explained in the power form shown
below

m+ !
Yom(§) = 2m+ 1) T(m—i+302)

i=0

TaBLE 2: CPU time of Example 1.

CPU time CP6K BPCM
T =0.001 0.06s 0.07s
T=02 0.06s 0.06s
T=04 0.09s 0.12s
T=0.6 0.09s 0.09s
T=038 0.06s 0.10s
[ m
. =D |@m-i+2)

Y (&) — F(m + 5/2) Z ! EZm—ZH]

i (2m+2)! & T(m-i+5/2) ‘

(58)

Lemma 7 (see [42]). Let p be any nonnegative integer. Then the
inversion formulas of CP6K are given as

sz:(2p+1)!i21_2i(p_i+I)IYZP’Zi(E), (59)
=0

EP = (2p+ Dl(2p+3))

i'2p-i+2)!

£ 27 p—i+ 1) y2p-2it]

il(2p—i+3)! ).

(60)

i=0

Let 7(x) € L,[-1,1], then #(x) could be generally
described with terms similar Y,(x) as next
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TaBLE 3: Comparison between absolute errors of Example 2, N =5 by BPM and CP6K.

T =0.001 T=02 T=04 T=0.6 T=038
BPM CP6K BPM CP6K BPM CP6K BPM CP6K BPM CP6K

0  6.99x107" 9.99x107  573x107! 0 2.01x 1071 0 9.32x10710  548x107M  1.79x107!  4.49x 107!
02 470x107""  958x107  3.85x107"  459x107°  353x107" 831x107"° 8.06x107!" 5300x107M" 471x107""  1.25x 107!
04 483x107"  7.92x107"  391x1071M  2.81x1072 338x107M 3.90x107 8.01x107! 512x107M  1.07x107° 4.27x107!

06 155x1071% 3.82x107"  125x107% 1.27x107 4.12x107M 9.82x107M 1.34x107°  6.10x107M  2.19x107°  6.24x 107%2
08 3.75x107% 4.60x107""  299x107"  4.04x107"  1.96x107" 158x107"° 2.41x107° 1.01x107° 4.01x107° 3.71x107%°
1 581x107"% 2.006x107° 456x107 1.006x107"° 351x107° 1.44x107° 3.24x107° 200x107"° 6.11x107'° 1.35x107°

B x 10710
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FIGURE 15: Accurate and approximate resolution of Example 2 by FIGURE 16: Absolute errors of Example 2 by BPM.
BPM, T =0.8.
M
1(%) = My () = ZciYi(x)’ (61)  The results that we get are as follows: (M + 1) SNAE with
=0 (M + 1) unknowns

where ¢; are constants i =0, 1, ---, M.
Substituting from (61) to (36), we are able to get

i=0

;Y;(x) = g(x) + D(x)8, > “iYi(x)>I(t) M 1
Z ! <Z + 62 ZCiYi(xr) ‘Q(t)J k(xr’y)YZ (64)

+9, <Z; “iYi(x))Q(t)J;k(x’)’)Vz (Z{; “iYi()’)> dy. M

(62) i=0

Using the collocation points, we can continue After solving the above system, we obtain the approxi-

mate solution, and by using (33), we get the numerical solu-
—as (b- a)r’ P=0,1,2, 0 M. (63) tion of (4) which corresponds to the nonlinear partial

*r M integrodifferential Equation (1).
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FIGURE 17: Accurate and approximate resolution of Example 2 by CP6K, T =0.8.

12
0.4
0.3
0.2 -
0.1 1
0 : —
0 0.2 0.4
- -~ Approximate
Exact
//‘
1
1.2x 1070 : S
. - ,Il
!
: : : : : : !
1.x 107 : : : : : : i i ik
. . . . . o
. . RSN
I
8.x 10710 S T IR P S N
. - /)
/
‘ : : kS
6.% 10710 R
. . . . . . . ,‘//,‘
/
/
4.x 10710 4 A
. ,//
/
/
20X 10710 e
/ ///
| I ‘ : S
0 ﬁ-;‘\\l\ /’/’/l S l‘/:*__:;' 1
0 0.2 0.4 0.6 0.8 1
X
-—— t=0.001 -—— t=06
——= t=02 ——- t=08
t=04

FIGURE 18: Absolute errors of Example 2 by CP6K.

9. Illustrative Examples

In this section, we will illustrate the above results via apply-
ing the examples below for various time values.

TaBLE 4: CPU time of Example 2.

CPU time CP6K BPCM
T =0.001 0.04s 0.06s
T=02 0.04s 0.07s
T=04 0.07 s 0.09s
T=0.6 0.04s 0.09s
T=0.8 0.04s 0.09s

Example 1. Suppose the nonlinear partial integrodifferential
equation:

n(x 1) = f(x 1) + (e'n(x.1)) [%]

+ (en(x 1)) J;L (1+ Tz)xzyznz (y, 7)dydr,
(65)

utilizing an analytical resolution #(x,t)=x?(0.01+ £?),
Glt) =, 6(G(1) (3 1) = (. ).

Applying the separation of variables BPM and CP6K for
Equation (65) when N =5 for different values of T, the
numerical outcomes have been demonstrated in Table 1,
Figures 1-5 presented absolute error by using BPM, and
Figure 6 presented discussion among the two accurate and
approximate solutions at T = 0.2 by using BPM. Figure 7 pre-
sents a discussion of the absolute errors for various values of
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the time by using BPM. While Figures 8-12 present absolute
error by using CP6K, Figure 13 presents a discussion of the
accurate response and an approximate response at T'=0.2
through the use of CP6K, and Figure 14 presents a discus-
sion among the absolute errors for various values of the
time through the use of CP6K. In Table 2, we have stated
that the CPU time is different between the two methods
used. Also, the advantages between used methods.

Example 2. Suppose the nonlinear partial integrodifferential
equation

=0+ (001 st ) [ L0

+((0.01 + t)n(x, t))JtJ1 (0.25 + %) %%y’ (y, T)dydr,

oJo )

with accurate resolution #(x,t)=x*e", G(t)=(0.01+1),
S8(G(1),n(x,t)) = (0.01 + £)n(x, t).

Applying the separation of variables, BPM and CP6K for
Equation (66) at N =5 for various values of T, the results of
the numerical analysis can be found in Table 3, as well as
Figures 15-18. In Table 4, we have stated the CPU time to
be different between the two methods used. Also, the advan-
tages between used methods.

10. Conclusion

In the following paper, we computed the NMPIoDE’s
numerical solution. Using the separation of variables, the
NMPIoDE is converted to NFIE. The NFIE was further con-
densed into a SNAE utilizing two distinct numerical tech-
niques, BPM and CP6K. The Banach fixed-point theory is
applied to studying the nonlinear MIE solution’s existence
and uniqueness. We additionally discuss the solution’s con-
vergence and stability. Finally, using numerous examples, a
comparison between the two various approaches and several
other well-known approaches is provided. The Maple soft-
ware was used to obtain all of the numerical results. Com-
paring the results, it turns out that CP6K is better than
BPM, as the error in CP6K is less than the error using
BPM, and also because CP6K is orthogonal but BPM is not
orthogonal.

Data Availability

To support this study, no data were used.

Additional Points

Future Work. Other methods, such as the Adomian decom-
position, the Sumudu transform approach, the homotopy
perturbation approach, and the variational iteration
approach, will be used to solve the nonlinear NMPIoDE.
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