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In this article, barycentric interpolation collocation method (BICM) is presented to solve the fractional linear Fredholm-Volterra
integro-differential equation (FVIDE). Firstly, the fractional order term of equation is transformed into the Riemann integral with
Caputo definition, and this integral term is approximated by the Gauss quadrature formula. Secondly, the barycentric
interpolation basis function is used to approximate the unknown function, and the matrix equation of BICM is obtained.
Finally, several numerical examples are given to solve one-dimensional differential equation.

1. Introduction

The concept of the fractional calculus dates back to 1695.
Fractional differential equations, as a generalization of inte-
ger differential equations, are suitable for describing mate-
rials and processes with genetic and memory properties.
Compared with integer order model, fractional order model
can simulate dynamic system and natural physical phenom-
ena more accurately. Fractional models are widely used in
many fields, such as biological engineering [1–3], mechanics
[4, 5], physics [6], electromagnetism [7, 8], viscoelastic
system [9, 10], and heat conduction engineering [11].
Moreover, many researchers have proposed some efficient
methods to investigate the existence and uniqueness of the
solutions of fractional differential equations [12–18].

Lately, many researchers insinuated some standards to
classify fractional differential operators. The notion of
offering a guideline in a field was satisfactory enough,
although the list of items that were suggested presented a
limitation along with the critics brought up that were not
academically acceptable. As a result of these criticisms,
numerous researchers investigated the list along with their

outcomes rejected the index law; in [19], their outcomes
invalidated that inclusion of index law in the field. In another
research work, the authors did overall investigation of the
diffusive function of some kernel [20] and the outcomes they
presented suggested that only operators with nonindex law
properties can have crossover diffusive behaviors. However,
Caputo and Fabrizio proved that the suggested index law
was not right or it was a restriction to the field, and in their
turn, they offered a list of items to be followed [21]. Further,
they also proved the necessity of nonsingular differential
operators along with their applications to nature applications
to nature. In [22], the authors presented an optimal control
of diffusion using the Atangana–Baleanu fractional differential
operator. They proved that the existence of the solution with
Atangana–Baleanu derivatives was obtained when the frac-
tional order α ∈ 0, 1 , and they also mentioned that the exis-
tence of the solution with Riemann-Liouville and Caputo
was achieved during α ∈ 0,0 5 .

Furthermore, definitions of two well-known fractional
derivatives, namely, Riemann-Liouville and Caputo [23],
included a singular kernel. However, Caputo and Fabrizio
introduced another definition having a nonsingular kernel
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and properties can be found in [24]. Another derivatives
with nonsingular kernel were suggested in [25] which funda-
mentally generalized the Caputo and Fabrizio definition
[26]. However, Riemann-Liouville fractional derivative be
essential in the development of theory of fractional deriva-
tives and integrals. But, this derivative barely able to generate
physical interpretation of the initial conditions that are com-
pulsory for the initial value issues containing fractional dif-
ferential equations and also the boundary value issue both
of the issues can be solved with the Caputo definition of frac-
tional derivative for further details, refer [27]. Another dif-
ference is that the derivative of a constant is not zero for
Riemann-Liouville, but it is equal to zero for Caputo. Addi-
tionally, the Riesz fractional derivatives have some short-
comings, such as it relies upon the values of whole interval
also not sustaining the Leibniz rule for the product of two
functions [28]. Besides, the Caputo fractional definition is
easy to calculate and program. So the Caputo derivative is
chosen in this manuscript.

In this paper, we mainly solve the FVIDE

C
0D

α
t y t +

t

0
Kv t, x y x dx +

b

a
K f t, z y z dz

= g t , 0 ≤ t ≤ T ,
1

where t
0Kv t, x y x dx is the Volterra part, b

aK f t, z y z

dz is the Fredholm part, C0D
α
t y t is the fractional derivative

part, and the fractional derivative is defined as the Caputo
definition as follows:

C
0D

α

t y t = 1
Γ ξ − α

t

0

∂ξy τ

∂τξ
dτ

t − τ α+1−ξ , 2

where Γ · is the Gamma function.
The initial condition of one-dimensional differential

equation is given as

y 0 = A 3

In recent years, many methods are proposed to solve frac-
tional differential equations. In [29], the Bell polynomials are
introduced to solve fractional differential equations based on
matrix and collocation points. In [30], the central difference
and Crank-Nicolson method are used to obtain the full dis-
crete scheme of spatial fractional convection-diffusion equa-
tion; then, the Richardson extrapolation method is used to
further improve the calculation accuracy. In [31, 32], the finite
element method is presented to solve fractional convection-
diffusion equations. In [33–35], the element free Galerkin
method is used to solve fractional differential equations.
Compared with other algorithms, BICM has the advantages
of high precision, easy programming, and simple formula.
Therefore, this method has been applied to solve various
equations, such as heat conduction equation [36], generalized
Poisson equation [37], fractional differential equation [38],
and fractional reaction-diffusion equation [39]. At the same
time, the BICM is also utilized to solve some engineering

problems, such as the plane elasticity problem [40], the bend-
ing problem of elliptic plate [41], and the numerical approxi-
mation of Darcy flow [42].

In this article, BICM is introduced to solve FVIDE. In
Section 2, we provide relevant definitions of barycentric inter-
polation. In Sections 3–5, barycentric interpolation basis func-
tion is applied to approximate the unknown function, and
matrix equations of the fractional derivative part, Volterra
part, and Fredholm part are given. In Section 6, we obtain
the matrix equation of FVIDE, and initial condition is dealt
with by replacement method or additive method. In Section
7, some numerical examples are shown to prove feasibility of
the algorithm.

2. Barycentric Interpolation

In this section, we will introduce barycentric interpolation
for solving one-dimensional differential equation. First,
n + 1 equidistant nodes or Chebyshev’s nodes are chosen as
collocation points on the domain, i.e., (ti), i = 0, 1,⋯, n. The
barycentric interpolation function is defined as

yn t = 〠
n

i=0
Ti t yi, 4

where yi = yn ti and

Ti t = wi/ t − ti
∑n

k=0wk/ t − tk
5

According to different definitions of weight functions wi,
barycentric interpolation can be divided into barycentric ratio-
nal interpolation and barycentric Lagrange interpolation. The
weight functions of barycentric Lagrange interpolation are
defined as

wi =
1

n
j=0,j≠iti − t j

, 6

the weight functions of barycentric rational interpolation are
defined as

wi = 〠
s∈Di

−1 s
s+d

k=s,s≠i

1
ti − tk

,

Di = s i − d ≤ s ≤ i ,

7

where s ∈ 0, 1,⋯,n − d , the parameter d is integer, and
0 ≤ d ≤ n.
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3. Matrix Equation of Fractional
Derivative Part

Fractional terms are dealt with by integration by parts; then,
we get

C
0D

α

t y t = 1
Γ ξ − α

t

0

∂ξy τ

∂τξ
dτ

t − τ α+1−ξ

= 1
Γ ξ + 1 − α

∂ξy 0
∂tξ

tξ−α

+ 1
Γ ξ + 1 − α

t

0

∂ξ+1y τ

∂τξ+1
dτ

t − τ α−ξ

= Γξ
α

∂ξy 0
∂tξ

tξ−α +
t

0

∂ξ+1y τ

∂τξ+1
dτ

t − τ α−ξ
,

8

where Γξ
α = 1/ Γ ξ + 1 − α .

Substituting equation (4) into equation (8), we obtain

C
0D

α

t yn t = Γξ
α 〠

n

i=0
T ξ
i 0 tξ−α yi + Γξ

α 〠
n

i=0

t

0

T ξ+1
i τ

t − τ α−ξ
dτ yi,

9

where

Ti τ = wi/ τ − τi
∑n

k=0wk/ τ − τk
10

Let t = tθ, formula (9) can be expressed as

C
0D

α
tθ
yn tθ = Γξ

α 〠
n

i=0
T ξ
i 0 tξ−αθ yi + Γξ

α 〠
n

i=0

tθ

0

T ξ+1
i τ

tθ − τ α−ξ
dτ yi,

11

where θ = 0, 1,⋯, n
Let us write the integral term of the formula (11) as the

following form:

Pθi = Pi tθ =
tθ

0
T ξ+1
i τ tθ − τ ξ−αdτ,

i = 0, 1,⋯, n
12

Then, we have

C
0D

α

tθ
yn tθ = Γξ

α 〠
n

i=0
T ξ
i 0 tξ−αθ + 〠

n

i=0
Pθi yi 13

The integral term (12) is calculated using the Gauss

quadrature formula with weights ρ τ = tθ − τ ξ−α; we get

PG
θi = 〠

m

j=1
T ξ+1
i τθ,αj Aθ,α

j , 14

where τθ,αj and Aθ,α
j are the Gauss points and Gauss

weights and m is the number of the Gauss points.
Using the Gauss-Legendre quadrature formula, equation

(15) is given as

PGL
θi = tθ

2 〠
m

j=1
f τθ,lj Aθ,l

j , 15

where τθ,lj and Aθ,l
j are integral points and integral

weights, m is the number of the integral points, tθ/2 is trans-
formed coefficient, and f τθ,lj = ρ τθ,lj T ξ+1

i τθ,lj .
Then, the formula (16) with the Gauss quadrature for-

mula is obtained as

C
0D

α
t0
yn t0

⋮
C
0D

α
tn
yn tn

= Γξ
α Tξ,α In+1 ⊗M ξ

1 + In+1 ⊗ P

y0

⋮

yn

,

16

where In+1 is the identity matrix and ⊗ is the Kronecker
product.

Briefly, the formula (16) can be written as

D =DαY , 17

where

Dα = Γξ
α Tξ,α In+1 ⊗M ξ

1 + In+1 ⊗ P ,

Y =
y0

⋮

yn

,

D =

C
0D

α

t0
yn t0

⋮
C
0D

α

tn
yn tn

,

Tξ,α =

tξ−αθ

tξ−αθ

⋱

tξ−αθ N×N

,

P =

P11 P12 ⋯ P1N

P21 P22 ⋯ P2N

⋮ ⋮ ⋱ ⋮

PN1 PN2 ⋯ PNN N×N

,

N = n + 1,

P11 = 〠
m

j=1
T ξ+1
0 τ0,αj A0,α

j ,
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P12 = 〠
m

j=1
T ξ+1
1 τ0,αj A0,α

j ,

P1N = 〠
m

j=1
T ξ+1
n τ0,αj A0,α

j ,

P21 = 〠
m

j=1
T ξ+1
0 τ1,αj A1,α

j ,

P22 = 〠
m

j=1
T ξ+1
1 τ1,αj A1,α

j ,

P2N = 〠
m

i=1
T ξ+1
n τ1,αj A1,α

j ,

PN1 = 〠
m

j=1
T ξ+1
0 τn,αj An,α

j ,

PN2 = 〠
m

j=1
T ξ+1
1 τn,αi An,α

j ,

PNN = 〠
m

j=1
T ξ+1
n τn,αj An,α

j 18

The relations between differential matrices and basis func-
tions are defined as follows:

M h = M h
θi

N×N
= T h

i tθ
N×N

, 19

where N = n + 1 and

M 1
θi =

wi/wθ

tθ − ti
, θ ≠ i,

−〠
i≠θ

M 1
θi , θ = i,

M ξ
θi =

ξ M ξ−1
θθ M 1

θi −
M ξ−1

θi

tθ − ti
, θ ≠ i,

−〠
i≠θ

M ξ
θi , θ = i

20

Hence, we can get

M ξ
1 =

−〠
n

i=1
M ξ

0i M ξ
01 M ξ

02 ⋯ M ξ
0n

−〠
n

i=1
M ξ

0i M ξ
01 M ξ

02 ⋯ M ξ
0n

⋮ ⋮ ⋮ ⋱ ⋮

−〠
n

i=1
M ξ

0i M ξ
01 M ξ

02 ⋯ M ξ
0n

N×N
21

4. Matrix Equation of the Volterra Part

The Volterra part is expressed as V t ; equation (22) is
shown as follows:

V t =
t

0
Kv t, x y x dx 22

Substituting equation (4) into equation (22), we obtain

Vn t = 〠
n

i=0

t

0
Kv t, x Ti x dx yi, 23

where Ti x is defined as shown in equation (10).
t is replaced by tθ of formula (23), and we have

Vn tθ = 〠
n

i=0

tθ

0
Kv tθ, x Ti x dx yi, 24

where θ = 0, 1,⋯, n.
Formula (25) is expressed in the following form:

Qθi =Qi tθ =
tθ

0
Kv tθ, x Ti x dx 25

Using the Gauss quadrature formula with weights
β x = Kv tθ, x , we get

QG
θi = 〠

m

j=1
Ti xθj Cθ

j , i = 0, 1,⋯, n, 26

where xθj and Cθ
j are the Gauss points and Gauss

weights and m is the number of the Gauss points.
Formula (25) is calculated by the Gauss-Legendre quad-

rature formula, and we obtain

QGL
θi = tθ

2 〠
m

j=1
q xθ,lj Cθ,l

j , 27

where xθ,lj and Cθ,l
j are integral points and integral weights,

m is the number of the integral points, tθ/2 is transformed

coefficient, and q xθ,lj = β xθ,lj T ξ+1
i xθ,lj .

Combining equation (24), equation (25), and equation
(26), equation (28) is obtained

Vn tθ = 〠
n

i=0
QG

θi yi 28

Let Vi = Vn ti ; formula (29) is obtained as follows:

V =QY , 29
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where

V =
V0

⋮

Vn

,

Y =
y0

⋮

yn

,

Q =

Q11 Q12 ⋯ Q1N

Q21 Q22 ⋯ Q2N

⋮ ⋮ ⋱ ⋮

QN1 QN2 ⋯ QNN N×N

,

N = n + 1,Q11 = 〠
m

j=1
T0 x0j C0

j ,

Q12 = 〠
m

j=1
T1 x0j C0

j ,Q1N = 〠
m

j=1
Tn x0j C0

j ,

Q21 = 〠
m

j=1
T0 x1j C1

j ,Q22 = 〠
m

j=1
T1 x1j C1

j ,

Q2N = 〠
m

i=1
Tn x1j C1

j ,QN1 = 〠
m

j=1
T0 xnj Cn

j ,

QN2 = 〠
m

j=1
T1 xni Cn

j ,QNN = 〠
m

j=1
Tn xnj Cn

j

30

5. Matrix Equation of the Fredholm Part

The Fredholm part is expressed as the following form:

I t =
b

a
K f t, z y z dx 31

Substituting equation (4) into equation (31), we obtain

In t = 〠
n

i=0

b

a
K f t, z Ti z dx yi, 32

where the definition of Ti z is as shown in equation (10).
Let t = tθ, θ = i = 0, 1,⋯, n; we have

In tθ = 〠
n

i=0

b

a
K f tθ, z Ti z dz yi 33

Equation (34) is written as follows:

Rθi = Ri tθ =
b

a
K f tθ, z Ti z dz 34

Formula (34) is calculated by the Gauss quadrature for-
mula with weights η z = K f tθ, z ; we have

RG
θi = 〠

m

j=1
Ti zθj Bθ

j , i = 0, 1,⋯, n, 35

where zθj and Bθ
j are the Gauss points and Gauss weights and

m is the number of the Gauss points.
Using the Gauss-Legendre quadrature formula, we

obtain

RGL
θi = b − a

2 〠
m

j=1
r zθ,lj Bθ,l

j , 36

where zθ,lj and Bθ,l
j are integral points and integral weights, m

is the number of the integral points, b − a /2 is transformed

coefficient, and r zθ,lj = η zθ,lj T ξ+1
i zθ,lj .

Formula (33) is calculated by the Gauss quadrature for-
mula; equation (37) is written as follows:

In tθ = 〠
n

i=0
RG
θi yi 37

Let Ii = In ti ; formula (38) is obtained

I = RY , 38

where

I =
I0

⋮

In

,

Y =
y0

⋮

yn

,

R =

R11 R12 ⋯ R1N

R21 R22 ⋯ R2N

⋮ ⋮ ⋱ ⋮

RN1 RN2 ⋯ RNN N×N

,

N = n + 1, R11 = 〠
m

j=1
T0 z0j B0

j ,

R12 = 〠
m

j=1
T1 z0j B0

j , R1N = 〠
m

j=1
Tn z0j B0

j ,

R21 = 〠
m

j=1
T0 z1j B1

j , R22 = 〠
m

j=1
T1 z1j B1

j ,

R2N = 〠
m

i=1
Tn z1j B1

j , RN1 = 〠
m

j=1
T0 znj Bn

j ,
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RN2 = 〠
m

j=1
T1 zni Bn

j , RNN = 〠
m

j=1
Tn znj Bn

j 39

6. Matrix Equation for FVIDE

Equation (1) is treated by integration by parts; then, we get

Γξ
α

∂ξy 0
∂tξ

tξ−α +
t

0

∂ξ+1y τ

∂τξ+1
dτ

t − τ α−ξ

+
t

0
Kv t, x y x dx +

b

a
K f t, z y z dz = g t

40

Substituting equation (4) into equation (40), equation
(41) is obtained

Γξ
α 〠

n

i=0
T ξ
i 0 tξ−α + 〠

n

i=0

t

0

T ξ+1
i τ

t − τ α−ξ
dτ yi

+ 〠
n

i=0

t

0
Kv t, x Ti x dx yi

+ 〠
n

i=0

b

a
K f t, z Ti z dz yi = g t

41

Taking t = tθ, θ = 0, 1,⋯, n, we get

Γξ
α 〠

n

i=0
T ξ
i 0 tξ−αθ + 〠

n

i=0

tθ

0

T ξ+1
i τ

tθ − τ α−ξ
dτ yi

+ 〠
n

i=0

tθ

0
Kv tθ, x Ti x dx yi

+ 〠
n

i=0

b

a
K f tθ, z Ti z dz yi = g tθ

42

Let gi = g ti ; combining (17), (29), and (38), we obtain
the matrix equation as follows:

LY = G, 43

where

G =
g0

⋮

gn

,

L =Dα +Q + R

44

The initial conditions are imposed by replacementmethod
and additive method. When the replacement method is used
to impose initial conditions, the 1st row element of matrix
In+1 is extracted to replace the corresponding row element of
matrix L in the system (43). When the additive method is used
to impose initial conditions, the 1st row element of matrix
In+1 is extracted and then added to the n + 2 row of matrix
L in the system (43).

7. Numerical Experiments

In this section, several numerical examples are given to illus-
trate the accuracy of BICM. All of numerical examples have
been performed on MATLAB (version: R2020a). The error
function is defined as

en t = yn t − y t , 45

where yn t and y t are approximate solution and exact
solution of numerical examples.

Example 1. Consider the linear fractional Volterra integro-
differential equation with the initial condition y 0 = 0.

D0 75y t + ett2

5 y t −
t

0
etxy x dx = 6t2 25

Γ 3 25 , 46

where 0 ≤ t ≤ 1. The analytical solution is y t = t3.

Table 1: Errors of equidistant nodes for barycentric Lagrange
interpolation with m = 6 for Example 1.

ti n, α = 5,0 75 n, α = 10,0 75 n, α = 20,0 75
0 6.7117e-16 1.7418e-15 5.5914e-13

0.2 1.4468e-15 2.0154e-13 2.9617e-08

0.4 1.6376e-15 1.6798e-13 2.3200e-08

0.6 1.8041e-15 1.5907e-13 5.5773e-08

0.8 2.1094e-15 1.5510e-13 4.7605e-07

1 2.2204e-15 1.9784e-13 1.3536e-06

Table 2: Errors of equidistant nodes for barycentric rational
interpolation with m = 6 and d = 3 for Example 1.

ti n, α = 5,0 75 n, α = 10,0 75 n, α = 20,0 75
0 2.6439e-16 4.0324e-16 1.0279e-15

0.2 1.3184e-16 1.0807e-15 2.5535e-15

0.4 6.1062e-16 1.4572e-15 2.8449e-15

0.6 8.3267e-16 1.8041e-15 3.2474e-15

0.8 9.9920e-16 2.9976e-15 1.9762e-14

1 8.8818e-16 8.8818e-16 2.4070e-13

Table 3: Errors of equidistant nodes for barycentric Lagrange
interpolation using the Gauss-Legendre quadrature formula with
m = 6 for Example 1.

ti n, α = 5,0 75 n, α = 10,0 75 n, α = 20,0 75
0 7.6617e-17 1.7422e-15 7.1349e-14

0.2 2.0293e-05 2.0293e-05 2.0288e-05

0.4 1.6234e-04 1.6234e-04 1.6234e-04

0.6 5.4791e-04 5.4791e-04 5.4793e-04

0.8 1.2988e-03 1.2988e-03 1.2989e-03

1 2.5366e-03 2.5366e-03 2.5369e-03
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In Tables 1 and 2, the errors of the Gauss quadrature
formula are shown for n = 5,10,20 at m = 6. From Tables 1
and 2, we know that barycentric Lagrange interpolation
and barycentric rational interpolation both get high error

accuracy when t = 0,0 2,0 4,0 6,0 8,1. In Table 3, the errors
of barycentric Lagrange interpolation with the Gauss-
Legendre quadrature formula are shown. In Tables 1–3,
initial conditions are imposed by replacement method. From

y
n
 (t)

y (t)

y

t

0

0

0.2

0.4

0.6

0.8

1

0.2
−0.2

0.4 0.6 0.8 1

Figure 1: yn t and y t of barycentric Lagrange interpolation using the Gauss quadrature formula with m = 3 at n = 5 for Example 1.

Er
ro

r

t

0

0.2

0.4

0.6

0.8

1

1.4 ×10−15

1.2

0.2
0

0.4 0.6 0.8 1

m = 3
m = 5
m = 10

Figure 2: Errors of barycentric Lagrange interpolation using the Gauss quadrature formula with different Gauss points at n = 5 for
Example 1.
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Tables 1 and 3, we know that error precision of barycentric
Lagrange interpolation with the Gauss quadrature formula
is higher than the Gauss-Legendre quadrature formula.

In Figure 1, approximate solution yn t and exact solu-
tion y t are given for barycentric Lagrange interpolation
using the Gauss quadrature formula with m = 3 at n = 5.
Figure 2 shows errors of equidistant nodes for barycentric
Lagrange interpolation using the Gauss quadrature formula
with different Gauss points m. From Figures 1 and 2, we
can see that higher error precision is attained when the lesser
equidistant nodes are used.

Example 2. Consider the linear fractional Fredholm-Volterra
integro-differential equation with the initial condition y 0 = 1.

D0 75y t + ett2

5 y t −
t

0
etxy x dx −

1

0
t − x y x dx

= 6t2 25

Γ 3 25 −
t
4 + 1

5 , 0 ≤ t ≤ 1
47

The analytical solution is y t = t3.
In Tables 4–6, the errors of the Gauss quadrature

formula are up to machine accuracy. In Tables 4 and 5, the
initial conditions are imposed by replacement method. From

Tables 4 and 6, we can find that replacement method or
additive method can get high error precision.

In Figure 3, we can see that approximate solution yn t
and exact solution y t basically coincide. In Figure 4, errors
of equidistant nodes are shown for barycentric Lagrange
interpolation using the Gauss quadrature formula with dif-
ferent Gauss points m = 3, 5, 10 at n = 5.

Example 3. Consider the linear fractional Volterra integro-
differential equation with the initial condition y 0 = 1.

D0 75y t + ty t −
t

0
txy x dx = t0 25

Γ 1 25

−
t4

3 −
t3

2 − t2 − t, 0 ≤ t ≤ 1
48

The analytical solution is y t = t + 1.
Tables 7 and 8 show the errors of the Gauss quadrature

formula for different m with replacement method. From
these tables, BICM can obtain higher error accuracy with
fewer interpolation nodes.

In Figure 5, approximate solution yn t and exact solu-
tion y t are given with equidistant nodes. In Figure 6, errors
of barycentric Lagrange interpolation are shown with differ-
ent Gauss points m. From Figures 5 and 6, we know that

Table 4: Errors of equidistant nodes for barycentric Lagrange interpolation with n = 5 for Example 2.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 5.5339e-16 3.5112e-16 1.9950e-16

0.2 3.1745e-16 3.1745e-16 2.9317e-16

0.4 7.0777e-16 9.7145e-17 5.9674e-16

0.6 8.8818e-16 2.7756e-17 8.3267e-16

0.8 1.2212e-15 0 7.7716e-16

1 1.2212e-15 2.2204e-16 3.3307e-16

Table 5: Errors of equidistant nodes for barycentric rational interpolation with n = 5 and d = 3 for Example 2.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 7.8913e-17 3.4635e-16 3.4501e-16

0.2 3.4348e-16 6.1409e-16 6.3144e-16

0.4 1.3878e-17 4.8572e-16 4.5797e-16

0.6 1.3878e-16 4.1633e-16 5.5511e-16

0.8 2.2204e-16 3.3307e-16 2.2204e-16

1 0 1.1102e-15 6.6613e-16

Table 6: Errors of equidistant nodes for barycentric Lagrange interpolation using the additive method with n = 5 for Example 2.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 2.8897e-16 7.1029e-16 7.1941e-16

0.2 6.5399e-16 2.9317e-16 1.1293e-15

0.4 9.0206e-16 4.9960e-16 1.3600e-15

0.6 1.0825e-15 5.8287e-16 1.4433e-15

0.8 1.7764e-15 8.8818e-16 1.6653e-15

1 1.7764e-15 5.5511e-16 1.4433e-15
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error accuracy of Barycentric Lagrange interpolation collo-
cation method can achieve machine accuracy.

Example 4. Consider the linear fractional Volterra integro-
differential equation with the initial condition y 0 = 0.

D0 75y t + y t − 2
t

0
sin x − t y x dx

= 4
Γ 0 25 t0 25 −

t

0
sin τ t − τ 0 25dτ − t cos t ,

49

where 0 ≤ t ≤ 1; the analytical solution is y t = sin t .
Table 9 shows the errors of the Gauss quadrature for-

mula for the Gauss points m with barycentric Lagrange
interpolation. In Table 10, taking the parameter d = 9 of
barycentric rational interpolation, we get the errors of BICM

Table 7: Errors of equidistant nodes for barycentric Lagrange interpolation with n = 5 for Example 3.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 8.8818e-16 1.3323e-15 1.1102e-16

0.2 5.5511e-15 4.8850e-15 5.1070e-15

0.4 5.9952e-15 0 2.6645e-15

0.6 8.8818e-15 8.8818e-16 1.1102e-15

0.8 1.1546e-14 2.2204e-16 3.1086e-15

1 1.4211e-14 3.9968e-15 1.1546e-14

Table 8: Errors of equidistant nodes for barycentric rational interpolation with n = 5 and d = 3 for Example 3.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 2.2204e-16 1.1102e-16 7.7716e-16

0.2 0 1.7764e-15 6.6613e-16

0.4 2.2204e-16 2.2204e-16 1.7764e-15

0.6 4.4409e-16 1.9984e-15 4.4409e-15

0.8 1.9984e-15 3.1086e-15 4.4409e-15

1 1.3323e-15 6.6613e-16 5.3291e-15
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Figure 5: yn t and y t of barycentric Lagrange interpolation using the Gauss quadrature formula with m = 3 at n = 5 for Example 3.
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with equidistant nodes for different Gauss pointsm. Tables 9
and 10 also show the better error results.

In Figure 7, approximate solution yn t and exact solu-
tion y t of the example are given at n = 10. In Figure 8,

errors for barycentric Lagrange interpolation are shown with
different Gauss points at n = 10. From Figures 7 and 8, bary-
centric Lagrange interpolation collocation method can get
high error accuracy.

Er
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0.5

1

1.5

0.2
0

0.4 0.6 0.8 1

m = 3
m = 5
m = 10

×10−14

Figure 6: Errors of barycentric Lagrange interpolation using the Gauss quadrature formula with different Gauss points at n = 5 for
Example 3.

Table 9: Errors of equidistant nodes for barycentric Lagrange interpolation with n = 10 for Example 4.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 2.7467e-15 1.0670e-14 2.3967e-14

0.2 5.3985e-13 9.6498e-13 1.1939e-12

0.4 7.5476e-12 1.0544e-12 1.3185e-12

0.6 2.3869e-10 1.1452e-12 1.4382e-12

0.8 2.7404e-09 1.1894e-12 1.4846e-12

1 1.7312e-08 1.0930e-12 1.4452e-12

Table 10: Errors of equidistant nodes for barycentric rational interpolation with n = 10 and d = 9 for Example 4.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 6.2870e-15 9.3112e-15 1.8457e-14

0.2 1.0277e-12 8.2812e-13 1.1412e-12

0.4 7.9721e-12 8.8335e-13 1.2341e-12

0.6 2.3779e-10 9.2648e-13 1.3328e-12

0.8 2.7337e-09 9.2382e-13 1.3728e-12

1 1.7293e-08 8.2778e-13 1.3872e-12
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8. Conclusion

BICM is proposed to solve the FVIDE. Integral terms of
equation are dealt with by the Gauss quadrature formula or
Gauss-Legendre quadrature formula. Compared with the
Gauss-Legendre quadrature formula, barycentric Lagrange
interpolation with the Gauss quadrature formula obtains
higher error accuracy. The high-precise error results are gained
when replacementmethod or additivemethod is chosen to deal
with initial conditions. The errors of BICM are displayed by
numerical examples, which illustrate that the method is
available for solving one-dimensional FVIDE equation.
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