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This article is devoted to deriving a new linearization formula of a class for Jacobi polynomials that generalizes the third-kind
Chebyshev polynomials class. In fact, this new linearization formula generalizes some existing ones in the literature. The
derivation of this formula is based on employing a new moment formula of this class of polynomials and after that using
suitable symbolic computation to reduce the resulting linearization coefficients into simplified forms that do not contain
any hypergeometric functions or sums. The new formula is employed along with some other formulas and with the
utilization of the spectral tau method to obtain numerical solutions to the nonlinear Fisher equation. The presented
method is used to convert the equation governed by its underlying conditions into a nonlinear system of equations. The
solution of the resulting system can be obtained through any suitable standard numerical scheme. To demonstrate the
efficiency and usefulness of the proposed algorithm, some examples are shown, including comparisons with some existing
techniques in the literature.

1. Introduction

The study and the utilization of special functions in gen-
eral and of orthogonal polynomials, in particular, is a very
old and important branch of mathematics. Orthogonal
polynomials are fruitfully used for obtaining numerical
solutions to all types of differential equations. Among the
important polynomials are the classical Jacobi polynomials.
These polynomials have important parts in different disci-
plines. Some applications of Jacobi polynomials in some
areas of science and engineering such as integral equations
and food engineering can be found in [1–4]. In fact, the
class of Jacobi polynomials involves six well-known poly-
nomials. They are the Legendre, Gegenbauer, and the four
kinds of Chebyshev polynomials. The existence of four dif-
ferent kinds of Chebyshev polynomials leads to a wide

range of outcomes in a variety of fields, such as approxi-
mation, interpolation, series expansions, and quadrature
and integral equations (see, for example, [5, 6]). These
kinds of Chebyshev polynomials have been thoroughly
investigated theoretically and numerically. For example,
Oloniiju et al. in [7] used the first-kind Chebyshev polyno-
mials to find a pseudospectral solution to a certain multi-
dimensional fractional problem. The authors in [8]
established new expressions of the high-order derivatives
of Chebyshev polynomials of the third and fourth kinds.
In addition, they utilized these formulas to treat numeri-
cally specific types of differential equations.

Deriving formulas that are concerned with different spe-
cial functions and orthogonal polynomials is of interest. In
fact, there are many formulas that serve in the numerical treat-
ment of different types of differential equations. Obtaining
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expressions for the high-order derivatives of orthogonal poly-
nomials in terms of their original ones is very useful in treating
numerically the differential equations of different types if the
spectral methods are applied. For example, the authors in [9]
established new expressions for the high-order derivatives of
the fifth-kind Chebyshev polynomials in terms of their origi-
nal polynomials. These expressions include terminating
hypergeometric functions of the type 4F3ð1Þ. Moreover,
these formulas are employed to treat numerically the
convection-diffusion equation. Also, among the important
formulas of orthogonal polynomials are the linearization
formulas of these polynomials. Because of their importance,
linearization problems have attracted the attention of many
authors. For example, some articles were devoted to solving
the linearization problems of Jacobi polynomials and their
special classes. There are different approaches in order to
developing these linearization formulas. One can be referred
for example to Rahman [10], Chaggara and Koepf [11]. As
an application to the linearization formulas, recently, Abd-
Elhameed in [12] developed linearization formulas for spe-
cific classes of Jacobi polynomials. Furthermore, a certain
linearization formula along with the tau spectral method
was employed to handle a type of nonlinear Riccati differ-
ential equation.

Spectral methods are a class of important methods that
treat numerically different types of differential equations.
The numerical solution is expressed as a suitable combina-
tion of specific polynomials, which is the basic assumption
underpinning the implementation of spectral methods.
Because of its importance in the area of numerical solutions
of differential and integral equations, many types of spectral
methods have received a lot of attention. For further infor-
mation on the numerous applications of spectral approaches
in various areas, see [13–15]. Spectral approaches include
the Galerkin, tau, and collocation methods. The Galerkin
method can be fruitfully utilized for treating several forms
of differential equations (see, for instance, [16–20]). Unlike
the Galerkin technique, the tau method is more flexible in
its application because it does not require selecting basis
functions that meet the underlying initial/boundary condi-
tions (see, for example, [21–24]). The collocation method
is the most popular method. It may be used to solve any dif-
ferential equation. The authors in [25–27] used the colloca-
tion method to obtain numerical solutions to many types of
differential equations.

Fisher’s equation arises in various applications like tissue
engineering, chemical reactions, and neurophysiology (see
[28, 29]). This equation has been treated by both analytic
and numerical techniques. For example, Wazwaz and Gor-
guis in [30] studied analytically the nonlinear Fisher equa-
tion by using the Adomian decomposition method.
Chandraker et al. in [31] developed implicit numerical tech-
niques for treating Fisher’s equation. From a numerical
point of view, Haar wavelet’s method is applied for solving
Fisher’s equation in [32]. For some other articles that deal
with Fisher’s equation and its generalizations and modifica-
tions, one can consult [33–36].

Recently, Abd-Elhameed and Alkenedri in [37] investi-
gated two generalized classes of the third- and fourth-kind

Chebyshev polynomials. They developed new high-order
derivative expressions of these polynomials. In addition
and based on these formulas, they obtained spectral solu-
tions to the high-even-order linear and nonlinear bound-
ary value problems. In this article, we are interested in
developing some theoretical results concerned with certain
generalized third-kind Chebyshev polynomials and after
that employing such polynomials to treat numerically the
nonlinear Fisher equation.

The five main goals of the current paper can be listed as
follows:

(i) Derivation of a new moment formula of the gener-
alized third-kind Jacobi polynomials

(ii) Establishing a new linearization formula of the gen-
eralized third-kind Jacobi polynomials

(iii) Deducing some existing moment and linearization
formulas in the literature as special cases of our
new moment and linearization formulas

(iv) Employing the derived linearization formula in con-
junction with the high-order derivative expression of
the generalized polynomials to numerically solve the
nonlinear Fisher equation using the spectral tau
approach

(v) Testing the efficiency and applicability of our pro-
posed algorithm by presenting some examples
accompanied by comparisons with some other
methods in the literature

The rest of the paper is as follows. In Section 2, some
interesting properties concerned with the classical Jacobi
polynomials and their shifted ones are presented. Section 3
is devoted to developing new moment formula of the gener-
alized third-kind Chebyshev polynomials. Some specific
moment formulas are also deduced by reducing the corre-
sponding moment coefficients via the utilization of Zeilber-
ger’s algorithm. Section 4 establishes the main formula in
this paper in which we give with proof a new linearization
formula of the generalized third-kind Chebyshev polyno-
mials. Section 5 concentrates on proposing a numerical algo-
rithm for solving spectrally the nonlinear Fisher equation. In
Section 6, some numerical examples accompanied by com-
parisons with some other techniques in the literature are dis-
played. We end the paper with some concluding remarks in
Section 7.

2. Some Interesting Properties and Formulas of
Jacobi Polynomials

The standard Jacobi polynomial Pðλ,μÞ
j ðxÞ of degree j can be

defined in hypergeometric form as (see, for example,
Andrews et al. [38])

P λ,μð Þ
j xð Þ =

λ + 1ð Þj
j! 2F1

−j, j + λ + μ + 1
λ + 1

1 − x
2

����
 !

: ð1Þ
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The Jacobi polynomials can be normalized (see [12]);

that is, we can define Rðλ,μÞ
j ðxÞ such that

R λ,μð Þ
j xð Þ = 1, ∀j ≥ 0, ð2Þ

and therefore,

R λ,μð Þ
j xð Þ = P λ,μð Þ

j xð Þ
P λ,μð Þ
j 1ð Þ

= j!
λ + 1ð Þj

P λ,μð Þ
j xð Þ = 2F1

−j, j + λ + μ + 1
λ + 1

1 − x
2

����
 !

:

ð3Þ

The orthogonality property of Rðλ,μÞ
j ðxÞ on ½−1, 1� is

ð1
−1

1 − xð Þλ 1 + xð Þμ R λ,μð Þ
i xð ÞR λ,μð Þ

j xð Þ dx =
0, j ≠ i,

h λ,μð Þ
i , j = i,

 

ð4Þ

where

h λ,μð Þ
i = 2λ+μ+1 i!Γ i + μ + 1ð Þ Γ λ + 1ð Þ½ �2

2i + λ + μ + 1ð ÞΓ i + λ + μ + 1ð ÞΓ i + λ + 1ð Þ : ð5Þ

One comments here that the following six special classes

of polynomials can be extracted from Rðλ,μÞ
j ðxÞ with suitable

choices of λ and μ. We have

C αð Þ
i xð Þ = R α− 1/2ð Þ,α− 1/2ð Þð Þ

i xð Þ, Ti xð Þ = R − 1/2ð Þ,− 1/2ð Þð Þ
i xð Þ,

Ui xð Þ = i + 1ð ÞR 1/2,1/2ð Þ
i xð Þ, Vi xð Þ = R − 1/2ð Þ,1/2ð Þ

i xð Þ,
Wi xð Þ = 2i + 1ð ÞR 1/2,− 1/2ð Þð Þ

i xð Þ, Pi xð Þ = R 0,0ð Þ
i xð Þ,

ð6Þ

where CðαÞ
i ðxÞ, TiðxÞ, UiðxÞ, ViðxÞ, WiðxÞ, and PiðxÞ are the

ultraspherical, first-, second-, third-, and fourth kinds of Che-
byshev polynomials and Legendre polynomials, respectively.

Also, the following relation is noted:

R λ,μð Þ
i −xð Þ = −1ð Þi Γ λ + 1ð ÞΓ i + μ + 1ð Þ

Γ μ + 1ð ÞΓ i + λ + 1ð Þ R μ,λð Þ
i xð Þ: ð7Þ

Now, consider the special class of Jacobi polynomials

Rðα,α+1Þ
i ðxÞ. It is clear that this class reduces to the class of

third-kind Chebyshev polynomials for the case correspond-
ing to α = −ð1/2Þ.

Now, define the shifted Jacobi polynomials class on ½0, 1� as

J αð Þ
i zð Þ = R α,α+1ð Þ

i 2z − 1ð Þ: ð8Þ

The orthogonality relation of JðαÞi ðzÞ on ½0, 1� is given by

ð1
0
w1 zð ÞJ αð Þ

i zð Þ J αð Þ
j zð Þdz = hiδi,j, ð9Þ

where w1ðzÞ = ð1 − zÞα zα+1, δij is the well-known Kronecker
delta function, and hi is given by

hi =
i!Γ α + 1ð Þ�2

2Γ i + 2α + 2ð Þ : ð10Þ

The classical Jacobi polynomials and their special ones are
investigated in a variety of books (see, for example, Andrews
et al. [38] and Mason and Handscomb [6]).

The following three lemmas are of fundamental impor-
tance to derive our proposed results in the upcoming
sections.

Lemma 1 (see [37]). Let j be a nonnegative integer. The

polynomials Rðα,α+1Þ
j ðxÞ have the following power form rep-

resentation:

R α,α+1ð Þ
j xð Þ = 〠

j/2b c

r=0
Ar,jx

j−2r + 〠
j−1ð Þ/2b c

r=0
Br,jx

j−2r−1, ð11Þ

where

Ar,j =
−1ð Þr 21+j−2r+2α j!Γ 1 + αð ÞΓ 3/2ð Þ + j − r + αð Þffiffiffi

π
p

r! j − 2rð Þ!Γ 2 + j + 2αð Þ ,

Br,j =
−1ð Þ1+r j!2j−2r+2α Γ 1 + αð ÞΓ 1/2ð Þ + j − r + αð Þffiffiffi

π
p

r! j − 2r − 1ð Þ!Γ 2 + j + 2αð Þ ,

ð12Þ
where bzc denotes the well-known floor function.

Lemma 2 (see [37]). For every nonnegative integer j, the fol-

lowing inversion formula for the polynomials Rðα,α+1Þ
j ðxÞ

holds:

xj = 〠
j/2b c

i=0
Qi,jR

α,α+1ð Þ
j−2i xð Þ + 〠

j−1ð Þ/2b c

i=0
�Qi,jR

α,α+1ð Þ
j−2i−1 xð Þ, ð13Þ

where

Qi,j =
2−1−j−2α

ffiffiffi
π

p
j!Γ 2 − 2i + j + 2αð Þ

i! j − 2ið Þ!Γ 1 + αð ÞΓ 3/2ð Þ − i + j + αð Þ ,

�Qi,j =
2−1−j−2α

ffiffiffi
π

p
j!Γ 1 − 2i + j + 2αð Þ

i! j − 2i − 1ð Þ!Γ 1 + αð ÞΓ 3/2ð Þ − i + j + αð Þ :
ð14Þ

Lemma 3 (see [37]). The qth derivative of the shifted Jacobi

polynomial JðαÞi ðzÞ is linked by their original ones by the
relation

DqJ αð Þ
i zð Þ = 〠

i−q

j=0
dj,i,q J

αð Þ
j zð Þ, ð15Þ

3Journal of Function Spaces



where the coefficients dj,i,q are given by

3. New Moment Formula of the Jacobi

Polynomials Rðα,α+1Þ
i ðxÞ

This section is devoted to the implementation of a new

moment formula of the Jacobi polynomials Rðα,α+1Þ
j ðxÞ. The

derivation of this formula is based on the power-form repre-
sentation of these polynomials along with their inversion
formula.

Theorem 4. Let m an n be positive integers. One has

xm R α,α+1ð Þ
j xð Þ = 〠

j+mð Þ/2b c

p=0
Up,j,mR

α,α+1ð Þ
j+m−2p xð Þ

+ 〠
1/2ð Þ j+m−1ð Þb c

p=0
�Up,j,mR

α,α+1ð Þ
j+m−2p−1 xð Þ,

ð17Þ

where

Proof. The analytic formula of Rðα,α+1Þ
j ðxÞ enables one to write

xm R α,α+1ð Þ
j xð Þ = j!Γ 1 + αð Þffiffiffi

π
p

Γ 2 + j + 2αð Þ

Á 〠
j/2ð Þb c

r=0

−1ð Þr 21+j−2r+2α Γ 3/2ð Þ + j − r + αð Þ
r! j − 2rð Þ! xj+m−2r

 

+ 〠
j−1ð Þ/2b c

r=0

−1ð Þ1+r 2j−2r+2α Γ 1/2ð Þ + j − r + αð Þ
r! j − 2r − 1ð Þ! xj+m−2r−1

!
:

ð20Þ

In virtue of (13) and after doing some lengthy manipula-
tions, we can write

xm R αð Þ
j xð Þ = 〠

j+mð Þ/2b c

p=0
Up,j,m R α,α+1ð Þ

j+m−2p xð Þ + 〠
1/2ð Þ j+m−1ð Þb c

p=0
�Up,j,m R α,α+1ð Þ

j+m−2p−1 xð Þ,

ð21Þ

whereUp,j,m and �Up,j,m are as given in (18) and (19). This ends
the proof.

Corollary 5. The moment formula of Chebyshev polynomials
of the third kind is given explicitly as

xm V j xð Þ = 1
2m

〠
m

p=0

m

p

 !
V j+m−2p xð Þ: ð22Þ

Proof. Setting α = −ð1/2Þ in (17) gives the following formula:

xm V j xð Þ = 1
2m 〠

j+mð Þ/2b c

p=0
Hp,j,m R α,α+1ð Þ

j+m−2p xð Þ + 〠
1/2ð Þ j+m−1ð Þb c

p=0
�Hp,j,m R α,α+1ð Þ

j+m−2p−1 xð Þ
 !

,

ð23Þ

dj,i,q =
22q i!Γ j + 2 α + 2ð Þ

j! q − 1ð Þ!Γ i + 2α + 2ð Þ

i − j + q − 2ð Þ/2ð Þ!Γ i + j + q + 2 α + 3ð Þ/2ð Þ
i − j − qð Þ/2ð Þ!Γ i + j − q + 2 α + 3ð Þ/2ð Þ , i + j + qð Þ even,

i − j + q − 1ð Þ/2ð Þ!Γ i + j + q + 2 α + 2ð Þ/2ð Þ
i − j − q − 1ð Þ/2ð Þ!Γ i + j − q + 2 α + 4ð Þ/2ð Þ , i + j + qð Þ odd:

8>>><
>>>:

ð16Þ

Up,j,m = j!Γ 2 + j +m − 2p + 2αð Þ
2m j +m − 2pð Þ!Γ 2 + j + 2αð Þ × 〠

p

ℓ=0

−1ð Þℓ j − 2ℓ +m − 1ð Þ!Γ 1/2ð Þ + j − ℓ + αð Þ
ℓ! j − 2ℓð Þ! p − ℓð Þ!Γ 3/2ð Þ + j − ℓ +m − p + αð Þ

× j − 2ℓð Þ ℓ − pð Þ + 1
2 j − 2ℓ +mð Þ 1 + 2j − 2ℓ + 2αð Þ

� �
,

ð18Þ

�Up,j,m = j!Γ 1 + j +m − 2p + 2αð Þ
2m+1 j +m − 2p − 1ð Þ!Γ 2 + j + 2αð Þ

× 〠
p

ℓ=0

−1ð Þℓ m + 2ℓm + 2jp − 4ℓp + 2mαð Þ j − 2ℓ +m − 1ð Þ!Γ 1/2ð Þ + j − ℓ + αð Þ
ℓ! j − 2ℓð Þ! p − ℓð Þ!Γ 3/2ð Þ + j − ℓ +m − p + αð Þ :

ð19Þ
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where

Regarding the sum in (24), the utilization of Zeilberger’s
algorithm (see [39]) enables one to obtain the following
recurrence relation for Hp,j,m:

p + 1ð ÞHp+1,j,m − m − pð ÞHp,j,m,H0,j,m = 1, ð26Þ

which can be handled quickly to provide

Hp,j,m =
m

p

 !
: ð27Þ

In addition, it is easy to demonstrate the following formula:

�Hp,j,m = 0: ð28Þ

Now, the two sums in (27) and (28) along with formula (23)
lead to the following simplified moment formula:

xm V j xð Þ = 1
2m 〠

m

p=0

m

p

 !
V j+m−2p xð Þ: ð29Þ

Remark 6. It is worth mentioning here that the moment for-
mula (22) is similar to that obtained in Ref. [40].

Corollary 7. For the case corresponds to α = 1/2, the following
moment formula holds for all nonnegative integers m and j:

xm R 1/2,3/2ð Þ
j xð Þ = 1

2m j + 1ð Þ j + 2ð Þ

Á 〠
j+mð Þ/2b c

p=0

m

p

 !
2 +m + j 3 + j +m − 2pð Þ − 3pð Þ

 

Á R 1/2,3/2ð Þ
j+m−2p xð Þ + 〠

1/2ð Þ j+m−1ð Þb c

p=0

m

p

 !
m − pð ÞR 1/2,3/2ð Þ

j+m−2p+1 xð Þ
!
:

ð30Þ

Proof. Setting α = 1/2 in the moment formula (17) gives the
following formula:

xm R 1/2,3/2ð Þ
j xð Þ = 〠

j+mð Þ/2b c

p=0
Mp, j,m R 1/2,3/2ð Þ

j+m−2p xð Þ + 〠
1/2 j+m−1ð Þb c

p=0
�Mp, j,m R 1/2,3/2ð Þ

j+m−2p−1 xð Þ
 !

,

ð31Þ

where

Regarding the two summations that appear in equations
(32) and (33), set

Hp,j,m = 〠
p

ℓ=0

−1ð Þ1+ℓ −j2 + ℓ m − 2 pð Þ + j 2ℓ −m + pð ÞÀ Á
j − ℓ − 1ð Þ! j − 2ℓ +m − 1ð Þ!

ℓ! j − 2ℓð Þ! p − ℓð Þ! j − ℓ +m − pð Þ! , ð24Þ

�Hp,j,m = 〠
p

ℓ=0

−1ð Þℓ ℓ m − 2pð Þ + jpð Þ j − ℓ − 1ð Þ! j − 2ℓ +m − 1ð Þ!
j − 2ℓð Þ!ℓ! p − ℓð Þ! j − ℓ +m − pð Þ! : ð25Þ

Mp,j,m = 1 + j +m − 2pð Þ 2 + j +m − 2pð Þ
2m j + 1ð Þ j + 2ð Þ × 〠

p

ℓ=0

−1ð Þℓ j2 +m − ℓ 2 +m − 2pð Þ + j 1 − 2ℓ +m − pð ÞÀ Á
j − ℓð Þ! j − 2ℓ +m − 1ð Þ!

ℓ! p − ℓð Þ! j − 2ℓð Þ! j − ℓ +m − p + 1ð Þ! , ð32Þ

�Mp,j,m = j +m − 2pð Þ 1 + j +m − 2pð Þ
2m j + 1ð Þ j + 2ð Þ × 〠

p

ℓ=0

−1ð Þℓ m + ℓm + jp − 2ℓpð Þ j − ℓð Þ! j − 2ℓ +m − 1ð Þ!
ℓ! j − 2ℓð Þ! p − ℓð Þ! j − ℓ +m − p + 1ð Þ! : ð33Þ

Sp,j,m = 〠
p

ℓ=0

−1ð Þℓ j2 +m − ℓ 2 +m − 2pð Þ + j 1 − 2ℓ +m − pð ÞÀ Á
j − ℓð Þ! j − 2ℓ +m − 1ð Þ!

j − 2ℓð Þ!ℓ! p − ℓð Þ! j − ℓ +m − p + 1ð Þ! ,

�Sp,j,m = 〠
p

ℓ=0

−1ð Þℓ m + ℓm + jp − 2ℓpð Þ j − ℓð Þ! j − 2ℓ +m − 1ð Þ!
j − 2ℓð Þ!ℓ! p − ℓð Þ! j − ℓ +m − p + 1ð Þ!

ð34Þ
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and utilize Zeilberger’s algorithm ([39]) to show that the fol-
lowing two recurrence relations are, respectively, satisfied by
Sp,j,m and �Sp,j,m:

p + 1ð Þ −2p + j +m − 1ð Þ −2p + j +mð Þ
Á −3p +m + j −2p + j +m + 3ð Þ + 2ð Þ
Á Sp+1,j,m + p −mð Þ −2p + j +m + 1ð Þ
Á −2p + j +m + 2ð Þ −3p +m + j −2p + j +m + 1ð Þ − 1ð Þ
Á Sp,j,m = 0,

ð35Þ

with the following initial condition:

S0,j,m = j + 1
m + j + 1 ,

p + 1ð Þ −2p + j +m − 2ð Þ −2p + j +m − 1ð Þ
Á �Sp+1,j,m − −p +m − 1ð Þ −2p + j +mð Þ
× −2p + j +m + 1ð Þ�Sp,j,m = 0,

ð36Þ

with the following initial condition:

�S0,j,m = m
m + jð Þ m + j + 1ð Þ : ð37Þ

The above two recurrence relations can be directly
solved to give

Sp,j,m =
m − p + 1ð Þp −3p +m + j −2p + j +m + 3ð Þ + 2ð Þ

p! −2p + j +m + 1ð Þ −2p + j +m + 2ð Þ ,

�Sp,j,m =
m − pð Þp+1

p! −2p + j +m + 1ð Þ −2p + j +mð Þ ,

ð38Þ

and consequently, the linearization coefficients Mp,j,m and
�Mp,j,m reduce to the following expressions:

Mp,j,m =
2 +m + j 3 + j +m − 2pð Þ − 3pð Þ 1 +m − pð Þp

2m j + 1ð Þ j + 2ð Þ p! ,

�Mp,j,m =
m − pð Þp+1

2m j + 1ð Þ j + 2ð Þ p! ,

ð39Þ

and therefore, the linearization formula (30) can be
obtained.

4. Linearization Formula of Rðα,α+1Þ
i ðxÞ

In this section and based on the moment formula that was
derived in the previous section, we present and prove a
new linearization formula of the generalized third-kind Che-

byshev polynomials Rðα,α+1Þ
i ðxÞ.

Theorem 8. For all nonnegative integers i and j, the following
linearization formula is valid:

R α,α+1ð Þ
i R α,α+1ð Þ

j = 〠
2 min i,jð Þ

p=0
Hp,i,jR

α,α+1ð Þ
i+j−p xð Þ, ð40Þ

where

Proof. Starting with the power form representation of

Rðα,α+1Þ
i ðxÞ yields

Hp,i,j =
22α+1 i!j!Γ α + 1ð Þffiffiffi

π
p

Γ 2 + i + 2αð ÞΓ 2 + j + 2αð ÞΓ 3/2ð Þ + αð Þ

×

Γ 3/2ð Þ + i − p/2ð Þ + αð ÞΓ 3/2ð Þ + j − p/2ð Þ + αð ÞΓ 3 + pð Þ/2 + αð ÞΓ 2 + i + j − p/2ð Þ + 2αð Þ
i − p/2ð Þð Þ! j − p/2ð Þð Þ! p/2ð Þ!Γ 3/2ð Þ + i + j − p/2ð Þ + αð Þ , p even,

−
Γ 1 + i − p/2ð Þ + αð ÞΓ 1 + j − p/2ð Þ + αð ÞΓ 1 + p/2ð Þ + αð ÞΓ 5/2ð Þ + i + j − p/2ð Þ + 2αð Þ

i − p + 1/2ð Þð Þ! j − p + 1/2ð Þð Þ! p − 1ð Þ/2ð Þ!Γ 2 + i + j − p/2ð Þ + αð Þ , p odd:

0
BBB@

ð41Þ

R α,α+1ð Þ
i xð ÞR α,α+1ð Þ

j xð Þ = 〠
j/2b c

r=0
Ar,j x

j−2r R α,α+1ð Þ
i xð Þ + 〠

j−1ð Þ/2b c

r=0
Br,j x

j−2r−1R α,α+1ð Þ
i xð Þ: ð42Þ
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Based on the moment formula in (17), the last relation
turns into

R α,α+1ð Þ
i xð ÞR α,α+1ð Þ

j xð Þ = 〠
j/2b c

r=0
Ar,j 〠

1/2ð Þ i+jð Þb c−r

p=0
Up,i,j−2rR

α,α+1ð Þ
i+j−2r−2p xð Þ

 

+ 〠
1/2ð Þ i+j−1ð Þb c−r

p=0
�Up,i,j−2r R

α,α+1ð Þ
i+j−2r−2p−1 xð ÞÞ

+ 〠
j−1ð Þ/2b c

r=0
Br,j 〠

1/2ð Þ i+j−1ð Þb c−r

p=0
Up,i,j−2r−1R

α,α+1ð Þ
i+j−2r−2p−1 xð Þ

 

+ 〠
1/2ð Þ i+jð Þb c−r−1

p=0
�Up,i,j−2r−1R

α,α+1ð Þ
i+j−2r−2p−2 xð Þ

!
:

ð43Þ

After some algebraic computations, equation (43) can be
rewritten in the following form:

R α,α+1ð Þ
i xð ÞR α,α+1ð Þ

j xð Þ =〠
1
+〠

2
, ð44Þ

where

〠
1
= 〠

j/2b c

r=0
Ar,j 〠

1/2ð Þ i+jð Þb c−r

p=0
Up,i,j−2rR

α,α+1ð Þ
i+j−2r−2p xð Þ

+ 〠
j−1ð Þ/2b c

r=0
Br,j 〠

1/2ð Þ i+jð Þb c−r−1

p=0
�Up,i,j−2r−1R

α,α+1ð Þ
i+j−2r−2p−2 xð Þ,

ð45Þ

and

〠
2
= 〠

j/2b c

r=0
Ar,j 〠

1/2 i+j−1ð Þb c−r

p=0
Up,i,j−2rR

α,α+1ð Þ
i+j−2r−2p−1 xð Þ

+ 〠
j−1ð Þ/2b c

r=0
Br,j 〠

1/2ð Þ i+j−1ð Þb c−r

p=0
Up,i,j−2r−1R

α,α+1ð Þ
i+j−2r−2p−1 xð Þ:

ð46Þ

After expanding and rearranging the terms in (45) and
(46), they can be written in the following expressions:

〠
1
= 〠

i+jð Þ/2b c

p=0
〠
p

ℓ=0
Aℓ,jUp−ℓ,i,j−2ℓ + Bℓ,j �Up−ℓ−1,i,j−2ℓ−1
À Á( )

R α,α+1ð Þ
i+j−2p xð Þ,

〠
2
= 〠

1/2ð Þ i+j−1ð Þb c

p=0
〠
p

ℓ=0
Aℓ,j �Up−ℓ,i,j−2ℓ + Bℓ,jUp−ℓ,i,j−2ℓ−1
À Á( )

R α,α+1ð Þ
i+j−2p−1 xð Þ:

ð47Þ

Now and in order to obtain the linearization coefficients

of the linearization formula of Rðα,α+1Þ
i ðxÞ in a reduced for-

mula that is free of any sums, we employ symbolic computa-
tion. For such purpose, set

Mp,i,j = 〠
p

ℓ=0
Aℓ,jUp−ℓ,i,j−2ℓ + Bℓ,j �Up−ℓ−1,i,j−2ℓ−1
À Á

,

�Mp,i,j = 〠
p

ℓ=0
Aℓ,j �Up−ℓ,i,j−2ℓ + Bℓ,jUp−ℓ,i,j−2ℓ−1
À Á

:

ð48Þ

It can be shown by symbolic computation and, in partic-
ular, Zeilberger’s algorithm that the following two recur-
rence relations, each of order one, are satisfied,
respectively, by Mp,i,j and �Mp,i,j:

p + 1ð Þ −2p + 2i + 2α + 1ð Þ −p + i + j + 2α + 1ð Þ
Á −2p + 2j + 2α + 1ð ÞMp+1,i,j − i − pð Þ j − pð Þ
Á 2p + 2α + 3ð Þ −2p + 2i + 2j + 2α + 1ð ÞMp,i,j = 0,

ð49Þ

with the following initial value:

M0,i,j =
21+2α Γ 1 + αð ÞΓ 3/2ð Þ + i + αð ÞΓ 3/2ð Þ + j + αð ÞΓ 2 + i + j + 2αð Þffiffiffi

π
p

Γ 3/2ð Þ + i + j + αð ÞΓ 2 + i + 2αð ÞΓ 2 + j + 2αð Þ ,

p + 1ð Þ −2p + 2i + 2α − 1ð Þ −p + i + j + 2α + 1ð Þ
Á −2p + 2j + 2α − 1ð Þ �Mp+1,i,j − i − p − 1ð Þ j − p − 1ð Þ
Á 2p + 2α + 3ð Þ −2p + 2i + 2j + 2α + 1ð Þ �Mp,i,j = 0,

ð50Þ

with the following initial value:

�M0,i,j =
−21+2α i jΓ 1 + αð ÞΓ 1/2ð Þ + i + αð ÞΓ 1/2ð Þ + j + αð ÞΓ 2 + i + j + 2αð Þffiffiffi

π
p

Γ 3/2ð Þ + i + j + αð ÞΓ 2 + i + 2αð ÞΓ 2 + j + 2αð Þ :

ð51Þ

The above two recurrence relations can be directly
solved to give

Mp,i,j =
−21+2α i!j!Γ 1 + αð ÞΓ 3/2ð Þ + i − p + αð ÞΓ 3/2ð Þ + j − p + αð ÞΓ 3/2ð Þ + p + αð ÞΓ 2 + i + j − p + 2αð Þffiffiffi

π
p

p! i − pð Þ! j − pð Þ!Γ 3/2ð Þ + αð ÞΓ 3/2ð Þ + i + j − p + αð ÞΓ 2 + i + 2αð ÞΓ 2 + j + 2αð Þ , ð52Þ

�Mp,i,j =
−21+2αi!j!Γ α + 1ð ÞΓ 1/2ð Þ + i − p + αð ÞΓ 1/2ð Þ + j − p + αð ÞΓ 3/2ð Þ + p + αð ÞΓ 2 + i + j − p + 2αð Þffiffiffi

π
p

p! i − p − 1ð Þ! j − p − 1ð Þ!Γ 3/2ð Þ + αð ÞΓ 3/2ð Þ + i + j − p + αð ÞΓ 2 + i + 2αð ÞΓ 2 + j + 2αð Þ : ð53Þ
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Therefore, the following linearization formula is obtained:

R α,α+1ð Þ
i R α,α+1ð Þ

j = 〠
i+jð Þ/2b c

p=0
Mp,i,jR

α,α+1ð Þ
i+j−2p

+ 〠
1/2ð Þ i+j−1ð Þb c

p=0
�Mp,i,jR

α,α+1ð Þ
i+j−2p−1 xð Þ,

ð54Þ

here the linearization coefficients Mp,i,j and �Mp,i,j are, respec-

tively, given by (52) and (53). Formula (54) can be written
alternatively as

R α,α+1ð Þ
i R α,α+1ð Þ

j = 〠
2 min i,jð Þ

p=0
Hp,i,jR

α,α+1ð Þ
i+j−p xð Þ, ð55Þ

with the following linearization coefficients Hp,i,j:

This completes the proof of Theorem 8.

In the following two corollaries, we give two specific lin-
earization formulas of the linearization formula (40).

Corollary 9. Setting α = −ð1/2Þ in (40) leads to the following
linearization formula:

Vi xð ÞV j xð Þ = 〠
2 min i,jð Þ

p=0
−1ð Þp Vi+j−p xð Þ: ð57Þ

Remark 10. The linearization formula (57) was previously
obtained in [41], but here, it is derived in an alternative
approach.

Corollary 11. Setting α = 1/2 in (40) leads to the following
linearization formula:

R 1/2,3/2ð Þ
i R 1/2,3/2ð Þ

j = 〠
2 min i,jð Þ

p=0
Hp,i,j R

1/2,3/2ð Þ
i+j−p xð Þ, ð58Þ

with

Remark 12. The linearization formula (57) was previously
obtained in [42].

Remark 13. The basic linearization formula (40) in Theo-

rem8holds for the shifted Jacobi polynomials JðαÞi ðxÞ, only if
x is replaced by ð2x − 1Þ . The following theorem exhibits this
formula in an appropriate form.

Theorem 14. For all nonnegative integers i and j, the follow-
ing linearization formula is valid:

J αð Þ
i xð Þ J αð Þ

j xð Þ = 〠
i+j

p= i−jj j
Gp,i,j J

αð Þ
p xð Þ, ð60Þ

with the following linearization coefficients Gp,i,j:

Hp,i,j =
21+2α i!j!Γ 1 + αð Þffiffiffi

π
p

Γ 2 + i + 2αð ÞΓ 2 + j + 2αð ÞΓ 3/2ð Þ + αð Þ ×

Γ 3/2ð Þ + i − p/2ð Þ + αð ÞΓ 3/2ð Þ + j − p/2ð Þ + αð ÞΓ 3 + pð Þ/2 + αð ÞΓ 2 + i + j − p/2ð Þ + 2αð Þ
i − p/2ð Þð Þ! j − p/2ð Þð Þ! p/2ð Þð Þ!Γ 3/2ð Þ + i + j − p/2ð Þ + αð Þ , p even,

−
Γ 1 + i − p/2ð Þ + αð ÞΓ 1 + j − p/2ð Þ + αð ÞΓ 1 + p/2ð Þ + αð ÞΓ 5/2ð Þ + i + j − p/2ð Þ + 2αð Þ

i − p + 1/2ð Þð Þ! j − p + 1/2ð Þð Þ! p − 1ð Þ/2ð Þ!Γ 2 + i + j − p/2ð Þ + αð Þ , p odd:

0
BBB@

ð56Þ

Hp,i,j = 1/8 i + 1ð Þ i + 2ð Þ j + 1ð Þ j + 2ð Þð Þ ×
2 + 2i − pð Þ 2 + 2j − pð Þ 4 + 2i + 2j − pð Þ 2 + pð Þ, p even,
− 1 + 2i − pð Þ 1 + 2j − pð Þ 5 + 2i + 2j − pð Þ p + 1ð Þ, p odd:

 
ð59Þ

Gp,i,j =
22α+1 i!j!Γ α + 1ð Þffiffiffi

π
p

Γ 3/2ð Þ + αð ÞΓ i + 2α + 2ð ÞΓ j + 2α + 2ð Þ ×

Γ 1/2ð Þ i + j − p + 3ð Þ + αð ÞΓ 1/2ð Þ i − j + p + 3ð Þ + αð Þ
1/2ð Þ i + j − pð Þð Þ! 1/2ð Þ i − j + pð Þð Þ! 1/2ð Þ −i + j + pð Þð Þ! ×

Γ 1/2ð Þ −i + j + p + 3ð Þ + αð ÞΓ 1/2ð Þ i + j + p + 4α + 4ð Þð Þ
Γ 1/2ð Þ i + j + p + 3ð Þ + αð Þ , i + j − pð Þ even,

−Γ 1 + 1/2ð Þ i + j − pð Þ + αð ÞΓ 1/2ð Þ i − j + p + 2ð Þ + αð Þ
Γ 1/2ð Þ i + j − p + 1ð Þð ÞΓ 1/2ð Þ i − j + p + 1ð Þð Þ ×

Γ 1/2ð Þ 2 − i + j + pð Þ + αð ÞΓ 1/2ð Þ i + j + p + 4α + 5ð Þð Þ
Γ 1/2ð Þ −i + j + p + 1ð Þð ÞΓ 1/2ð Þ i + j + p + 4ð Þ + αð Þ , i + j − pð Þ odd:

0
BBBBBBBBBBBBB@

ð61Þ
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5. The Proposed Algorithm for the Numerical
Treatment of the Nonlinear Fisher Equation

In this section, we are interested in obtaining a numerical
algorithm for solving the nonlinear Fisher equation. More
precisely, we will employ the established linearization for-
mula along with the derivatives formula of the shifted poly-

nomials JðαÞi ðxÞ to obtain a numerical solution based on
applying the tau method. We denote our algorithm by the
nonsymmetric Jacobi Tau Method (NJTM).

Now, consider the Fisher differential equation [32]:

∂V
∂t

= ∂2V
∂x2

+ κV 1 −Vð Þ,  x, tð Þ ∈Ω = 0, 1ð Þ × 0, 1ð Þ,
ð62Þ

governed by the following initial and boundary conditions:

V x, 0ð Þ = η xð Þ, x ∈ 0, 1ð Þ, ð63Þ

V 0, tð Þ = ξ0 tð Þ,
V 1, tð Þ = ξ1 tð Þ, t ∈ 0, 1ð Þ,

ð64Þ

where κ is the positive coefficient of kinematic viscosity and
η, ξ0 and ξ1 are prescribed known continuous functions.
Now, for solving (62) governed by the conditions (63) and
(64), we utilize the spectral tau method.

Now, assume that V ðx, yÞ =V ∈ L2ðΩÞ and let it have
the following double series expansion:

V = 〠
∞

r=0
〠
∞

s=0
vrs J

αð Þ
s xð Þ J αð Þ

r tð Þ: ð65Þ

Furthermore, assume an approximate solution to (62) in
the form

V ≃V M = 〠
M

r=0
〠
M

s=0
vrs J

αð Þ
s xð Þ J αð Þ

r tð Þ: ð66Þ

Input Given κ,M, η, ξ0 and ξ1.
Step 1. Evaluate the derivatives coefficients dj,r,1, dj,s,2 from relation (16), and the linearization.
coefficients G�ν,�s,s, Gν,�r,r from relation (61).

Step 2. Assume an approximate solution in the form: V M =∑M
r=0∑

M
s=0vrs J

ðαÞ
s ðxÞ JðαÞr ðtÞ.

Step 3. Compute the residuals: REðx, tÞ, RIðxÞ, RB0ðtÞ, RB1ðtÞ via Eqs. (69-72z).
Step 4. Apply the tau method to obtain the system in ((74)-(77)).
Step 5. Employ Newtons’ iterative method -FindRoot- to obtain the coefficients vrs.
Step 6. Find the double expansion: ∑M

r=0∑
M
s=0vrs J

ðαÞ
s ðxÞ JðαÞr ðtÞ.

Output the approximate solution: V M .

Algorithm 1: Coding algorithm for the proposed scheme.

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

x = 0
x = 0.2
x = 0.4

x = 0.6
x = 0.8
x = 1

1.0

Figure 1: Solution of Example 1 at different values of x.
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In virtue of formula (15), it can be shown that ∂V M/∂t
and ∂2V M/∂x2 can be represented as follows:

∂V M

∂t
= 〠

M

r=1
〠
M

s=0
〠
r−1

j=0
dj,r,1 vrs J

αð Þ
s xð ÞJ αð Þ

j tð Þ,

∂2V M

∂x2
= 〠

M

r=0
〠
M

s=2
〠
s−2

j=0
dj,s,2 vrs J

αð Þ
j xð ÞJ αð Þ

r tð Þ:
ð67Þ

x = 0
x = 0.2
x = 0.4

x = 0.6
x = 0.8
x = 1

3. × 10–8

2.5 × 10–8

2. × 10–8

1. × 10–8

1.5 × 10–8

5. × 10–9

0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Absolute error of Example 1 at different values of x.

t = 0
t = 0.2
t = 0.4

t = 0.6
t = 0.8

0

8. × 10–9

6. × 10–9

4. × 10–9

2. × 10–9

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Absolute error of Example 1 at different values of t.

Table 1: MAE for Example 1.

M α = 0 α = 1/2 α = 1
4 2:35 × 10−2 3:48 × 10−2 5:61 × 10−2

6 3:41 × 10−6 5:47 × 10−6 8:35 × 10−6

8 4:73 × 10−8 5:27 × 10−8 9:37 × 10−8
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Based on the linearization formula (60), the nonlinear
term ðV MÞ2 can be written in the following form:

V Mð Þ2 = 〠
M

�r=0
〠
M

�s=0
〠
M

r=0
〠
M

s=0
〠
�s+s

�ν= �s−sj j
〠
�r+r

ν= �r−rj j
G�ν,�s,s Gν,�r,r v�s�r vrs J

αð Þ
�ν xð Þ J αð Þ

ν tð Þ:

ð68Þ

Now, to apply the tau method to (62) governed by
the conditions (63) and (64), we first compute the resid-
ual REðx, tÞ of the differential equation (62). It is given

explicitly as

RE x, tð Þ = ∂V M

∂t
−
∂2V M

∂x2
− κVM + κ V Mð Þ2 = 〠

M

r=1
〠
M

s=0
〠
r−1

j=0
dj,r,1 vrs J

αð Þ
s xð ÞJ αð Þ

j tð Þ

− 〠
M

r=0
〠
M

s=2
〠
s−2

j=0
dj,s,2 vrs J

αð Þ
j xð ÞJ αð Þ

r tð Þ − κ 〠
M

r=0
〠
M

s=0
vrs J

αð Þ
s xð ÞJ αð Þ

r tð Þ

+ κ 〠
M

�r=0
〠
M

�s=0
〠
M

r=0
〠
M

s=0
〠
�s+s

�ν= �s−sj j
〠
�r+r

ν= �r−rj j
G�ν,�s,s Gν,�r,r v�s�r vrs J

αð Þ
�ν xð Þ J αð Þ

ν tð Þ:

ð69Þ
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t = 0.2
t = 0.4

t = 0.6
t = 0.8
t = 1
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Figure 4: Solution of Example 2 at different values of t.
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Figure 5: Absolute error of Example 2 at different values of x.
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On the other hand, the residual of (63) (RIðxÞ) can
be written:

RI xð Þ =V M x, 0ð Þ − η xð Þ = 〠
M

r=0
〠
M

s=0
vrs J

αð Þ
s xð ÞJ αð Þ

r 0ð Þ − η xð Þ:

ð70Þ

Moreover, the two residuals of the boundary condi-
tions (64) (RB0ðtÞ and RB1ðtÞ) are given by

RB0 tð Þ =V M 0, tð Þ − ξ0 tð Þ = 〠
M

r=0
〠
M

s=0
vrs J

αð Þ
s 0ð ÞJ αð Þ

r tð Þ − ξ0 tð Þ,

ð71Þ

RB1 tð Þ =V M 1, tð Þ − ξ1 tð Þ = 〠
M

r=0
〠
M

s=0
vrs J

αð Þ
s 1ð ÞJ αð Þ

r tð Þ − ξ1 tð Þ:

ð72Þ
Now, the application of the tau method leads to the

following equations:

ð1
0

ð1
0
RE x, tð Þ J αð Þ

r xð ÞJ αð Þ
s tð Þw1 xð Þw1 tð Þdxdt = 0, 0 ≤ r ≤M − 1, 0 ≤ s ≤M − 1,

ð1
0
RI xð Þ J αð Þ

0 xð Þw1 xð Þ dx = 0,
ð1
0
RB0 tð Þ J αð Þ

r tð Þw1 tð Þ dt = 0, 0 ≤ r ≤M − 1,
ð1
0
RB1 tð Þ J αð Þ

r tð Þw1 tð Þ dt = 0, 0 ≤ r ≤M − 1:

ð73Þ

The substitution by the four residuals in equations

(69), (70), (71), and (72) yields, respectively, the following
equations:

〠
M

r=1
ds,r,1 nurn hr hs,1 − 〠

M

s=2
dr,s,2 vms hr hs − κ nurs hr hs

+ κ 〠
M

�n=0
〠
M

�s=0
〠
M

n=0
〠
M

s=0
Gr,�s,s Gr,�n,n v�s�n vrshr hs = 0, 0 ≤ r ≤M − 1, 0 ≤ s ≤M − 1,

ð74Þ

〠
M

n=0
v0n h0 J

αð Þ
n 0ð Þ =

ð1
0
η xð ÞJ αð Þ

0 xð Þw1 xð Þdx, ð75Þ

〠
M

s=0
vmr hr J

αð Þ
s 0ð Þ =

ð1
0
ξ0 tð ÞJ αð Þ

r tð Þw1 tð Þ dt, 0 ≤ r ≤M − 1,

ð76Þ

〠
M

s=0
vmrhr J

αð Þ
s 1ð Þ =

ð1
0
ξ1 tð ÞJ αð Þ

r tð Þw1 tð Þ dt, 0 ≤ r ≤M − 1,

ð77Þ

where JðαÞi ð0Þ = ðð−1Þi ði + α + 1ÞÞ/ðα + 1Þ and JðαÞi ð1Þ = 1.
The proposed tau approach produces the nonlinear sys-

tem of equations (74)-(77) with the unknowns fvrsg of

Table 2: MAE for Example 2.

M α = 0 α = 1/2 α = 1
3 4:24 × 10−3 8:27 × 10−3 2:16 × 10−2

5 5:37 × 10−6 5:69 × 10−6 4:88 × 10−5

7 2:66 × 10−8 7:28 × 10−8 8:61 × 10−8

t = 0
t = 0.2
t = 0.4

t = 0.6
t = 0.8

2.5 × 10–8

2. × 10–8

1.5 × 10–8

1. × 10–8

5. × 10–8

0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: Absolute error of Example 2 at different values of t.
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dimension M2. It is necessary to solve this nonlinear system
to obtain the desired approximate solution. This can be
accomplished by using a suitable numerical method, such
as Newton’s iterative technique.

Remark 15. It is very imperative to communique here that if
the term κV ð1 −V Þ is replaced by κV ð1 −V mÞ, where m
is any positive integer, then the repeated use of lineariza-
tion formula (59) will generate a system that is similar to
((73))-((76)). This means our algorithm can be extended
to solve this generalized Fisher problem. The details are
omitted.

Remark 16. To summarize our proposed numerical algo-
rithm, in Algorithm 1, we list in order the steps required
to obtain the desired numerical solution.

6. Numerical Experiments and Comparisons

Example 1. Consider the following nonlinear Fisher equa-
tion [32]:

∂V
∂t

= ∂2V
∂x2

+ 6V 1 −Vð Þ,  x, tð Þ ∈Ω = 0, 1ð Þ × 0, 1ð Þ,
ð78Þ

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

t = 0
t = 0.2
t = 0.4

t = 0.6
t = 0.8
t = 1

Figure 7: Solution of Example 3 at different values of t.

1. × 10–6

8. × 10–7

6. × 10–7

4. × 10–7

2. × 10–7

0

0.0 0.2 0.4 0.6 0.8 1.0

x = 0
x = 0.2
x = 0.4

x = 0.6
x = 0.8
x = 1

Figure 8: Absolute error of Example 3 at different values of x.
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along with

V x, 0ð Þ = 1 + exð Þ−2, x ∈ 0, 1ð Þ, ð79Þ

and the boundary conditions:

V 0, tð Þ = 1 + e−5t
À Á−2,

V 1, tð Þ = 1 + e1−5t
À Á−2, t ∈ 0, 1ð Þ,

ð80Þ

with the exact solution

V x, tð Þ = 1 + ex−5t
À Á−2

: ð81Þ

We apply the NJTM for the case corresponding to α = 0,
M = 8. In Figure 1, we depict the approximate solution
of Example 1 at different values of x. In Figure 2, we
depict the absolute error of Example 1 at different values
of x. In Figure 3, we depict the absolute error of Exam-
ple 1 at different values of t. In Table 1, we report the
maximum absolute error (MAE) for different values of
M and α.

Example 2. Consider the following nonlinear Fisher equa-
tion [32]:

∂V
∂t

= ∂2V
∂x2

+V 1 −Vð Þ, x, tð Þ ∈Ω = 0, 1ð Þ × 0, 1ð Þ, ð82Þ

along with

V x, 0ð Þ = 1
ex/

ffiffi
6

p
+ 1

À Á2 , ð83Þ

and the boundary conditions:

V 0, tð Þ = 1
e−5t/6 + 1ð Þ2

,V 1, tð Þ = 1
e 1/ ffiffi6pð Þ− 5t/6ð Þ + 1
À Á2 , t ∈ 0, 1ð Þ,

ð84Þ

with the exact solution

V x, tð Þ = 1
e x/ ffiffi6pð Þ− 5t/6ð Þ + 1
À Á2 : ð85Þ

We apply NJTM for the case corresponding to α = 1/2,
M = 7. Figure 4 displays the approximate solutions of Example
2 at different values of t. Additionally, Figure 5 displays the
absolute error of Example 2 at different values of x. Figure 6
displays the absolute error of Example 2 at different values of
t. Finally, Table 2 reports the MAE for different values of M
and α.

Table 3: MAE for Example 3.

M α = 0 α = 1/2 α = 1
4 5:27 × 10−3 2:48 × 10−3 6:87 × 10−3

6 3:41 × 10−5 4:29 × 10−5 8:63 × 10−5

8 4:73 × 10−8 5:27 × 10−7 9:37 × 10−7

5. × 10–7

4. × 10–7

3. × 10–7

2. × 10–7

1. × 10–7

0

0.0 0.2 0.4 0.6 0.8 1.0

t = 0
t = 0.2
t = 0.4

t = 0.6
t = 0.8

Figure 9: Absolute error of Example 3 at different values of t.
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Example 3. Consider the following nonlinear Fisher equation
([32, 43]):

∂V
∂t

= ∂2V
∂x2

+V 1 −V 6À Á
, x, tð Þ ∈Ω = 0, 1ð Þ × 0, 1ð Þ, ð86Þ

along with

V x, 0ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 −

1
2 tanh 3x

4

� �
3

s
, x ∈ 0, 1ð Þ, ð87Þ

and the boundary conditions:

V 0, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 tanh 15t

8

� �
+ 1
2

3

s
,V 1, tð Þ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 −

1
2 tanh 3

4 1 − 5t
2

� �� �
3

s
, t ∈ 0, 1ð Þ,

ð88Þ

with the exact solution

V x, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 −

1
2 tanh 3

4 x −
5t
2

� �� �
3

s
: ð89Þ

We apply NJTM for the case corresponding to α = 1,
M = 8. In Figure 7, we depict the solution of Example 3
at different values of t. Figure 8 shows the absolute error
of Example 3 at different values of x, while Figure 9 shows
the absolute error of Example 3 at different values of t.
The MAE for different values of M and α is reported in
Table 3.

7. Concluding Remarks

In this article, a novel linearization formula of a class of
Jacobi polynomials that generalizes the third-kind Cheby-
shev polynomials was established. The establishment of this
linearization formula depends on using a new moment for-
mula of these polynomials together with the employment
of suitable symbolic computation. The linearization formula
and the high-order derivative formula of a certain class of
Jacobi polynomials are utilized along with the spectral tau
method to develop a new numerical algorithm for treating
the nonlinear Fisher equation. We do believe that our theo-
retical results and the proposed numerical results are new.
Furthermore, other types of nonlinear differential equations
may be treated using similar techniques. Some illustrative
examples were presented accompanied by some compari-
sons to validate the accuracy and efficiency and the proposed
tau algorithm.
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