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This paper deals with the study of fractional Kundu-Eckhaus equation (FKEE) and fractional massive Thirring problem
(FMTP) that appear in the quantum field theory, weakly nonlinear dispersive water waves, and nonlinear optics. Since
the variational iteration method involves integration, the Laplace transform involves convolution theorem in recurrence
relation to derive the series solution. To avoid some assumptions and hypothesis, we apply a two-scale approach for
such a nonlinear complex model. The fractional differential equation may be transformed into its partner equation using
He’s fractional complex transform, and then, the nonlinear elements can be readily handled using the homotopy
perturbation method (HPM). Numerical results are derived in a rapid converge series form to improve the accuracy of
the scheme greatly. Graphical representations and error distribution show that the two-scale approach is a very
convenient tool.

1. Introduction

In recent years, fractional calculus (FC) has assumed a
greater significance in mathematical theory and widely used
in many fields including ecology, physics, astronomy, and
economics. Researchers are increasingly realizing that the
fractional framework may be compatible with a wide range
of phenomena in common applied sciences after the con-
cepts of FC were successfully applied to a variety of different
features. Mathematical models of many physical processes
are developed using fractional differential equations. They
are employed not only in mathematics but also in physics,
dynamical systems, power systems, and applied science
[1–3]. Kundu and Eckhaus [4, 5] introduced the FKKE
which is studied in quantum field theory and many disper-
sion phenomena.

iDα
ξΨ ς, ξð Þ +Ψςς + 2Ψ Ψj j2À Á

ς
+Ψ Ψj j4 = 0, 0 < α ≤ 1: ð1Þ

The FKKE is a combination of Lax couples, higher
conserved portion, particular soliton solution, and rogue
wave solution. It is very essential to develop a scientific
design that acts on behalf of ultrashort light pulses in a glass
fiber. This model will be used to demonstrate the propaga-
tion of light across an optical cable. The fractional massive
Thirring problem (FMTP)

i Dα
ξΨ +Ψς

À Á
+Φ +Ψ Φj j2 = 0

i Dα
ξΦ +Φς

À Á
+Ψ +Φ Ψj j2 = 0

ð2Þ

was autonomously introduced in 1958 by Thirring. It is a
nonlinear coupled fractional differential equation which
appears in the quantum field theory [6, 7]. Feng and
Wang [8] discussed the algebraic curve method to obtain
the explicit particular solitary solutions for the Kundu
equation and the derivative Schrodinger equation. Yi and
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Liu [9] employed the bifurcation approach to explore the
bifurcations of traveling wave solutions for the Kundu equa-
tion. Luo and Nadeem [10] established Mohand transform
with HPM to obtain the numerical solution of FKEE and
coupled FMTP.

Many authors [11–13] have studied the various features
of this equation, its generalities, and relationship with other
nonlinear equations. It is classified to a variation of famous
integrable equations such as nonlinear Schrodinger equation
and also several nonlinear equations through a gauge trans-
formation. Many researchers have studied this equation
through various approaches such as gauge transformation
[14], Lie symmetry method [15], Bernoulli subequation
method [16], Backlund transformation [17], sine-Gordon
expansion approach [18], Darboux transformation [19],
and rogue wave solutions [20]. A lot of researchers intro-
duced numerous semianalytical and numerical methods to
study the fractional derivatives and fractional differential
equations. He [21] constructed a technique which is called
HPM that does not depend upon a small parameter to
estimate the approximate solution of a nonlinear model.
Later, Nadeem and Li [22] combined HPM with the Laplace
transform to find the approximate solution of nonlinear
vibration systems and nonlinear wave equations. It can be
seen that HPM is a powerful tool and effective for nonlinear
problems [23, 24]. It is however challenging to identify the
analytical solutions for the most of the problems, and there-
fore, these problems can be tended by semianalytical
methods. The objective of this paper is to suggest two-scale
approach for quantum phenomena in fractal environments.
The two-scale approach is the most friendly approach which
converts fractional differential equations into its differential
partner equations to make it extremely easy for the solution
procedure.

The structure of this paper is formed as follows: in Sec-
tion 2, we briefly explain the concept of HPM for a nonlinear
problem. A two-scale approach with a numerical problem
has been presented in Sections 3 and 4. In Section 5, we will
explain the obtained results and discussion through our
suggested approach. Section 6 will be our conclusions.

2. Basic Idea of Homotopy
Perturbation Method

We assume the following nonlinear problem to present the
concept of HPM [22]:

T1 Ψð Þ − h rð Þ = 0, r ∈Ω, ð3Þ

with boundary conditions

T2 Ψ, ∂Ψ
∂S

� �
= 0, Ψ ∈ Γ, ð4Þ

where T1 is particular operators, T2 is a boundary operator,
hðrÞ is a known function, and Γ is the boundary of the
domain Ω. We can divide operator T1 into two parts, R

and S with considering linear and nonlinear operators,
respectively. Thus, Equation (2) may also be stated as

R Ψð Þ + S Ψð Þ − h rð Þ = 0: ð5Þ

According to the homotopy strategy, we develop a
homotopy ρðr, θÞ: Ω × ½0, 1�⟶ℝ which satisfies

H Ψ, θð Þ = 1 − θð Þ R Ψð Þ − R Ψ0ð Þ½ � + θ R Ψð Þ − S Ψð Þ − h rð Þ½ �,
ð6Þ

or

H Ψ, θð Þ = R Ψð Þ − R Ψ0ð Þ + pL Ψ0ð Þ + θ S Ψð Þ − h rð Þ½ � = 0,
ð7Þ

where θ ∈ ½0, 1� is termed as homotopy parameter and Ψ0 is
an initial guess of Equation (2) that complies with the
boundary conditions. Since the definition of HPM states that
θ is estimated as a small parameter, so, we may consider
the solution of Equation (5) in terms of a power series
of θ such as

Ψ =Ψ0 + θΨ1 + θ2Ψ2+⋯: ð8Þ

Choosing θ = 1, the estimated solution of Equation (2)
is acquired as

Ψ = lim
θ⟶1

Ψ =Ψ0 +Ψ1 +Ψ2 +Ψ3+⋯: ð9Þ

The nonlinear terms are evaluated as

SΨ ς, ξð Þ = 〠
∞

n=0
θnHn Ψð Þ, ð10Þ

where polynomials HnðΨÞ are presented such as

Hn Ψ0 +Ψ1+⋯+Ψnð Þ

= 1
n!

∂n

∂θn
S 〠

∞

i=0
θiΨi

 ! !
θ=0

, n = 0, 1, 2,⋯:
ð11Þ

Since the series depends on the nonlinear operator S,
therefore, the results obtained in Equation (8) are convergent.

3. Fractional Complex Transform

In this segment, we illustrate the concept of fractional com-
plex transform in such a way that it concerts a fractional
problem into its differential parts such as [25–27]

ΔS = Δξα

Γ 1 + αð Þ , ð12Þ

where ΔS is nominated as a slighter scale. On a slighter scale,
FKEE reacts discontinuously, in particular at the top of the
solitary wave, whereas the heavier scale forecasts a coherent
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solitary wave. We use this transformation of Equation (12)
in a fractional differential problem to change a fractal space
in a lighter scale. Thus, a smooth space refers to a smooth
space with a heavier scale, also called as the two-scale trans-
form [28, 29].

4. Numerical Application

Example 1. We may rewrite Equation (1) such as

∂αΨ
∂ξα

= iΨςς + i2Ψ Ψj j2À Á
ς
+ iΨ Ψj j4, ð13Þ

with the following initial conditions

Ψ ς, 0ð Þ = μeiς: ð14Þ

Now, we use Equation (12) to convert it in differential
parts. So, Equation (13) can be written as

∂Ψ
∂S

= iΨςς + 2iΨ Ψj j2À Á
ς
+ iΨ Ψj j4: ð15Þ

We may write it as follows:

∂Ψ
∂S

= iΨςς + 2i ΨΨς
�Ψ +Ψ2 �Ψς

À Á
+ iΨ3 �Ψ

2, ð16Þ

where jΨj2 =Ψ�Ψ and �Ψ is the conjugate of Ψ.

We can select Ψðς, 0Þ = μeiς by using the given initial values.
Thus, HPM can be employed to Equation (16) to get the
following series:

∂Ψ1
∂S

= iΨ0ςς + 2i Ψ0Ψ0ς �Ψ0 +Ψ2
0 �Ψ0ς

À Á
+ iΨ3

0 �Ψ
2
0,

∂Ψ2
∂S

= iΨ1ςς + 2i Ψ0Ψ0ς �Ψ1 +Ψ0Ψ1ς �Ψ0 +Ψ1Ψ0ς �Ψ0
�

+Ψ2
0 �Ψ1ς + 2Ψ0Ψ1ς �Ψ0ς

+ i 2�Ψ0 �Ψ1Ψ
3
0 + 3Ψ2

0Ψ1 �Ψ
2
0

� �
,

∂Ψ3
∂S

= iΨ2ςς + 2i Ψ0Ψ0ς �Ψ2 +Ψ0Ψ1ς �Ψ1 +Ψ0Ψ2ς �Ψ0
�

+Ψ1Ψ0ς �Ψ1 +Ψ1Ψ1ς �Ψ0 +Ψ2Ψ0ς �Ψ0 +Ψ2
0 �Ψ2ς

+ 2Ψ0Ψ1 �Ψ1ς +Ψ2
1 �Ψ0ς

�
+ i �Ψ

2
1Ψ

3
0 + 2�Ψ0 �Ψ2Ψ

3
0

�
+ 6Ψ2

0Ψ1 �Ψ0 �Ψ1 + 3Ψ0Ψ
2
1 �Ψ

2
0 + 3Ψ2

0Ψ2 �Ψ
2
0
�
:

ð17Þ

Hence, the derived results are obtained as follows:

Ψ0 = μeiς,

Ψ1 = iμeiς μ4 − 1
À Á

S,

Ψ2 = −μeiς μ4 − 1
À Á2 S2

2 ,

Ψ3 = μeiς i + 4μ2 − iμ4
À Á

μ4 − 1
À Á2 S3

6 :

ð18Þ

On continuing this process, we can achieve the following
series:

Ψ ς, Sð Þ = μeiς + iμeiς μ4 − 1
À Á

S − μeiς μ4 − 1
À Á2 S2

2

+ μeiς i + 4μ2 − iμ4
À Á

μ4 − 1
À Á2 S3

6 +⋯:

ð19Þ

Using Equation (12), we can get

Ψ ς, ξð Þ = μeiς + iμeiς μ4 − 1
À Á ξα

Γ 1 + αð Þ

−
μeiς

2 μ4 − 1
À Á2 ξα

Γ 1 + αð Þ
� �2

+ μeiς

6 i + 4μ2 − iμ4
À Á

μ4 − 1
À Á2 ξα

Γ 1 + αð Þ
� �3

+⋯,

ð20Þ

which can be in closed form of [30, 31] at α = 1

Ψ ς, ξð Þ = eiς

1 + 1/μ4 − 1ð Þe4iξÂ Ã1/4 : ð21Þ

Example 2. We may rewrite Equation (2) such as

∂αΨ
∂ξα

+ ∂Ψ
∂ς

� �
− iΦ − iΨ Φj j2 = 0,

∂αΦ
∂ξα

+ ∂Φ
∂ς

� �
− iΨ − iΦ Ψj j2 = 0,

ð22Þ

with the following initial conditions:

Ψ ς, 0ð Þ = μeiς,

Φ ς, 0ð Þ = ηeiς:
ð23Þ
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Now, we use Equation (12) to convert it in differential
parts. So, the above system of Equation (22) becomes as

∂Ψ
∂S

+ ∂Ψ
∂ς

− iΦ − iΨ Φj j2 = 0,

∂Φ
∂S

+ ∂Φ
∂ς

− iΨ − iΦ Ψj j2 = 0:
ð24Þ

We may write it as follows:

∂Ψ
∂S

+ ∂Ψ
∂ς

− iΦ − iΨΦ�Φ = 0,

∂Φ
∂S

+ ∂Φ
∂ς

− iΨ − iΦΨ�Ψ = 0,
ð25Þ

where jΨj2 =Ψ�Ψ and jΦj2 =Φ�Φ with �Ψ and �Φ are the
conjugate of Ψ and Φ, respectively.

We can select Ψðς, 0Þ = μeiς and Φðς, 0Þ = ηeiς by using
the given initial values. Thus, HPM can be employed to
Equation (25) to get the following series:

∂Ψ1
∂S

+ ∂Ψ0
∂ς

− iΦ0 − iΨ0Φ0 �Φ0 = 0, Ψ1 ς, 0ð Þ = 0,

∂Φ1
∂S

+ ∂Φ0
∂ς

− iΨ0 − iΦ0Ψ0 �Ψ0 = 0, Ψ1 ς, 0ð Þ = 0,

∂Ψ2
∂S

+ ∂Ψ1
∂ς

− iΦ1 − i Ψ0Φ0 �Φ1 +Ψ0Φ1 �Φ0 +Ψ1Φ0 �Φ0
À Á

= 0,

 Ψ2 ς, 0ð Þ = 0,

∂Φ2
∂S

+ ∂Φ1
∂ς

− iΨ1 − i Φ0Ψ0 �Ψ1 +Φ0Ψ1 �Ψ0 +Φ1Ψ0 �Ψ0
À Á

= 0,

 Φ2 ς, 0ð Þ = 0,

∂Ψ3
∂S

+ ∂Ψ2
∂ς

− iΦ2 − i Ψ0Φ0 �Φ2 +Ψ0Φ1 �Φ2
À

+Ψ0Φ2 �Φ0 +Ψ1Φ0 �Φ1 +Ψ1Φ1 �Φ0 +Ψ2Φ0 �Φ0Þ = 0,
 Ψ3 ς, 0ð Þ = 0,

∂Φ3
∂S

+ ∂Φ2
∂ς

− iΨ2 − i Φ0Ψ0 �Ψ2 +Φ0Ψ1 �Ψ1 +Φ0Ψ2 �Ψ0
À

+Φ1Ψ0 �Ψ1 +Φ1Ψ1 �Ψ0 +Φ2Ψ0 �Ψ0Þ = 0, Φ3 ς, 0ð Þ = 0:
ð26Þ

Hence, the derived results are obtained as follows:

Ψ ς, 0ð Þ = μeiς,

Φ ς, 0ð Þ = ηeiς,

Ψ1 ς, Sð Þ = ieiς η − μ + η2μ
Â Ã

S,

Φ1 ς, Sð Þ = ieiς μ − η + μ2η
Â Ã

S,

Ψ2 ς, Sð Þ = i2eiς η3 + 2μ + η4μ + 2η2μ −2 + μ2
À ÁÂ

+ η −2 + 3μ2
À ÁÃ S2

2 ,

Φ2 ς, Sð Þ = i2eiς μ3 + 2η + μ4η + 2μ2η −2 + η2
À ÁÂ

+ μ −2 + 3η2
À ÁÃ S2

2 :

ð27Þ

On continuing this process, we can achieve the following
series:

Ψ ς, Sð Þ = μeiς + ieiς η − μ + η2μ
Â Ã

S + i2eiς η3 + 2μ + η4μ
Â

+ 2η2μ −2 + μ2
À Á

+ η −2 + 3μ2
À ÁÃ S2

2 +⋯,

Φ ς, Sð Þ = ηeiς + ieiς μ − η + μ2η
Â Ã

S + i2eiς μ3 + 2η + μ4η
Â

+ 2μ2η −2 + η2
À Á

+ μ −2 + 3η2
À ÁÃ S2

2 +⋯:

ð28Þ
Using Equation (12), we can get

Ψ ς, ξð Þ = μeiς + ieiς η − μ + η2μ
Â Ã

ηα + i2

2 e
iς η3 + 2μ + η4μ
Â

+ 2η2μ −2 + μ2
À Á

+ η −2 + 3μ2
À ÁÃ ηα

Γ 1 + αð Þ
� �2

+⋯,

Φ ς, ξð Þ = ηeiς + ieiς μ − η + μ2η
Â Ã

ηα + i2

2 e
iς μ3 + 2η + μ4η
Â

+ 2μ2η −2 + η2
À Á

+ μ −2 + 3η2
À ÁÃ ηα

Γ 1 + αð Þ
� �2

+⋯:

ð29Þ
By solving the above equations and using the approxi-

mate solution,

Ψ ς, ξð Þ = 〠
N

i=0
Ψi ς, ηð Þ 1

n

� �i

,

Φ ς, ξð Þ = 〠
N

i=0
Φi ς, ηð Þ 1

n

� �i

:

ð30Þ

5. Results and Discussion

This segment presents the results and discussion for the ana-
lytical solution of the FKKE and FMTP. It is believed that
after a small number of repetitions, the predicted results
quickly approach the exact solution. Figure 1 have been
demonstrated into two parts: (a) the real part of the surface
solution and (b) the imaginary part of the surface solution at
−1 ≤ ς ≤ 1 and 0 ≤ ξ ≤ 1 with α = 1. Figure 2 provides (a) real
part of plot distribution and (b) imaginary part of plot distri-
bution for α = 0:25, 0:50, 0:75, 1 at ξ = 1. Similarly, Figure 3
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Figure 2: Plot distribution for different values of α at ξ = 1.
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Figure 1: Surface solution of Equation (13) when α = 1.
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Figure 3: Surface solution of Equation (22) when α = 1.
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has been divided into two parts: (a) real part of Ψ and Φ and
(b) imaginary part of Ψ and Φ at −1 ≤ ς ≤ 1 and 0 ≤ ξ ≤ 5
with α = 1. Figure 4 provides (a) real part of plot distribution
for Ψ and Φ and (b) imaginary part of plot distribution
for Ψ and Φ for α = 0:25, 0:50, 0:75, 1 at ξ = 1. We con-
sider μ = η = 2 for the graphical representation in both
examples.

6. Conclusion

In the present work, we have successfully applied a two-scale
approach for the analytical solution of the FKKE and FMTP
that arises in quantum field theory. This two-scale approach
is capable to handle the PDES of fractional order without
any small perturbation theory. We converted the fractional
derivative into classical form and implemented the scheme
of HPM. The obtained results declare that the two-scale
approach possesses a high level of accuracy. The leading
novelty of the suggested approach consists of the following
beauty that it can deal promptly without any discretization.
We used Mathematica 11 to represent the graphical struc-
tures and the iterative results. The graphical representations
and plot distributions reveal that this approach has an excel-
lent performance in finding the analytical solution of the
FKKE and FMTP. In the future, we believe that the two-
scale approach is suitable and feasible for other fractional
differential problems arising in science and engineering.
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