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In the present paper, in view of the variational approach, we discuss the Neumann problems with p x -Laplacian-like operator
and nonstandard growth condition, originated from a capillary phenomena. By using the least action principle and fountain
theorem, we prove the existence and multiplicity of solutions to the class of Neumann problems under suitable assumptions.

1. Introduction and Main Result

In this paper, we study existence and multiplicity of
solutions for the p x -Kirchhoff-type equation involving
nonstandard growth condition and arising from a capillary
phenomena of the following type:

−a ψ u div ∇u p x −2∇u + ∇u 2p x −2∇u

1 + ∇u 2p x
= f x, u , x ∈Ω,

∂u
∂ν

= 0, x ∈ ∂Ω,

1

where Ω ⊂ℝN is a bounded domain with smooth boundary

∂Ω, a t ∈ C ℝ+,ℝ+ , ψ u =
Ω
1/p x ∇u p x +

1 + ∇u 2p x dx, and f x, u ∈ C Ω ×ℝ,ℝ ; ν is the

outward unit normal on ∂Ω. p ∈ C+ Ω = h h ∈ C Ω , h x
> 1,∀x ∈Ω with

1 < p− ≔min
x∈Ω

p x ≤ p x ≤ p+ ≔max
x∈Ω

p x <N 2

It is worth mentioning that a t in problem (1) contains the
Kirchhoff-type functions such as a + bt, a > 0, and b > 0. The
Kirchhoff-type equation has a strong physical background.
We refer the interested readers to [1–3] and the references
therein.

It is well-known that−Δp x u = −div ∇u p x −2∇u is called
p x -Laplacian operator. The study of differential equations and
variational problems with nonstandard p x -growth condi-
tions and p, q -Laplacian operator (see [4, 5]) has been
a very interesting topic in recent years. They allow the
modelling of various phenomena that arise in the study
of elastic mechanics and image restoration, and we can
refer to [6–8]. Since the left-hand side of problem (1)
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contains an integral overΩ, it is no longer a pointwise identity.
Therefore, it is often called a nonlocal problem. Problem (1)
has a rich mathematical and physical background base. For
example, when p x ≡ 2, a t ≡ 1, problem (1) degenerates
into a generalized capillarity equation describing “capillary
phenomena.”

The problem involving p x -Laplacian-like operator was
firstly studied by Rodrigues based on the variational method
(see [9]). He studied the following equation:

−div 1 + ∇u p x

1 + ∇u 2p x
∇u p x −2∇u = λf x, u , x ∈Ω,

u = 0, x ∈ ∂Ω,
3

where Ω ⊂ℝN is a bounded domain with smooth boundary
∂Ω, p x ∈ C Ω , and p x > 2, λ > 0. The author proved
existence and multiplicity of solutions by using mountain
pass theorem and fountain theorem. Problem (3) can be
used to describe capillarity. Capillarity can be briefly
explained by considering the effects of two opposing forces:
adhesion, i.e., the attractive (or repulsive) force between
the molecules of the liquid and those of the container; and
cohesion, i.e., the attractive force between the molecules of
the liquid. The study of capillary phenomena has gained
some attention recently. This increasing interest is motivated
not only by fascination in naturally occurring phenomena
such as motion of drops, bubbles, and waves but also its
importance in applied fields ranging from industrial and
biomedical and pharmaceutical to microfluidic systems. In
reference [9–14], the existence and multiplicity of solutions
for the Dirichlet boundary value problems with p x -Lapla-
cian-like operator are also studied.

In recent years, the Neumann problems have been exten-
sively studied, and we can refer to [15–21]. The authors in
[20, 21] studied the following p-Kirchhoff-type Neumann
problems:

− M
Ω

∇u pdx
p−1

Δpu = f x, u , x ∈Ω,

∂u
∂v

= 0, x ∈ ∂Ω,
4

where Ω ⊂ℝN is a bounded domain with smooth boundary
∂Ω and ν is the outward unit normal on ∂Ω. By using the
saddle point theorem and abstract linking argument due to
Brezis and Nirenberg [22], they showed that problem (4)
has at least two nontrivial solutions. In [16], Chung have
extended problem (4) to p x -Kirchhoff-type Neumann
problems. Under appropriate assumptions on f , the author
proved the existence and multiplicity of solutions by using
abstract linking argument. From a mathematical point of
view, the extension from the p-Laplace operator Δpu to the
p x -Laplace operator Δp x u is interesting and not trivial,
since the p x -Laplace operator has a more complicated

structure than the p-Laplace operator, for example, they
are nonhomogeneous.

Furthermore, Jiang et al. [17] have studied the existence
and multiplicity of solutions for problem (4) of the Kirchhoff
function M t ≡ 1 under the Landesman-Lazer type condi-
tion by using saddle point theorem and abstract linking
argument. Also for further studies on this Landesman-
Lazer type condition, we have provided reference for readers
in [23–26].

However, we find that the p x -Laplacian-like Neumann
problems with Landesman-Lazer type condition is lagged
behind. We point out that the main difficulty arises from
the fact that the first eigenvalue of the p x -Laplacian is
not isolated. In this case, we can use the technique of decom-
posing the space W1,p x Ω in this paper.

Motivated by the above papers and the results, the main
purpose of this paper is to study the existence and multiplic-
ity of solutions for problem (1). Assuming that the following
conditions are met.

(a1) There is a constant a0 > 0, such that a t ≥ a0, for all
t ≥ 0.

(a2) There is a constant θ ≥ 1, such that

â t ≥
1
θ
a t t, for all t ≥ 0, 5

where â t = t
0a s ds.

(F1) f ∈ C Ω ×ℝ,ℝ , and there exists a constant C0 > 0
such that

f x, t ≤ C0 1 + t α x −1 ,∀ x, t ∈Ω ×ℝ, 6

where α x ∈ C+ Ω , 1 < α x < p∗ x =Np x /N − p x .
(F2) lim

t ⟶∞
F x, t = −∞ uniformly for a.e. x ∈Ω, where

F x, t = t
0 f x, s ds.

(F3) liminf
t ⟶∞

F x, t / t p− ≤ 0 uniformly for a.e. x ∈Ω.

(F4) (Landesman-Lazer type condition) Whenever un
⊂W1,p x Ω is such that un ⟶∞ and un Ω 1/p− / un
⟶ 1 as n⟶∞, then

limsup
n⟶∞ Ω

f x, un
un
un

dx > 0 7

(F5) limsup
t ⟶∞

F x, t / t θp+ = +∞ uniformly for a.e. x ∈Ω.

(F6) f x,−t = −f x, t for all x, t ∈Ω ×ℝ.
The main results of this paper are as follows.

Theorem 1. Suppose that 1 < p− ≤ p+ < α− ≤ α+ < min p∗−,
N . If a1 , a2 , F1 , and (F2) hold, the problem (1) has
at least one solution.

Theorem 2. Suppose that 1 < p− ≤ p+ < α− ≤ α+ < min p∗−,
N . If a1 , a2 , F1 , F3 , F4 , F5 , and F6 hold, the
problem (1) has infinitely many nontrivial solutions.
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In the present paper, first of all, we use the least action
principle method to study the existence of solution for the
problem (1). Furthermore, we give some new solvability
results for the problem (1) under the Landesman-Lazer type
condition. By imposing additional assumptions on f , we
establish the existence of infinitely many solutions by using
fountain theorem, due to Bartsch in [27].

2. Preliminaries

We start with some preliminary basic results on the theory
of Lebesgue-Sobolev spaces Lp x and W1,p x with variable
exponent; for more details, we refer the reader to the book
by Musielak [28] and Fan and Zhao [29].

Let ζ Ω denoted the set of all measurable real functions
defined on Ω. For any p ∈ C+ Ω , the variable exponent
Lebesgue space Lp x is defined as

Lp x Ω = u u ∈ ζ Ω :
Ω

u x p x dx <∞ , 8

with the norm

u Lp x Ω = u p x = inf λ > 0
Ω

u x
λ

p x

dx ≤ 1 9

The variable exponent Sobolev space W1,p x Ω is
defined as

W1,p x Ω = u ∈ Lp x Ω : ∇u ∈ Łp x Ω , 10

with the norm

u = u W1,p x Ω = u p x + ∇u p x 11

Proposition 3 (see [29]).

(i) For any u ∈ Lp x Ω , v ∈ Lq x Ω with 1/p x +
1/q x = 1, the inequality holds as follows

Ω

uvdx ≤
1
p−

+ 1
q−

u p x v q x 12

(ii) If 1 ≤ q x ∈ C+ Ω and q x ≤ p∗ x (respectively
q x < p∗ x ) for any x ∈Ω, then W1,p x Ω is
embedded continuously (respectively, compactly) in
Lq x Ω

Let us now recall the modular function ρp x u : Lp x

Ω ⟶ℝ which plays an important role in the variable
order Lebesgue spaces and which is defined by

ρp x u =
Ω

u x p x dx 13

Proposition 4 (see [30]). For any un, u ∈ Lp x Ω , then the
following properties hold:

u p x < 1 = 1; > 1 ⇔ ρp x u < 1 = 1; > 1 ,

u p x < 1⇒ u p+

p x ≤ ρp x u ≤ u p−

p x , u p x

> 1⇒ u p−

p x ≤ ρp x u ≤ u p+

p x ,

lim
n⟶∞

un p x = 0⇔ lim
n⟶∞

ρp x un = 0, lim
n⟶∞

un − u

= 0⇔ lim
n⟶∞

ρp x un − u = 0
14

We can split W1,p x Ω in the following way. Let

V2 = u ∈W1,p x Ω :
Ω

udx = 0 15

For each u ∈W1,p x Ω , denote u x = u x − u, where
u = 1/ Ω

Ω
u x dx, u ∈ℝ and u ∈ V2. Note V2 is a closed

linear subspace of W1,p x Ω with codimension 1. Then,
W1,p x Ω =V2 ⊕ℝ (see [31]).

The following proposition plays an important role in our
proof.

Proposition 5. (see [31], Proposition 2.6) there is a positive
constant k, such that

u p x ≤ k ∇u p x ,∀u ∈ V2 16

We define the norm by

u V = inf λ > 0
Ω

∇u x
λ

p x

dx +
Ω

u x
λ

p x

dx ≤ 1

17

We conclude that u and u V are equivalent norms.
Invoking Proposition 5, it is easy to see that u V and
∇u p x are equivalent norms in V2.

The modular function ρ u : V2 ⟶ℝ define by

ρ u =
Ω

∇u x p x dx +
Ω

u x p x dx 18

A similar derivation of [29] has the following proposition.
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Proposition 6. Set u ∈ V2. Then, the following properties hold
the following:

u < 1 = 1; > 1 ⇔ ρ u < 1 = 1; > 1 ,

u < 1⇒ u p+ ≤ ρ u ≤ u p− , u > 1⇒ u p− ≤ ρ u ≤ u p+ ,
lim

n⟶∞
un = 0⇔ lim

n⟶∞
ρ un = 0, lim

n⟶∞
un − u = 0⇔ lim

n⟶∞
ρ un − u = 0

19

Proposition 7 (see [9, 30]). ψ u ∈ C1 W1,p x Ω ,ℝ and its
derivative is given by

ψ′ u , v =
Ω

∇u p x −2 + ∇u 2p x −2

1 + ∇u 2p x
∇u∇vdx,

20

For all u, v ∈W1,p x Ω and the following properties hold
the following:

(i) ψ is convex and sequentially weakly lower
semicontinuous

(ii) ψ′ W1,p x Ω ⟶ W1,p x Ω
∗
is a mapping of

type S+ , that is, if un ⇀ u in W1,p x Ω and
limsup
n⟶∞

ψ′ un , un − u ≤ 0 imply un ⟶ u in

W1,p x Ω

(iii) ψ′ W1,p x Ω ⟶ W1,p x Ω
∗

is a strictly
monotone operator and homeomorphism

Definition 8.We say that u ∈W1,p x Ω is a weak solution of
problem (1), and if for any v ∈W1,p x Ω , it satisfies the
following

a ψ u
Ω

∇u p x −2 + ∇u 2p x −2

1 + ∇u 2p x
∇u∇vdx −

Ω

f x, u vdx = 0

21

The energy functional I W1,p x Ω ⟶ℝ associated
to problem (1) is defined as

I u = â ψ u −
Ω

F x, u dx, 22

where â t = t
0a s ds. Obviously, I ∈ C1 W1,p x ,ℝ func-

tional and

I ′ u , v = a ψ u
Ω

∇u p x −2 + ∇u 2p x −2

1 + ∇u 2p x
∇u∇vdx −

Ω

f x, u vdx,

23

for all u, v ∈W1,p x Ω . It is well-known that the weak

solutions of problem (1) correspond to the critical point
of the functional I on W1,p x Ω .

Definition 9. Let X be a Banach space and ϕ ∈ C1 X,ℝ .
We say that ϕ satisfies the PS condition if any sequence
un ⊂ X such that ϕ un ⟶ c and ϕ′ un ⟶ 0 in X as

n⟶∞ has a convergent subsequence.

Let X = V2 is a reflexive and separable Banach space, and
then, there exists ej

∞
j=1 ⊂ X and e∗j

∞
j=1 ⊂ X∗ such that

X = span ej j = 1, 2,⋯  X∗ = span e∗j j = 1, 2,⋯ ,

e∗i , ej =
1 if i = j ,
0 if i ≠ j

24

For convenience, we write

Xj = span ej , Yk = ⊕
j=1

k
X j, Zk = ⊕

j=k

∞
Xj 25

Lemma 10 (see [32] fountain theorem). Let X =V2 be a
Banach space, ϕ ∈ C1 X,ℝ is an even functional and satisfies
the PS condition. If for every k ∈N , there exist ρk > rk > 0
such that

(A1): ak = inf
u∈Zk , u =rk

ϕ u ⟶ +∞as k⟶ +∞;

(A2): bk = max
u∈Yk , u =ρk

ϕ u ≤ 0.

Then, ϕ has a sequence of critical values tending to +∞.

3. The Proof of Theorem 1.1

In this section, the existence of at least one solution for
problem (1) is obtained in W1,p x Ω . We start with one
auxiliary result.

Lemma 11 (see [29]). By Sobolev’s inequality, there exists a
positive constant C such that

Ω

u dx ≤ C u ,
Ω

u α x dx ≤ C u α− + u α+ 26

for all u ∈W1,p x Ω .

Proof of Theorem 1.1. The proof is divided into two steps as
follows.

Firstly, we show that I is coercive. By F1 and F2 ,
there exists a constant ω and G ∈ C ℝ,ℝ , which is subaddi-
tive, that is

G s + t ≤ G s + G t , 27

for all s, t ∈ℝ, and coercive, so

G t ⟶ +∞, 28
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as t ⟶∞, and satisfies that

G t ≤ t + 4, 29

for all t ∈ℝ, such as

F x, t ≤ −G t + ω, 30

for all t ∈ℝ and x ∈Ω.
In fact, since F x, t ⟶ −∞ as t ⟶∞ uniformly for

all x ∈Ω, there exists a sequence of positive integers nk
with nk+1 > 2nk for all positive integer k such that

F x, t ≤ −k, 31

for all t ≥ nk and all x ∈Ω. Let n0 = 0 and define

G t = k + 2 + t − nk−1
nk − nk−1

, 32

for nk−1 ≤ t < nk, where k ∈N .
By the definition of G, we have

k + 2 ≤G t ≤ k + 3, 33

for nk−1 ≤ t < nk. By F1 , one has

F x, t ≤ C0 t + C0
α x

t α x , 34

for all t ∈ℝ and x ∈Ω. It follows that

F x, t ≤ C0n1 +
C0
α x

nα x
1 ≤ −G t + ω, 35

for all t ≤ n1 and x ∈Ω by (33), where

ω = C0n1 +
C0
α−

np
∗
−
1 + 4, 36

with 1 < α x < p∗− and n1 > 1. In fact, when k ≥ 2, we have

F x, t ≤ −k ≤ − k − 1 = − k + 3 + 4 ≤ −G t + ω, 37

for all nk−1 ≤ t ≤ nk and x ∈Ω.
It is obvious that G is continuous and coercive. More-

over, one has

G t ≤ t + 4, 38

for all t ∈ℝ. In fact, for every t ∈ℝ, there exists k ∈N such
that

nk−1 ≤ t < nk, 39

which implies that

G t ≤ k + 3 = k − 1 + 4 ≤ nk−1 + 4 ≤ t + 4, 40

for all t ∈ℝ by (33) and the fact that nk ≥ k for all integers
k ≥ 0.

Now, we only need to prove the subadditivity of G. Let

nk−1 ≤ s < nk, nj−1 ≤ t < nj, 41

and m =max k, j . Then, we have

s + t ≤ s + t < nk + nj ≤ 2nm < nm+1 42

Hence, by (33), we obtain

G s + t ≤m + 4 ≤ k + 2 + j + 2 ≤G s +G t , 43

which shows that G is subadditive.
Let u x = u x − u, u = 1/ Ω

Ω
u x dx. So ∇u = ∇ u +

u = ∇u. By conditions a1 , a2 , (16), (26)–(30), and Prop-
osition 6, we have

I u = â ψ u −
Ω

F x, u dx ≥
1
θ
a ψ u ψ u

−
Ω

F x, u dx ≥
a0
θ
ψ u +

Ω

G u dx

−
Ω

ωdx ≥
2a0
θp+ Ω

∇u p x dx

+
Ω

G u dx −
Ω

G −u dx

−
Ω

ωdx ≥
2a0
θp+

1
2 Ω

∇u p x dx + 1
2 Ω

∇u p x dx

+
Ω

G u dx −
Ω

u dx − 4 Ω

−
Ω

ωdx ≥
2a0
θp+

1
2 Ω

∇u p x dx + 1
2k Ω

u p x dx

+ G u − 4 − ω Ω −
Ω

u dx ≥
a0
θp+

min 1, 1
k

u p−

− C u + G u − 4 − ω Ω ,
44

Note that u ⟶∞, we have u + u ⟶∞. Since G
is coercive and p− > 1, which implies that I is coercive.

Next, we show that the I is weakly lower semicontinu-
ous. Let

un ⇀ u, inW1,p x Ω ,

un ⟶ u, in Lp x Ω ,
un x ⟶ u x , a e inΩ

1 ≤ p x < p∗ x ,

45

Since F x, un x ⟶ F x, u x as n⟶∞, for a.e.
x ∈Ω. By Fatou Lemma, we have

limsup
n⟶∞ Ω

F x, un x dx ≤
Ω

F x, u x dx 46
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Then

liminf
n⟶∞

I un ≥ liminf
n⟶∞

â ψ un − limsup
n⟶∞ Ω

F x, un dx

≥ â ψ u −
Ω

F x, u dx = I u
47

So, the I is weakly lower semicontinuous.
Hence, by the least action principle (see [17]), I has a

minimum. So problem (1) has at least one solution in
W1,p x , which completes our proof.

4. The Proof of Theorem 1.2

In this section, we will show that problem (1) has infinitely
many nontrivial solutions by using Lemma 10. Firstly, we
need to prove lemma as follows.

Lemma 12. Suppose that the conditions of Theorem 2 hold.
Then, I satisfies the PS condition.

Proof. Let un ⊂W1,p x Ω be a sequence such that I un
is bounded and I ′ un ⟶ 0 as n⟶∞. Firstly, we prove
that un is bounded in W1,p x Ω . Arguing by contradic-
tion, we assume that any subsequence of un (still denoted
by un ), we have un ⟶ +∞ as n⟶ +∞. Let vn = un/
un . Note that vn = 1 and vn are bounded in
W1,p x Ω . Now, we can find v ∈W1,p x Ω and a subse-
quence of vn (still denoted by vn ), with

vn ⇀ v, inW1,p x Ω ,

vn ⟶ v, in Lp x Ω ,
vn x ⟶ v x , a e inΩ

1 ≤ p x < p∗ x ,

48

By conditions a1 and a2 , we have

â ψ u =
ψ u

0
a s ds ≥ a0ψ u 49

By F3 , for any ε > 0, there is a constant ξ > 0 such
that

F x, t ≤
ε

p+
t p− for all t > ξ and all x ∈Ω 50

There exists a positive constant C1 > 0 such that

F x, t ≤
ε

p+
t p− + C1 for all t ∈ℝ and all x ∈Ω 51

Then, by (51), one deduces that

I un
un

p− =
1

un
p− â

Ω

∇un
p x + 1 + ∇un 2p x

p x
dx −

Ω

F x, un dx

≥
1

un
p− a0

Ω

∇un
p x + 1 + ∇un 2p x

p x
dx −

Ω

F x, un dx

≥
1

un
p−

2a0
p+ Ω

∇un
p x dx −

ε

p+ Ω

un
p−dx −

Ω

C1dx

≥
2a0
p+

−
2a0
p+

+ ε

p+ Ω

vn
p−dx −

C1 Ω

un
p−

52

In view of (52) and the fact that un ⟶∞ as
n⟶∞, one has

0 ≥ 2a0
p+

−
2a0
p+

+ ε

p+ Ω

v p−dx 53

Let ε⟶ 0, we have

Ω

v p−dx ≥ 1 54

On the other hand, by the weakly lower semicon-
tinuous of the norm, one has

v ≤ liminf
n⟶+∞

vn = 1, 55

then

Ω

∇v p−dx +
Ω

v p−dx = v p− ≤ 1 56

From (54) and (56), we derive that

Ω

∇v p−dx = 0 57

Therefore, ∇v x = 0 for all x ∈Ω which yields v ∈ℝ.
It follows that v p− = 1/ Ω and hence that

lim
n⟶+∞

un
p−

un
p− = lim

n⟶+∞
1
Ω Ω

un
un

dx
p−

= lim
n⟶+∞

1
Ω Ω

vn dx
p−

= 1
Ω Ω

v dx
p−

= 1
Ω Ω

v dx
p−

= 1
Ω

58

which means that un Ω 1/p− / un ⟶ 1 as n⟶∞. By
condition F4 and un ⟶∞ as n⟶∞, one deduces

limsup
n⟶∞ Ω

f x, un
un
un

dx > 0 59
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Since I ′ un ⟶ 0 as n⟶∞, we have

Ω

f x, un
un
un

dx = − I ′ un , un
un

+ a ψ u
Ω

∇u p x −2 + ∇u 2p x −2

1 + ∇u 2p x
∇u∇

un
un

dx

= − I ′ un , un
un

⟶ 0 as n⟶ +∞,

60

which contradicts to (59). Therefore, we conclude that the
sequence un is bounded in W1,p x Ω .

Secondly, we will prove that un has a convergent sub-
sequence in W1,p x Ω . Since un is bounded, there exist a
subsequence, still denoted by un and u ∈W1,p x Ω such
that

un ⇀ u, inW1,p x Ω ,

un ⟶ u, in Lα x Ω ,
un x ⟶ u x , a e inΩ

1 ≤ α x < p∗ x ,

61

By (12), (61), and F1 , we have

Ω

f x, un un − u dx ≤
Ω

f x, un un − u dx

≤ C0
Ω

1 + un
α x −1 un − u dx

≤ 2C0 1 + un
α x −1

α′ x
un − u α x ⟶ 0,

62

as n⟶∞. One has

lim
n⟶+∞ Ω

f x, un un − u dx = 0 63

According to I ′ un ⟶ 0, we have I ′ un , un − u
⟶ 0. Therefore

I ′ un , un − u = a ψ un
Ω

∇un
p x −2 + ∇un

2p x −2

1 + ∇un 2p x

∇un ∇un−∇u dx −
Ω

f x, un un − u dx⟶ 0,

64

as n⟶∞. By (63) and condition a1 , we can deduce
from that

Ω

∇un
p x −2 + ∇un

2p x −2

1 + ∇un 2p x
∇un ∇un−∇u dx⟶ 0,

65

as n⟶∞. Invoking the S+ condition (see Proposition
7), we can deduce that un ⟶ u strongly in W1,p x Ω as
n⟶∞. So, I satisfies the PS condition. The proof is
complete.

The following lemma plays an important role in our proof.

Lemma 13 (see [30]). If α ∈ C+ Ω , α x < p∗ x for any
x ∈Ω, denote

ηk = sup u α x u = 1, u ∈ Zk , 66

then lim
k⟶∞

ηk = 0.

Lemma 14. Suppose that the conditions of Theorem 2 hold.
Then, there exist ρk > rk > 0 such that

(A1): ak = inf
u∈Zk , u =rk

I u ⟶ +∞as k⟶ +∞;

(A2): bk = max
u∈Yk , u =ρk

I u ≤ 0.

Proof. To prove A1 . In view of F1 , we obtain

F x, t =
1

0
f x, st tds ≤ C0 t + C0

α x
t α x ≤ C0 t + C t α x

67

for all x ∈Ω and t ∈ℝ. Furthermore, for any u ∈ Zk ⊂V2
with u > 1, it follows from conditions a1 , a2 , (26),
and Proposition 4, and we have

I u = â ψ u −
Ω

F x, u dx

≥
1
θ
a ψ u ψ u −

Ω

F x, u dx

≥
a0
θ
ψ u − C0

Ω

u dx − C
Ω

u α x dx

≥
2a0
θp+ Ω

∇u p x dx − C u − C
Ω

u α x dx

≥
2a0
θp+

u p− − C u − C
Ω

u α x dx

≥

2a0
θp+

u p− − C u − C if u α x ≤ 1

2a0
θp+

u p− − C u − Cηα
+

k u α+ if u α x > 1

≥
2a0
θp+

u p− − C u − Cηα
+

k u α+ − C

= u p− 2a0
θp+

− Cηα
+

k u α+−p− − C u − C

68
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Choose rk = Cηα
+

k 2θp+/a0
1/p−−α+

. For any u ∈ Zk with
u = rk, we infer that

I u ≥
3a0
2θp+ r

p−

k − Crk − C 69

Note that p− < α+ and ηk ⟶ 0 as k⟶ +∞, we assert
rk ⟶ +∞ as k⟶ +∞. We have

ak = inf
u∈Zk , u =rk

I u ⟶ +∞, 70

as k⟶ +∞. Which implies A1 .
Next, we will prove A2 . Let

M t = â t

tθ
=

t
0a s ds

tθ
, 71

by condition a2 , we have

M ′ t = a t tθ − θtθ−1 t
0a s ds

t2θ
= a t tθ − θtθ−1â t

t2θ
≤ 0

72

M t is monotonically decreasing with respect to the
variable t as t ≥ t0 > 0. So M t ≤M t0 , we have â t ≤
â t0 /tθ0 tθ for any t ∈ t0,+∞ , and we have

â t ≤ C2t
θ + C3, 73

where C2 = â t0 /tθ0,

C3 = max
t∈ 0,t0

â t 74

By conditions F1 and F5 , for any H > 0, there exists
C4 > 0, and we have

F x, t ≥H t θp+ − C4,∀ x, t ∈Ω ×ℝ 75

By (73), (75), and Proposition 4, for any u ∈ Yk with
u = ρk > rk large enough, we have

I u = â ψ u −
Ω

F x, u dx ≤ C2 ψ u θ −
Ω

F x, u dx + C3

≤ C2
1
p− Ω

2 ∇u p x + 1 dx
θ

−H
Ω

u θp+dx + C5

≤ C2
2
p−

u p+ + 1
p−

Ω
θ

−H
Ω

u θp+dx + C5

76

Since dim Yk < +∞ and equivalence of norm in
finite dimensional space, it is clear that I u ⟶ −∞
when H > 0 large enough. Therefore, we conclude

bk = max
u∈Yk , u =ρk

I u ≤ 0 77

The proof is complete.

Proof of Theorem 1.2. Since V2 is also a reflexive and separa-
ble Banach space, we can give the decomposition to V2 as
(25). According to F6 and Lemma 12, we deduce that I
is an even functional and satisfies PS condition in V2. By
Lemma 14, it was proven that if k is large enough, there exist
ρk > rk > 0 such that A1 and A2 hold in V2. Thus, we can
deduce that I satisfies all conditions of Lemma 10 in V2.
Therefore, I has an unbounded sequence of critical values,
which implies that problem (1) has infinitely many non-
trivial critical points in V2. This completes the Proof of
Theorem 1.2.
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