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Over the past century, the fixed point theory has emerged as a very useful and efficient tool in the study of nonlinear problems.
This study introduced a progressed genetic algorithm (GA) based on a particular mutation operator applying on a subdivided
search space where integer label and relative coordinates are used. This algorithm eventually categorizes each fixed point as its
solution in appropriate set. Extensive computational experiments are conducted to assess the performance of the proposed
technique with a standard GA for solving some nonlinear numerical functions from the literature.

1. Introduction

The fixed point theory was introduced scientifically in the
20th century. The basis of this theory is the principle of
the Picard-Banach-Caccioppoli, which led to important lines
of research and applications of this theory [1]. Fixed point
theory is used and is important in various theoretical and
practical fields. Theoretical fields such as variable and linear
inequalities, theory of approximation, nonlinear analysis,
equations, integrals, and differential components, theory of
dynamic systems, fractals theory, financial mathematic, and
game theory and applied fields such as biology, chemistry,
management and economics, engineering in various disci-
plines, computer science, physics, geometry, astronomy,
fluid mechanics, and image processing.

Riehl et al. [2] considered fixed points of discrete systems
in large networks and optimized them. In this study, the
equilibrium fixed points of discrete systems in distributed
networks were considered; and by using appropriate parti-
tions, they recursively decompose the main problem into a
set of smaller and simpler problems and combine their solu-
tions to gain a set of fixed points. The results showed the
proposed algorithm with examples in two areas of calculat-
ing the number of fixed points in brain networks and finding

the minimum energy combinations of network-based pro-
tein folding models.

Lael et al. [3] introduced a method for the Caristi-Kirk
fixed point result for single mappings in conical metric
spaces with a simple yet complete argument. The results of
this research showed that the Caristi-Kirk fixed point in con-
ical metric spaces turns into a result similar to traditional
methods in reduced metric spaces. Bakery and Mohamed
[4] proposed a new definition of the variable exponent of
the Cesàro complex function space using the official power
series. In this space, by utilizing s-numbers produced
prequasi-ideal and then presented the topological and geo-
metric structures of this class of ideal.

Metric space developed with the introduction of the
Banach contraction principle and found more applications.
One of the concepts presented in this space was the concept
of F-metric [5]. Asif et al. [6] considered f-metric and create
common fixed point results of Reich-type contraction. The
results of this definition and its development showed that a
unique common fixed point can be obtained if the contrac-
tion conditions are limited to only one closed ball subset of
the total F-metric space. In addition, some significant impli-
cations are exploited from the significant results that charac-
terize the fixed point outcomes for a single mapping. Among
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nonlinear maps, nonexpansion maps are of particular
importance. Expansion maps are maps that have a Lipschitz
constant equal to one. Shukla and Panickar [7] assumed a
nonexpansion map and they gained a number of fixed point
theorems for these maps in geodetic spaces.

When we consider different optimization methods and
compare them with the genetic algorithm, we find that the
genetic algorithm (GA) by simulating the evolutionary process
in organisms can provide an effective solution to find the opti-
mal point inmost cases [8, 9]. Mutation is used for avoiding of
premature convergence and consequently escaping from local

optimal. The GAs have been very successful in handling com-
binatorial optimization problems which are difficult [10].

Tang et al. [11], in order to prevent premature conver-
gence in the GA, utilized the idea of flight behavior in the
bird swarm algorithm to maintain population diversity and
reduce the probability of falling to the local optimal. Muta-
tion and the mutation probability ðpmÞ are important
parameters in GAs. The mutation operator generates a new
string by altering one or more bits of a string. By applying
the mutation operator to a string, muting each bit of the
string independently from the other bits is considered. So,
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Figure 1: Improvement genetic algorithm flow chart.
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the mutation operator is more likely to significantly disrupt
the allocation of trials to high order schemata than to low
order ones. The efficiency of the mutation operator as a
means of exploring the search space is questionable. A GA
using mutation as the only genetic operator would be a ran-
dom search that is biased toward sampling good hyper
planes rather than poor ones [12].

The relationship between the genetic algorithm and the
fixed points is a two-way relationship. In this sense, in some

studies, fixed point properties have been used to improve the
performance of genetic algorithms [13–18], and in some
studies, updated models of genetic algorithms have been
used to solve fixed point problems [19–22].

The concepts of fixed point and subdivision theory are
used in some researches for improving GA. Gao et al. [13]
introduced a GA based on fixed point algorithm and subdi-
vision theory of continuous self-mapping in Euclidean
space. They used subdivision of searching space and gener-
ate the integer labels and then these labels utilized for oper-
ators in GA. Pop [14] introduced a new developed GA based
on the fixed point theorem and triangulation technique.
Researcher utilized the crossover and mutation and
increased the dimension genetic operators to avoid of pre-
mature convergence. Also, they utilized a custom increase
dimension operator that expressively increases the total
fitness.

Wolfram [23] used GA for controlling fixed point opti-
mization. The researcher considers the floating point and
fixed point display error in the optimization. Since both
methods allow weighing between the theoretical and actual
simulation, error occurred. Due to the script features of the
simulation system, this can be easily automated. Zhang
et al. [15] introduced triangulation theory into GA by the
virtue of the concept of relative coordinate genetic coding
and designed corresponding crossover and mutation opera-
tor. Hayes and Gedeon [17] considered the infinite popula-
tion model for GA where the generation of the algorithm
corresponds to a generation of a map. They showed that
for a typical mixing operator, all the fixed points are
hyperbolic.

Ren et al. [24] introduced the fixed point theory in PSO
optimization and proposed an improved FP-PSO (fixed
point PSO) algorithm. In the FP-PSO algorithm, the objec-
tive function is converted to a set of fixed point equations
and the set of solutions obtained by the simple algorithm
(SA) is used as the initial population of the PSO algorithm.
Therefore, the remaining parameters can be obtained based
on this choice of the classical PSO algorithm. Zhang et al.
[16] introduced a GA that the population of individual is
regarded as the triangulation of the point. They used the ver-
tex label information of the individual simplex of individual
to design selection operator, crossover, and mutation
operators.

Zhang and Shang [25] proposed an improved multiob-
jective genetic algorithm based on Pareto front and fixed
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point theory. In this algorithm, the fixed point theory is
introduced to a multiobjective optimization questions, and
K1 triangulation is carried on to solutions for the weighting
function constructed by all subfunctions, so the optimal
problems are transferred to fixed point problems. Yang
et al. [11] introduced the van der Laan-Talman algorithm
to the GA to design convergence criteria objectively and to
solve the convergence problem in the later period. The par-

allel GA of multibody model vehicle suspension optimiza-
tion implemented through establishing the interface
between ADAMS software and the GA. Wright et al. [26]
developed a dynamical system model of a GA that uses gene
pool crossover, proportional selection, and mutation. They
introduced the concept of bistability for GA and they
showed that it is possible for a GA to have two stable fixed
points on a single-peak fitness landscape. These can corre-
spond to a metastable finite populations.

Gedeon et al. [27] showed that for an arbitrary selection
mechanism and a typical mixing operator, their composition
has finitely many fixed points. Qian et al. [28] proposed a
GA to treat with such constrained integer programming
problem for the sake of efficiency. Then the fixed point
evolved (E)-UTRA PRACH detector presented, which fur-
ther underlines the feasibility and convenience of applying
this methodology to practice. Wright et al. [29] considered
the dynamic system model of Wright and Vose [18] and
showed that with the increase of mutation percentage, the
hyperbolic asymptotic fixed points are directed towards the
simplex, and the hyperbolic unstable asymptotic fixed points
are directed out of the simplex.

Thianwan [30] introduced a new iteration scheme of
mixed type for two asymptotically nonexpansive self-
mappings and two asymptotically nonexpansive non-self-
mappings. After introducing this method, some convergence
theorems based on the proposed iterative scheme in uni-
formly convex Banach spaces have been presented, proved,
and compared with previous results on some problems. A
new mixed type iteration process for approximating a com-
mon fixed point from two asymptotic self-expansion map-
pings and two nonasymptotic self-expansion mappings was
introduced by Thianwan [31]. In the continuation of this
research, a convergence theorem was proposed in a uniform
convex hyperbolic space and using the introduced method,
the presented results showed that the presented model has
better results than the previous models.

This paper investigates the concepts of fixed point and
square labels with a special mutation operator for improving
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performance of the GA. The performance of proposed algo-
rithm on some nonlinear numerical optimization problems
shows this algorithm converge to a reasonable results in a
few numbers of generations.

2. Construing of Optimal Problems as Fixed
Point Problem

In genetic algorithm like other evolutionary algorithm, its
optimal solutions are points that the algorithm improves,
keeps, or returns to them after a certain number of iterations
because these points meet the required criteria of the algo-
rithm. When infinite population is used in GA, the algo-
rithm must converge, and the average population fitness
increase from one generation to the next. The consequence
for a finite population simple genetic algorithm (SGA) is
that the expected population fitness increases from one gen-
eration to the next. Moreover, the only stable fixed point of
the expected next population operator corresponds to the

population consisting entirely of the optimal string. This
result is then extended by way of a perturbation argument
to allow nonzero mutation. Supposing that algorithm is
searching a point x, which can make continuous function
of f to achieve its minimum. The necessary and sufficient
condition of extreme point is that this point gradient is 0,
that is, ∇f ðxÞ = 0.

For self-mapping g : ℝn ⟶ℝn, we say, x ∈ℝn is a
fixed point of g if gðxÞ = x, then we can convert the solution
of zero point problems to fixed point ones of function gðxÞ
= x + ∇ f ðxÞ.

3. Subdivision and Relative Coordinates

Supposing that definition domain of f ðx1, x2Þ is that a ≤ x1
≤ b, c ≤ x2 ≤ d and dividing the domain into many squares
with two groups of straight lines of fx1 =mhig, fx2 =mhig
in which m is a not negative integer and hi is a positive
quantity relating to precision of the problem; as a result,
we can code each point of intersection as x1 = a + nhi, x2 =
c + khi where n, k are not negative integers, so ðn, kÞ is called
the relative coordinates of points. Consequently, by chang-
ing n, k relative coordinates of each point in search space is
determined.

Supposing that x is a vertex of a square that will be
labeled as the following [23]:

l xð Þ =
0, g x1ð Þ − x1 ≥ 0, g x2ð Þ − x2 ≥ 0,
1, g x1ð Þ − x1 < 0, g x2ð Þ − x2 ≥ 0,
2, g x2ð Þ − x2 < 0:

8
>><

>>:

ð1Þ

The square with all different kinds of integer label is
called a completely labeled unite, when hi ⟶ 0 within iter-
ation stages, vertices of that square approximately converge
to one point which is a fixed point.

4. Mutation Operator

For each point coded ðn, kÞ, the GA is trying to improve it to
reach optimal solution by mutation operator searching all
points surrounding it in certain step determined by hi+1:
Thus, mutation probability pm = 1.

For instance, ðn, kÞ in Pð0Þ, initial population, address-
ing ðx1 + nhi, x2 + khiÞ will be changed as ðx1 + α, x2 + βÞ
, α, β ∈ f0,±hi+1g. Subsequently, the algorithm saves the
best-mutated individual among all possible offspring. There-
fore, this operator produces new population located on
intersection of the next grid. Because of this, coming squares
are specified to evaluate and label. Furthermore, the next
generation is producing from the previous one. For instance,
in example 1, we show that the operator mutates (-2, 2) to
(-2, 0), (2, 0), and (0, 0) in the given scope, then (0, 0) is
selected as the best offspring.

5. The Improved Genetic Algorithm

This improved algorithm makes grid in given scope and
encodes each intersection by integer while it starts from
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the lowest point of the domain. After calculating fitness of
each point, it generates the best offspring and computes inte-
ger label of the last population for every square. When it
found the square labeled completely, it subdivides them in
order to seek the solution closely (the process of this method
is shown in Figure 1). As following, we demonstrate the per-
formance of the improved algorithm by different examples
and show how it can categorize fixed points.

6. Computational Experiments

In this section, we present the computational results of the
proposed algorithm for solving some nonlinear numerical
functions.

6.1. Test Problem 1. This function is a continuous and unim-
odal function taken from [32]. The optimization problem is

min f x1, x2ð Þ = x1
2 + x2 − 0:4ð Þ2 − 2 < xi < 2, i = 1, 2: ð2Þ

The function achieves the minimum when x1 = 0 and
x2 = 0:4: In this example, hi ∈ f4, 2, 1, 0:5, 0:25g, mutation
probability pm = 1. The completely label square obtains
through the iteration, the search scope for both x1 and x2
are (-2, 2), (0, 2), (0, 1), and finally (0, 0.5), respectively (as
show from Figures 2–5). During iterations, squares are con-
tracting to (0, 0.5) gradually, if we started from h1 = 1, we got
closer answer, i.e., (0, 0.4).

6.2. Test Problem 2. The optimization problem considered
here is also a nonlinear function problem taken from [32].
The problem is

min f x1, x2ð Þ = x1
3 + x2

3 − 1 < xi < 1, i = 1, 2: ð3Þ

The best obtained solution is x1 = −1 and x2 = −1 with
f ðx1, x2Þ = −2: In this example, hi ∈ f2, 1, 0:5g mutation
probability pm = 1. The completely label square obtains
through the iteration, the search scope for both x1 and x2
are (-1, 1), (-1, 0), and (-1, -0.5).

During iterations, squares are contracting to (-1, -1)
gradually, which is a boundary point for this increasing
function (as show from Figures 6–8).

6.3. Test Problem 3. In this problem, we choose a nonlinear
optimization problem with two continuous variables. It
was also taken from [32].

min f x1, x2ð Þ = cos π

2 x1 − sin π

2 x2 − 7 < xi < 7, i = 1, 2: ð4Þ

This multimodal function has many local optimal in its
domain. The GA keeps each local and global optimal one
found in squares labeled completely. In this example, for hi
∈ f6, 3, 1:5, 0:75g while mutation probability pm = 1, as
shown in figure 7, these points can be gotten. Three follow-
ing generation have been shown in the first quarter of the
coordinates system (see Figures 9–11).

7. Conclusion

In this paper, we show that labeling technique and the muta-
tion operator producing later generation on the next gridd-
ing points have some advantages. First of all, making
network on search space provides integer-coding system that
simplifies locating of all individuals in the future and present
generation, so we can easily label each vertex of square and
investigate the possibility of finding every optimal solution.
Moreover, the algorithm is capable of starting from a fixed
point located in domain boundary; hence, it overcomes
weakness of man-made initial point. Second, finding square
completely labeled avoids missing local answers because the
algorithm focuses on such squares when it is trying to seek
global minimum inside of not entirely labeled squares or in
other completely ones. Third, this mutation operator works
systematically in order to estimate better solution. In other
words, it does not work so randomly that loses possible fixed
points in an area as it is clear in Figure 3. In addition, the
algorithm moves toward obtaining the best solution among
likely offspring. Consequently, it performs more quickly
and effectively because it eliminates unneeded iterations
and calculations. Finally, it categorizes different fixed points
at the end of its run.
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