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In this paper, we consider a new extension of the Banach contraction principle, which is called the θ − ω − contraction inspired by
the concept of θ − contraction in λ, μ -generalized metric spaces and to study the existence and uniqueness of fixed point for the
mappings in metric space. Moreover, we discuss some illustrative examples to highlight the improvements that were made, and we
also give an iterated application of linear integral equations.

1. Introduction

Fixed point theory is an important and fascinating subject,
and it provides essential tools for solving problems arising
in various branches of mathematical analysis, see [1–5].
Fixed point theory guarantees the uniqueness and existence
of the solution of integral and differential equations.

In 1922, a Polish mathematician Banach introduced a
contraction principle [6], which was one of the most applica-
ble results in mathematics. In recent times, many generaliza-
tions and improvement of the Banach contraction principle
have appeared in the literature (see [7–13]).

The metric function has been generalized many times by
modifying the associated axioms. Specifically, Bakhtin [14]
and Czerwik [15] presented b-metric spaces in a way that
the triangle inequality was replaced by the b-triangle
inequality: ρ ν, μ ≤ s ρ ν, ς + ρ ς, μ for all pairwise dis-
tinct points ν, μ, ρ and s ≥ 1. One of these generalizations
was given by Branciari [16]. Any metric space is a general-
ized metric space, but in general, generalized metric space
might not be a metric space for details [17, 18]. Various fixed
point results have been established on such spaces; for exam-
ple, Nazam et al. [19–21] have proved some fixed point and

common fixed point results in partial metric and S-metric
spaces. For more details, see [12, 22, 23]).

Huang and Zhang [24] redefined the concept of K-metric
spaces and convergence in an ordered Banach space E with
a normal solid cone. Shatanawi et al. in [23] defined E-
metric spaces and characterized the cone metric spaces in
a more general way by defining ordered normed spaces.
Also, Mehmood et al. in [25] deduced more results about
E-metric spaces.

Jleli et al. [11, 22] introduced the notion of θ-con-
traction and proved a fixed point theorem which general-
izes the Banach contraction principle in a different way
than in the known results from the literature. Later, Kari
et al. [26] proved new type of fixed-point theorems in a
rectangular metric space and generalized asymmetric met-
ric space by using a modified generalized θ-contraction
maps.

In 2014, Hussain and Salimi [27] introduced the notion
of an α −GF-contraction and stated fixed point theorems
for α −GF-contractions. On the other hand, Hussain
et al. [28] establish some new fixed-point theorems for
generalized λ − μ −G − F-contractions mappings in com-
plete b-metric spaces.
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In this paper, we introduce the notion of a generalized
λ − μ − θ − ω-contraction to generalize an θ-contraction
in generalized metric space. Also, examples are given to
illustrate the obtained results we derive some useful corollar-
ies of these results.

2. Preliminaries

Definition 1 (see [16]). Let C be a nonempty set and ρ C ×
C⟶ℝ+ be a mapping such that for all z, t∈C and for all dis-
tinct points m, n ∈ C, each of them different from z and t

(i) ρ z, t = 0⇔ z = t

(ii) ρ z, t = ρ t, z ∀z, t ∈ C

(iii) ρ z, t ≤ ρ z,m + ρ m, n + ρ n, t . Then, C, ρ is
called a generalized metric space

Definition 2 (see [16]). Let C, ρ be a generalized metric
space and αm m∈ℕ be a sequence in C, and α ∈ C. Then,

(i) We say that the sequence αm m∈ℕ converges to α if
and only if

lim
m⟶+∞

ρ α, αm = 0 1

(ii) We say that αm m∈ℕ is the Cauchy if

lim
m,p⟶+∞

ρ xm, xp = 0 2

Lemma 3 (see [16]). Let C, ρ be a generalized metric space
and αm m be a Cauchy sequence with pairwise disjoint ele-
ments in C. If αm m converges to both α ∈ C and β ∈ C, then
α = β.

Definition 4 (see [16]). The generalized metric space is said
to be complete if every Cauchy sequence αm m in C con-
verges to an α ∈ C.

In [11, 22], authors defined the following collections
functions. Let Θc be the family of all functions θ: 0, +∞
⟶ 1, +∞ such that

θ1 θ is increasing
θ2 For each sequence αm ⊂ 0,+∞

lim
n⟶0

αm = 0⇔ lim
n⟶∞

θ αm = 1 3

θ3C is continuous.
Let ΘG be the family of all functions θ 0,+∞ ⟶

1,+∞ such that
θ1 θ is increasing
θ2 for each sequence αm ⊂ 0,+∞

lim
m⟶0

αm = 0⇔ lim
m⟶∞

θ αm = 1 4

θ3G there exist r ∈ 0, 1 and l ∈ 0,+∞ such that
liml⟶0θ l − 1/lr = l

Definition 5. Let C, ρ be a generalized metric space and
T C⟶ C be a mapping. T is said to be a θ-contraction
if there exist θ ∈ΘG and s ∈ 0, 1 such that for any u,
v ∈ C,

ρ Tu, Tv > 0⇒ θ ρ Tu, Tv ≤ θ M u, v s, 5

where

M u, v =max ρ u, v , ρ Tu, v , ρ u, Tv 6

Theorem 6 (see [11]). Let C, ρ be a complete general-
ized metric space and let T C⟶ C be a θ − contrac-
tion. Then, T has a unique fixed point.

Remark 7. The sets ΘG and ΘC are different.

Example 8. Define θ 0,+∞ ⟶ 1,+∞ by

θ t =
t + 1 if t ∈ 0,

1
2
,

et if t ∈
1
2
,+∞

7

Then, θ ∈ΘG, but for any t > 0,

lim
t⟶1

2
−
θ t =

1
2
+ 1

lim
t⟶1

2
+
θ t = e1/2

8

Since 1/2 + 1 ≠ e1/2, so, θ does not satisfy the condi-
tion θ3C , then, θ ∉ΘC

Example 9 (see [29]). Define θ 0,+∞ ⟶ 1,+∞ by

θ t = ee
−1/tp , p > 0 9

Then, θ ∈ΘC , but for any r > 0,

lim
t⟶0+

θ t − 1
tr

= lim
t⟶0+

ee
−1/tp − 1
tr

= lim
t⟶0+

e−1/t
p

tr

= lim
t⟶0+

1/tr

1/e1/tp
= 0

10

So, θ does not satisfy the condition θ3G , then, θ ∉ΘG

Definition 10 (see [28]). Let T C⟶ C and λ, μ
:C × C⟶ 0,+∞ . We say that T is a triangular λ, μ
-admissible mapping if

T1 λ k, l ≥ 1⇒ λ Tk, Tl ≥ 1, for all k, l ∈ C
T2 μ k, l ≤ 1⇒μ Tk, Tl ≤ 1, for all k, l ∈ C
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T3
λ k, l ≥ 1

λ l,m ≥ 1
⇒ λ k,m ≥ 1 for all k, l,m ∈ C

T4
μ k, l ≤ 1

λ l,m ≤ 1
⇒ μ k,m ≤ 1 for all k, l,m ∈ C.

Definition 11 (see [28]). Let C, ρ be a generalized metric
space and let λ, μ:C × C⟶ 0,+∞ be two mappings. Then,

k T is a λ-continuous mapping on C, ρ , if for a given
point α ∈ C and sequence αm in C,αm ⟶ α and λ αm,
αm+1 ≥ 1 for all m ∈ℕ, then Tαm ⟶ Tα

l T is a μ subcontinuous mapping on C, ρ , if for given
point α ∈ C and sequence αm in C,αm ⟶ α and μ αm,
αm+1 ≤ 1 for all m ∈ℕ, then Tαm ⟶ Tα

m T is a λ, μ -continuous mapping on C, ρ , if for
given point α ∈ C and sequence αm in C such that
αm ⟶ α with λ αm, αm+1 ≥ 1 and μ αm, αm+1 ≤ 1 for
all m ∈ℕ, we have Tαm ⟶ Tα

Definition 12 (see [30]). Let C, ρ be a rectangular b-metric
space and let λ, μ:C × C⟶ 0,+∞ be two mappings. Then,
the space C is said to be

k λ-complete, if every Cauchy sequence αm in C with
λ αm, αm+1 ≥ 1 for all m ∈ℕ, converges in C

l μ subcomplete, if every Cauchy sequence αm in C
with μ αm, αm+1 ≤ 1 for all m ∈ℕ, converges in C

m λ, μ -complete, if every Cauchy sequence αm in C
with λ αm, αm+1 ≥ 1 and μ αm, αm+1 ≤ 1 for all m ∈ℕ, con-
verges in C

Definition 13 (see [30]). Let C, ρ be a generalized metric
space and let λ, μ C × C⟶ 0,+∞ be two mappings.
Then, the space C is said to be

k λ-regular, if αm ⟶ α, λ αm, αm+1 ≥ 1 for all m ∈ℕ,
implies λ αm, α ≥ 1 for all m ∈ℕ

l μ − subregular, if αm ⟶ α, μ αm, αm+1 ≤ 1 for all
m ∈ℕ, implies μ αm, α ≤ 1 for all m ∈ℕ

m λ, μ -regular, if αm ⟶ α, λ αm, αm+1 ≥ 1 and μ
αm, αm+1 ≤ 1 for all m ∈ℕ, imply that λ αm, α ≥ 1
and μ αm, α ≤ 1 for all m ∈ℕ

3. Main Results

In this section, we introduce a new notion of generalized θ
− ω-contraction in the context of λ − μ -generalized metric
spaces as follows.

Definition 14. Let Ω denote the set of all functions ω R5
+

⟶ℝ+ satisfying the following: for all u1, u2, u3, u4, u5 ∈
ℝ+ with u1u2u3u4u5 = 0, there exists δ ∈ 0, 1 such that
ω u1, u2, u3, u4, u5 = δ.

Example 15. If ω u1, u2, u3, u4, u5 = min u1, u2, u3, u4, u5
+ δ where δ ∈ 0, 1 , then, ω ∈Ω

Example 16. If ω u1, u2, u3, u4, u5 = min u1, u2, u3, u4, u5
/max u1, u2, u3, u4, u5 + 1 + δ where δ ∈ 0, 1 , then, ω ∈Ω

Definition 17. Let C, ρ be a λ − μ -complete generalized
metric space, and let T be a self-mapping on C, where λ,
μ C × C⟶ 0,+∞ are two functions. We say that T is
an λ, μ − ω − θ -contraction, if for all x, y ∈ C with λ x,
y ≥ 1 and μ x, y ≤ 1 and ρ Tx, Ty > 0, we have

θ ρ Tx, Ty ≤ θ M x, y ω ρ x,Tx ,ρ y,Ty ,ρ x,y ,ρ y,Tx ,ρ T2x,y ,
11

where θ ∈ΘC , ω ∈Ω, and

M x, y =max ρ x, y , ρ x, Tx , ρ y, Ty , ρ Tx, y ,
ρ T2x, y , ρ T2x, Ty , ρ T2x, Tx

12

Example 18. Let C = 1,+∞ and θ t = etfor all t ∈ 0,+∞ .
So, θ ∈ΘC

Define ρ C × C⟶ 0,+∞ by

ρ x, y = x − y 13

Then, C, ρ is a complete generalized metric space.
Define T C⟶ C by

T t = t for all t ∈ 1,+∞ ,

λ x, y = 1,

μ x, y = 1,

ω t1, t2, t3, t4, t5 =
min t1, t2, t3, t4, t5

max t1, t2, t3, t4, t5 + 1
for all t1, t2, t3, t4, t5 ∈ℝ+

14

Then, T is an λ, μ -continuous triangular λ, μ −
admissible mapping.

Case 1. 0 ≤ x ≤ y

ρ Tx, Ty = y − x ,

M ρ x, y =max ρ x, y , ρ x, x , ρ y, y , ρ y, x ,

ρ x, y , ρ x, y , ρ x, x

15

Since x ≤ y, we get

M x, y =max y − x , x − x , y − y , y − x ,

y − x , y − x, x − x

16

Thus,

M x, y ≥ y − x, 17
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which implies that

θ M x, y ≥ θ ρ x, y = e y−x 18

Thus,

θ ρ x, y ω ρ x,Tx ,ρ y,Ty ,ρ x,Ty ,ρ y,Tx ,ρ T2x,y

= e y−x ω x− x,y− y, x− y ,y− x,y− x

= e y−x min x− x,y− y, x− y ,y− x,y x /max x− x,y− y, x− y ,y− x,y− x +1

≤ e y−x

19

Thus,

θ ρ Tx, Ty ≤ θ M ρ x, y ω ρ x,y ,ρ x,Tx ,ρ y,Ty ,ρ y,Tx ,ρ T2x,y

20

Case 2. x > y > 0 Similarly, we conclude that

θ ρ Tx, Ty ≤ θ M ρ x, y ω ρ x,y ,ρ x,Tx ,ρ y,Ty ,ρ y,Tx ,ρ T2x,y

21

Hence, T is an λ, μ − ω − θ-contraction.

Theorem 19. Let C, ρ be a λ, μ − complete generalized
metric space. Let T C⟶ C, satisfying the following
conditions:

(I) T is a triangular λ, μ − admissible mapping

(II) T is an λ, μ − θ − ω − contraction

(III) There exists x0 ∈ C such that λ x0, Tx0 ≥ 1 and
μ x0, Tx0 ≤ 1

(IV) T is an λ, μ − continuous

Then, T has a fixed point. Moreover, T has a unique
fixed point when λ k, l ≥ 1 and μ k, l ≤ 1 for all fixed
points k, l ∈ C

Proof. Let x0 ∈ C such that λ x0, Tx0 ≥ 1 and μ x0, Tx0 ≤ 1
Define a sequence xm by xm = Tmx0 = Txm−1 Since T

is a triangular λ, μ -admissible mapping, then λ x0, x1 =
λ x0, Tx0 ≥ 1⇒ λ Tx0, Tx1 ≥ 1 = λ x1, x2 and μ x0, x1
= μ x0, Tx0 ≤ 1⇒ μ Tx0, Tx1 ≤ 1 = μ x1, x2 .

Continuing this process, we have λ xm−1, xm ≥ 1 and μ
xm−1, xm ≤ 1, for all n ∈ℕ By T3 and T4 , one has

λ xm, xn ≥ 1 and μ xm, xn ≤ 1, for all m, n ∈ℕ,m ≠ n

22

Suppose that there exists n0∈ℕ such that xn0 = Txn0
Then, xn0 is a fixed point of T , and we have nothing to prove.
Hence, we assume that xn ≠ Txn, i.e., ρ xn−1, xn > 0 for all
n ∈ℕ We have

xn ≠ xm, for all m, n ∈ℕ,m ≠ n 23

Indeed, suppose that xn = xm for some m = n + k > n, so
we have

xn+1 = Txn = Txm = xm+1 24

Denote ρm = ρ xm, xm+1 Then, (11) implies that

θ ρn = θ ρm = θ ρ Txm−1, Txm
≤ θ M xm−1, xm

ω ρ xm−1,xm ,ρ xm ,xm+1 ,ρ xm−1,xm ,ρ xm ,xm ,ρ xm+1,xm

= θ M xm−1, xm
ω ρm−1,ρm−1,ρm ,0,ρm+1 ,

25

where

M xm−1, xm = ρ xm−1, xm , ρ xm−1, xm , ρ xm, xm+1 ,
ρ xm, xm , ρ xm+1, xm , ρ xm+1, xm+1 ,
ρ xm+1, xm

26

Then,

M xm−1, xm =max ρ xm−1, xm , ρ xm, xm+1 , 27

and there exists δ ∈ 0, 1 such that

ω ρm−1, ρm−1, ρm, 0, ρm+1 = δ 28

Thus,

θ ρn ≤ θ M xm−1, xm
δ 29

Let

M xm−1, xm = ρ xm, xm+1 30

Then, we have

θ ρm ≤ θ ρm
δ < θ ρm , 31

which is a contradiction, so

M xm−1, xm = ρ xm−1, xm
ρn = ρm < ρm−1

32

Continuing this process, we get ρn = ρm < ρm−1 < ρm−2
< < ρn, which is a contradiction. Thus, as follows, we can
assume that (22) and (23) hold.

Substituting x = xn−1 and y = xn in (11), for all n ∈ℕ, we
have

θ ρ xn, xn+1 ≤ θ M xn−1, xn
ω ρ xn−1,xn ,ρ xn ,xn+1 ,ρ xn−1,xn+1 ,ρ xn ,xn ,d xn+1,xn

= θ M xn−1, xn
ω ρ xn−1,xn ,ρ xn ,xn+1 ,ρ xn−1,xn+1 ,0,ρ xn+1,xn ,

33
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where

M xn−1, xn =max ρ xn−1, xn , ρ xn−1, xn ,
ρ xn, xn+1 , ρ xn+1, xn , ρ xn+1, xn ,
ρ xn+1, xn+1 , ρ xn+1, xn

34

Then,

M xn−1, xn+1 = max ρ xn−1, xn , ρ xn, xn+1 , 35

and there exists δ ∈ 0, 1 such that

ω ρ xn−1,xn ,ρ xn ,xn+1 ,ρ xn−1,xn+1 ,0,ρ xn+1,xn = δ 36

Let

M xn−1, xn+1 = ρ xn, xn+1 37

Then,

θ ρ xn, xn+1 ≤ θ ρ xn, xn+1
δ < θ ρ xn, xn+1 38

It is a contradiction. Therefore,

M xn−1, xn+1 = ρ xn−1, xn 39

Using θ1 , we get

ρ xn, xn+1 < ρ xn−1, xn 40

Therefore, ρ xn,xn+1 n∈ℕ is a nonnegative strictly
decreasing sequence of real numbers. Consequently, there
exists α ≥ 0 such that

lim
n⟶∞

ρ xn+1,xn = α 41

Now, we claim that α = 0. Arguing by contradiction, we
assume that α > 0 Since ρ xn,xn+1 n∈ℕ is a nonnegative
strictly decreasing sequence of real numbers, then we have

ρ xn,xn+1 ≥ α for all n ∈ℕ 42

By property of θ, we get

1 < θ α ≤ θ ρ x0, x1
δn 43

By letting n⟶∞ in inequality (43), we obtain

1 < θ α ≤ 1 44

It is a contradiction. Therefore,

lim
n⟶∞

ρ xn,xn+1 = 0 45

Substituting x = xn−1 and y = xn+1 in (11), for all n ∈ℕ,

we have

θ ρ xn, xn+2 ≤ θ M xn−1, xn+1
ω ρ xn−1,xn+1 ,ρ xn−1,xn ,ρ xn+1,xn+2 ,ρ xn ,xn+1 ,d xn+1,xn+1

= θ M xn−1, xn+1
ω ρ xn−1,xn+1 ,ρ xn−1,xn ,ρ xn+1,xn+2 ,ρ xn ,xn+1 ,0 ,

46

where

M xn−1, xn+1 = max ρ xn−1, xn+1 , ρ xn−1, xn ,
ρ xn+1, xn+2 , ρ xn+1, xn , ρ xn+1, xn+1 ,
ρ xn+1, xn , d xn+1, xn

47

Since

ρ xn+1, xn+2 ≤ ρ xn, xn+1 ≤ ρ xn−1, xn , 48

we have

M xn−1, xn+1 = max ρ xn−1, xn+1 , ρ xn−1, xn , 49

and there exists δ ∈ 0, 1 such that

ω ρ xn−1, xn+1 , ρ xn−1, xn , ρ xn+1, xn+2 , ρ xn, xn+1 , 0 = δ

50

Then,

θ ρ xn, xn+2 ≤ θ max ρ xn−1, xn+1 , ρ xn−1, xn
δ

51

Take an = ρ xn, xn+2 and bn = ρ xn, xn+1 . Thus, one can
write

θ an ≤ θ max an−1, bn−1
δ 52

By θ1 , we get

an <max an−1, bn−1 53

By (40), we have

bn ≤ bn−1 ≤max an−1, bn−1 , 54

which implies that

max an, bn ≤max an−1, bn−1 , for all n ∈ℕ 55

Therefore, the sequence max an−1, bn−1 n∈ℕ is a non-
negative strictly decreasing sequence of real numbers. Thus,
there exists β ≥ 0 such that

lim
n⟶∞

max an, bn = β 56
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We assume that β > 0. By (45) and

limsup
n⟶∞

bn = limsup
n⟶∞

ρ xn−1, xn = 0, 57

then

limsup
n⟶∞

an = limsup
n⟶∞

max an, bn = lim
n⟶∞

max an, bn

58

Taking the limsupn⟶∞ in (51), and using the properties
of θ, we obtain

θ limsup
n⟶∞

an < θ lim
n⟶∞

max an−1, bn−1 59

Therefore,

θ β < θ β , 60

which is a contradiction. Therefore,

lim
n⟶∞

ρ xn, xn+2 = 0 61

Next, we shall prove that xn n∈ℕ is a Cauchy sequence,
i.e, limn⟶∞ρ xn,xm = 0, for all n,m ∈ℕ. Suppose to the
contrary, we assume that there exist ε > 0 and a sequence
n k and m k of natural numbers such that m k >
n k >k,

and

ρ xm k
, xn k

≥ ε and ρ xm k −1
, xn k

< ε 62

Now, using (40), (51), (61), and the quadrilateral
inequality, we find

ε ≤ ρ xm k
, xn k

≤ ρ xm k
, xm k +1

+ ρ xm k +1
, xm k −1

+ ρ xm k −1
, xn k

≤ ρ xm k
, xm k +1

+ ρ xm k +1
, xm k −1

+ ε

63

Then,

lim
k⟶∞

ρ m k , n k = ε 64

By quadrilateral inequality, we have

ρ xm k +1
, xn k

≤ ρ xm k +1
, xm k −1

+ ρ xm k −1
, xm k

+ ρ xm k
, xn k

,

ρ xm k
, xn k

≤ ρ xm k
, xm k +2

+ ρ xm k +2
, xm k +1

+ ρ xm k +1
, xn k

65

Letting k⟶∞ in the above inequalities, we obtain

lim
k⟶∞

ρ xm k +1
, xn k

= ε 66

Now, by quadrilateral inequality, we have

ρ xm k +1
, xn k +1

≤ ρ xm k +1
, xm k

+ ρ xm k
, xn k

+ ρ xn k
, xn k +1

,

ρ xm k
, xn k

≤ ρ xm k
, xm k +1

+ ρ xm k +1
, xn k +1

+ ρ xn k +1
, xn k

67

Letting k⟶∞ in the above inequalities, we obtain

lim
k⟶∞

ρ xm k +1
, xn k +1

= ε 68

By quadrilateral inequality, we have

ρ xm k +2
, xn k

≤ ρ xm k +2
, xm k

+ ρ xm k
, xm k +1

+ ρ xm k +1
, xn k

,

ρ xm k
, xn k

≤ ρ xm k
, xm k +1

+ ρ xm k +1
, xm k +2

+ ρ xm k +2
, xn k

69

Letting k⟶∞ in the above inequalities, we obtain

lim
k⟶∞

ρ xm k +2
, xn k

= ε 70

By the quadrilateral inequality, we find

ρ xm k +2
, xn k +1

≤ ρ xm k +2
, xm k

+ ρ xm k
, xm k +1

+ ρ xm k +1
, xn k +1

,

ρ xm k
, xn k +1

≤ ρ xm k
, xm k +1

+ ρ xm k +1
, xm k +2

+ ρ xm k +2
, xn k +1

71

Letting k⟶∞ in the above inequalities, we obtain

lim
k⟶∞

ρ xm k +2
, xn k

= ε 72

From (11) and by setting x = xm k
and y = xn k

, we have

M xm k
, xn k

=max ρ xm k
, xn k

, ρ xm k
, xm k +1

,

ρ xn k
, xn k +1

, ρ xm k +2
, xm k +1

,

ρ xm k +2
, xn k

, ρ xm k +2
, xn k +1

,

ρ xm k +2
, xm k +1

73

Taking the limit as k⟶∞, we have

lim
k⟶∞

M xm k
, xn k

=max ε, 0, 0, ε, ε, ε, ε = ε 74

Applying (11) with x = xm k
and y = xn k

, we obtain
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θ ρ xm k +1
, xn k +1

≤ θ M xm k
, xn k

ω ρ xm k
,xn k

,

ρ xm k
,Txm k

,ρ xn k
,Txn k

,ρ Txm k
,xn k

,ρ T2xm k
,xn k

=

θ M xm k
, xn k

ω ρ xm k
,xn k

,ρ xm k
,xm k +1

,ρ xn k
,xn k +1

,ρ xm k +1
,

xn k
,ρ xm k +2

,xn k As ω is a continuous function

lim
k⟶∞

ω ρ xm k
, xn k

, ρ xm k
, xm k +1

, ρ xn k
, xn k +1

,

ρ xm k +1
, xn k

, ρ xm k +2
, xn k

= ω lim
k⟶∞

ρ xm k
, xn k

, ρ xm k
, xm k +1

, ρ xn k
, xn k +1

,

ρ xm k +1
, xn k

, ρ xm k +2
, xn k

= ω ε, 0, 0, ε, ε

75

So, there exist δ ∈ 0, 1 such that ω ε, 0, 0, ε, ε = δ. Then,

θ ρ xm k +1
, xn k +1

≤ θ M xm k
, xn k

δ
76

Letting k⟶∞ in the above inequality, applying the
continuity of θ, we have

θ lim
k⟶∞

ρ xm k +1
, xn k +1

≤ θ lim
k⟶∞

M xm k
, xn k

δ

77

Therefore,

θ ε ≤ θ ε δ < θ ε , 78

which is a contradiction. Then,

lim
n,m⟶∞

ρ xm, xn = 0 79

Hence, xn is a Cauchy sequence in C. By completeness
of C, ρ , there exists z ∈ C such that

lim
n⟶∞

ρ xn, z = 0 80

Now, we show that ρ Tz, z = 0. Arguing by contradic-
tion, we assume that

ρ Tz, z > 0 81

Now, by quadrilateral inequality we get,

ρ Txn, Tz ≤ ρ Txn, xn + ρ xn, z + ρ z, Tz 82

ρ z, Tz ≤ ρ z, xn + ρ xn, Txn + ρ Txn, Tz 83

By letting n⟶∞ in inequality (82) and (83), we obtain

ρ z, Tz ≤ lim
n⟶∞

ρ Txn, Tz ≤ d z, Tz 84

Therefore,

lim
n⟶∞

ρ Txn, Tz = ρ z, Tz 85

Since xn ⟶ z as n⟶∞ for all n ∈ℕ and since T is an
λ, μ -continuous, we conclude that limn⟶∞Txn = Tz.
Then,

lim
n⟶∞

ρ Txn, Tz = ρ z, Tz = 0 86

So z = Tz
For uniqueness, now, suppose that z, u ∈ C are two fixed

points of T such that u ≠ z. Therefore, we have

ρ z, u = ρ Tz, Tu > 0 87

Applying (11) with x = z and y = u, we have

θ ρ z, u = θ ρ Tu, Tz

≤ θ M z, u ω ρ z,u ,ρ z,Tz ,ρ u,Tu ,ρ u,Tz ,ρ T2z,u

= θ M z, u ω ρ z,u ,ρ z,z ,d u,u ,ρ u,z ,ρ z,u

= θ M z, u ω d z,u ,0,0,ρ u,z ,ρ z,u

= θ M z, u δ

88

where

M z, u =max ρ z, u , ρ z, Tz , ρ u, Tu , ρ Tz, u ,
ρ T2z, Tz , ρ T2z, u , ρ T2z, Tu

=max ρ z, u , ρ z, z , ρ u, u , ρ z, u , ρ z, z ,
ρ z, u , ρ z, u = d z, u

89

Therefore, we have

θ ρ z, u ≤ θ ρ z, u δ < θ ρ z, u , 90

which implies that

ρ z, u < ρ z, u , 91

which is a contradiction. Therefore, u = z, and hence, the
proof is complete.

Consequently, we have the following:

Corollary 20. Let C, ρ be a λ, μ − complete generalized
metric space, and let λ, μ C × C⟶ 0,+∞ be two func-
tions. Let T C⟶ C be a self-mapping satisfying the follow-
ing conditions:

(i) θ ρ Tx, Ty ≤ θ M x, y k, k ∈ 0, 1 θ ∈ΘC

(ii) T is continuous. Then, T has a unique fixed point
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Proof. Define a function ω R5
+ ⟶ℝ+ by

ω t1, t2, t3, t4, t5 = k for all t1, t2, t3, t4, t5 ∈ℝ+ 92

Clearly, ω ∈Ω
Taking

λ x, y = 1

μ x, y = 1
93

Thus, T is an λ, μ − ω − θ-contraction, and T is a trian-
gular λ, μ − admissible mapping. As in the proof of Theo-
rem 19, T has a unique fixed point x ∈ C.

It is clear that, if x is a fixed point of T , then x is also a
fixed point of Tn for every n ∈ℕ. The notion of property P
introduced first by Jeong and Rhoades [31] that if a mapping
T satisfies Fix T = Fix Tn for each n ∈ℕ, then it is said
that T has property P or that T has no periodic points.

Theorem 21. Let λ, μ: C × C⟶ℝ+ be two functions, and
let C, ρ be an λ, μ -generalized complete metric space.
Let T C⟶ C be a mapping satisfying the following
conditions:

(i) T is a triangular λ, μ -admissible mapping

(ii) T is an λ, μ − ω − θ -contraction

(iii) λ z, Tz ≥ 1 and μ z, Tz ≤ 1, for all z ∈ Fix T .
Then, T has the property P, Tnx = Tx

Proof. Let z∈Fix Tn for some fixed n > 1. As λ z, Tz ≥ 1
and μ z, Tz ≤ 1 and T is a triangular λ, μ -admissible
mapping, then

λ Tz, T2z ≥ 1 and μ Tz, T2z ≤ 1 94

Continuing this process, we have

λ Tnz, Tn+1z ≥ 1 and μ Tnz, Tn+1z ≤ 1 95

for all n ∈ℕ. By T3 and T4 , we get

λ Tmz, Tnz ≥ 1 and μ Tmz, Tnz ≤ 1,∀m, n ∈ℕ, n ≠m

96

Assume that z ∉ Fix T , i.e., ρ z, Tz > 0
Applying (11) with x = Tn−1z and y = z, we get

ρ z, Tz = ρ Tnz, Tz = ρ TTn−1z, Tz , 97

which implies that

θ ρ TTn−1z, Tz

≤ θ M Tn−1z, z ω ρ Tn−1z,z ,ρ Tn−1z,TTn−1z ,ρ z,Tz ,ρ TTn−1z,z ,ρ z,T2Tn−1z

= θ M Tn−1z, z ω ρ Tn−1z,z ,ρ Tn−1z,Tnz ,ρ z,Tz ,ρ Tnz,z ,ρ z,Tn+1z

= θ M Tn−1z, z ω ρ Tn−1z,z ,ρ Tn−1z,Tnz ,ρ z,Tz ,ρ Tnz,z ,0

98

Thus, there exists δ ∈ 0, 1 such that

ω ρ Tn−1z, z , ρ Tn−1z, Tnz , ρ z, Tz , d Tnz, z , 0 = δ

99

Then,

ρ z, Tz = ρ Tnz, Tz = ρ TTn−1z, Tz θ M Tn−1z, z δ,
100

where

M z, Tn−1z =max ρ Tn−1z, z , ρ Tn−1z, TTn−1z ,
ρ z, Tz , ρ Tn−1z, z , ρ T2Tn−1z, z ,
ρ T2Tn−1z, Tz , ρ T2Tn−1z, Tn−1z

=max ρ Tn−1z, z , ρ Tn−1z, Tnz , ρ z, Tz ,
ρ Tn−1z, z , ρ TTnz, z , ρ TTnz, Tz ,
ρ TTnz, Tn−1z

=max ρ Tn−1z, z , ρ Tn−1z, z , ρ z, Tz ,
ρ Tn−1z, z , ρ Tz, z , ρ Tz, Tz ,
ρ Tz, Tn−1z

101

As ρ Tn−1z, Tnz ⟶ 0, taking the limit as n⟶∞

lim
n⟶+∞

M z, Tn−1z = ρ z, Tz 102

Since θ is an increasing and contentious function, there-
fore,

θ ρ z, Tz ≤ θ ρ z, Tz δ < θ ρ z, Tz , 103

which is a contradiction. So, ρ z, Tz > 0 Then, Fix
Tn = Fix T . Therefore, T has the property (P).

Assuming the following conditions, we prove that Theo-
rem 19 still holds for T not necessarily continuous.

Theorem 22. Let λ, μ C × C⟶ℝ+ be two functions, and
let C, ρ be an λ, μ − complete generalized metric space.

Let T C⟶ C be a mapping, satisfying the following
assertions:
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(i) T is triangular λ, μ − admissible

(ii) T is λ, μ − θ − ω − contraction

(iii) There exists x0 ∈ X such that λ x0, Tx0 ≥ 1 and μ
x0, Tx0 ≤ 1

(iv) X, d is λ, μ -regular

Then, T has a fixed point. Moreover, T has a unique fixed
point whenever λ z, u ≥ 1 and μ z, u ≤ 1 for all z, u ∈ Fix T

Proof. Let x0 ∈ X such that λ x0, Tx0 ≥ 1 and μ x0, Tx0 ≤ 1.
Similar to the proof of Theorem 19, we can conclude that

λ xn, xn+1 ≥ 1 and μ xn, xn+1 ≤ 1 ,

xn ⟶ zasn⟶∞,
104

where xn+1 = Txn From iv λ xn+1, z ≥ 1 and μ xn+1, z
≤ 1 hold for all n ∈ℕ

Suppose that Tz = xn0+1 = Txn0 for some n0 ∈ℕ From
Theorem 19, we know that the members of the sequence
xn are distinct. Hence, we have Tz ≠ Txn, i.e., ρ Tz, T
xn > 0 for all n > n0 Thus, we can apply (11), to xn and
z for all n > n0 to get

θ ρ Txn, Tz ≤ θ M xn, z
ω ρ xn ,z ,ρ xn ,Txn ,ρ z,Tz ,ρ xn ,Tz ,ρ T2xn ,z

= θ M xn, z
ω ρ xn ,z ,ρ xn ,xn+1 ,ρ z,Tz ,ρ xn ,Tz ,ρ xn+2,z

105

Therefore,

θ ρ Txn, Tz ≤ θ M xn, z
ω ρ xn ,z ,ρ xn ,xn+1 ,ρ z,Tz ,ρ xn ,Tz ,ρ xn+2,z ,

106

where

M xn, z =max ρ xn, z , ρ xn, Txn , ρ z, Tz , ρ Txn, z ,
ρ T2xn, Tz , ρ T2xn, z , ρ T2xn, Txn

=max ρ xn, z , ρ xn, xn+1 , ρ z, Tz , ρ xn+1, z ,
ρ xn+2, Tz , ρ xn+2, z , ρ xn+2, xn+1

107

Thus,

lim
n⟶∞

M xn, z =max lim
n⟶∞

ρ xn, z , ρ xn, xn+1 , ρ z, Tz ,

ρ xn+1, z , ρ xn+2, Tz , ρ xn+2, z ,

ρ xn+2, xn+1

= max 0, 0, ρ z, Tz , 0, lim
n⟶∞

d xn+2, Tz , 0, 0

108

Since

0 ≤ ρ xn+2, Tz ≤ ρ xn+2, xn + ρ xn, z + ρ xn, Tz , 109

lim
n⟶∞

ρ xn+2, Tz ≤ ρ z, Tz 110

Thus,

lim
n⟶∞

M xn, z ≤ ρ z, Tz , 111

and there exist δ ∈ 0, 1 such that

ω ρ xn, z , ρ xn, xn+1 , ρ z, Tz , ρ xn, Tz , ρ xn+2, z = δ

112

If ρ z, Tz > 0, then by (110) and the fact that θ and ω
are continuous and by taking the limit as n⟶∞ in
(106), we obtain

θ lim
n⟶∞

ρ Txn, Tz ≤ θ lim
n⟶+∞

M xn, z
δ

≤ θ ρ z, Tz δ < θ ρ z, Tz
113

Using (85), we get

θρ z, Tz < θ ρ z, Tz 114

It is a contradiction. Therefore, ρ z, Tz = 0, that is, z
is a fixed point of T , and so z = Tz Thus, z is a fixed
point of T The proof of the uniqueness is similar to that
of Theorem 19.

Definition 23. Let ρ C, d be a λ − μ -generalized metric
space, and let T be a self-mapping on C. Suppose that λ,
μ X × X ⟶ 0,+∞ are two functions. We say that T is
an λ, μ − ω − θG -contraction, if for all x, y ∈ C with λ x, y
≥ 1 and μ x, y ≤ 1 and ρ Tx, Ty > 0, we have

θ ρ Tx, Ty ≤ θ M x, y ω ρ x,y ,ρ x,Tx ,ρ y,Ty ,ρ Tx,y ,ρ T2x,y ,
115

where θ ∈ΘG, ω ∈Ω and

M x, y =max ρ x, y , ρ x, Tx , ρ y, Ty , ρ Tx, y ,
ρ T2x, y , ρ T2x, Ty , ρ T2x, Tx

116

Theorem 24. Let C, ρ be a λ, μ -complete generalized metric
space, and let λ, μ C × C⟶ 0,+∞ be two functions. Let T
C⟶ C be a self-mapping satisfying the following conditions:

(i) T is a triangular λ, μ − admissible mapping

(ii) T is an α, η − θ − ω -contraction

(iii) There exists x0 ∈ C such that λ x0, Tx0 ≥ 1 and μ
x0, Tx0 ≤ 1

(iv) T is a λ, μ -continuous

Then, T has a fixed point. Moreover, T has a unique fixed
point when λ x, y ≥ 1 and μ x, y ≤ 1 for all x, y ∈ C
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Proof. Let x0 ∈ C such that λ x0, Tx0 ≥ 1 and μ x0, Tx0 ≤ 1.
Similar to the proof of Theorem 19, we can conclude that

λ xn, xn+1 ≥ 1 and μ xn, xn+1 ≤ 1 ,

lim
n⟶∞

ρ xn, xn+1 = 0, lim
n⟶∞

ρ xn, xn+2 = 0
117

By θ3 , there exist r ∈ 0, 1 and l ∈ 0,+∞ such that
limn⟶∞ θ ρ xn, xn+1 − 1 /ρ xn, xn+1

r = l Suppose that
l <∞. So, there exists n1 ∈ℕ such that

θ ρ xn, xn+1 − 1
ρ xn, xn+1

r <
l
2
, for all n ≥ n1 118

Taking M = 2/l, we have

n ρ xn, xn+1
r <M n θ ρ xn, xn+1 − 1 , for all n ≥ n1

119

Suppose now that l =∞. Let N > 0 be an arbitrary pos-
itive number. So, there exists n2 ∈ℕ such that

θ ρ xn, xn+1 − 1
ρ xn, xn+1

r >N , for all n ≥ n2 120

Taking M = 1/N , we have

n ρ xn, xn+1
r < n M θ ρ xn, xn+1 − 1 , for all n ≥ n2

121

Thus, in all cases, there exist M > 0 and q ∈ℕ q =
max n1, n2 such that

n ρ xn, xn+1
r <M n θ ρ xn, xn+1 − 1 ,∀n ≥ nq 122

By induction, we obtain

n ρ xn, xn+1
r < n M θ ρ xn, xn+1 − 1

<⋯ <Mn θ ρ x0, x1
rn − 1

123

Letting n⟶∞ in the above inequality, we obtain

lim
n⟶∞

n ρ xn, xn+1
r = 0 124

So, there exists n3 ∈ℕ such that

ρ xn, xn+1 ≤
1
n1/r

, for all n ≥ n3 125

By θ3 , there exist r ∈ 0, 1 and h ∈ 0,+∞ such that
limn⟶∞ θ ρ xn, xn+2 − 1 /ρ xn, xn+2

r = h
Suppose that h <∞. So, there exists n4 ∈ℕ such that

θ ρ xn, xn+2 − 1
ρ xn, xn+2

r <
h
2
, for all n ≥ n1 126

Taking p = 2/h, we have

n ρ xn, xn+2
r < P n θ ρ xn, xn+2 − 1 , for all n ≥ n4

127

Suppose now that h =∞. Let Q > 0 be an arbitrary pos-
itive number. So, there exists n5 ∈ℕ such that

θ ρ xn, xn+2 − 1
ρ xn, xn+2

r >Q, for all n ≥ n5 128

So by taking P = 1/Q, we have

n ρ xn, xn+2
r < n P θ ρ xn, xn+2 − 1 , for all n ≥ n5

129

Thus, in all cases, there exist P > 0 and w ∈ℕ w =max
n4, n5 such that

n ρ xn, xn+2
r < P n θ ρ xn, xn+2 − 1 , for all n ≥w

130

By induction, we obtain

n ρ xn, xn+2
r < n P θ ρ xn, xn+2 − 1

<⋯ < n P θ ρ x0, x2
rn − 1

131

Letting n⟶∞ in the above inequality, we obtain

lim
n⟶∞

n ρ xn, xn+2
r = 0 132

So, there exists n6 ∈ℕ such that

ρ xn, xn+2 ≤
1
n1/r

, for all n ≥ n6 133

If m > n and m = n + 2k + 1 with k ∈ℕ, then

ρ xn, xm ≤ ρ xn, xn+1 + ρ xn+1, xn+2 +⋯+ρ xm−1, xm ≤ 〠
m−1

i=n

1
i1/r

134

If m > n and m = n + 2k with k ∈ℕ, then

ρ xn, xm ≤ ρ xn, xn+2 + ρ xn+2, xn+3 +⋯+ρ xm−1, xm

≤ ρ xn, xn+2 + 〠
m−1

i=n+2

1
i1/r

≤ 〠
m−1

i=n

1
i1/r

135

Therefore,

ρ xn, xm ≤ 〠
∞

i=n

1
i1/r

136
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As 0 < r < 1, the series ∑∞
i=n1/i1/r converges. Therefore, by

taking the limit as n,m⟶∞ in (136), we get

lim
n⟶∞

ρ xn, xm = 0 137

Hence, xn n∈ℕ is a Cauchy sequence. Since C is com-
plete, there exists z ∈ C such that

lim
n⟶∞

ρ xn, z = 0 138

Since T is λ, μ -continuous,

lim
n⟶∞

ρ Txn, Tz = 0 139

Then,

z = lim
n⟶∞

xn+1 = lim
n⟶∞

Txn = Tz 140

This proves that z is a fixed point of T .

Corollary 25. Let C, ρ be a λ, μ -complete generalized
metric space. Let λ, μ C × C⟶ 0,+∞ be two functions.
Let T C⟶ C be a self-mapping satisfying the following
conditions:

(i) θ ρ Tx, Ty ≤ θ M x, y r , r ∈ 0, 1 θ ∈ΘG

(ii) T is a triangular λ, μ -admissible mapping

(iii) There exists x0 ∈ C such that λ x0, Tx0 ≥ 1 and μ
x0, Tx0 ≤ 1

(iv) T is a λ, μ − continuous

Then, T has a fixed point. Moreover, T has a unique fixed
point when λ x, y ≥ 1 and μ x, y ≤ 1 for all x, y ∈ C

Proof. Define a function ω R5
+ ⟶ℝ+ by

ω a1, a2, a3, a4, a5 = r for all a1, a2, a3, a4, a5 ∈ℝ+ 141

So, ω ∈Ω, and T is an λ, μ − ω − θ-contraction. As in
the proof of Theorem 24, T has a unique fixed point x ∈ X.

Example 26. Let C = 1,+∞ and a ∈ 0, 1 . Define ρ C × C
⟶ 0,+∞ by

ρ x, y = x − y 142

Then, C, ρ is a complete generalized metric space.

Define T C⟶ C by

T t = a t for all t ∈ 1,+∞ ,

λ x, y =
max x, y + a
min x, y + a

, for all x, y ∈ℝ+,

μ x, y =
min x, y + a
max x, y + a

, for all x, y ∈ℝ+,

ω t1, t2, t3, t4, t5 = a for all t1, t2, t3, t4, t5 ∈ℝ+

143

Then, T is an λ, μ -continuous triangular λ, μ −
admissible mapping.

Case 1. 0 ≤ x ≤ y

ρ Tx, Ty = a y − a x ,

M ρ x, y =max ρ x, y , ρ x, a x , ρ y, a y , ρ y, a x ,

ρ a2 x, y y , ρ a2 x, a y ,

ρ a2 x, a x

144

Since x ≤ y and a ∈ 0, 1 , we get

M x, y =max y − x , x − a x , y − a y , y − a x ,

y y − a2 x , a y − a2 x,

a x − a2 x,

145

Thus,

M x, y ≥ y − x ≥ a y − x 146

On the other hand,

a y − x = a a y − x , 147

which implies that

θ M x, y ≥ θ ρ x, y = e y−x 148

Thus,

θ ρ x, y ω ρ x,Tx ,ρ y,Ty ,ρ x,Ty ,ρ y,Tx ,ρ T2x,y = e a y−x = e a y− x y+ x ,

θ ρ Tx, Ty = ea y− x 149

As x, y ∈ 1,∞

ea y− x ≤ e a y− x y+ x 150
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Thus,

θ ρ Tx, Ty ≤ θ ρ x, y ω ρ x,y ,ρ x,Tx ,ρ y,Ty ,ρ y,Tx ,ρ T2x,y

151

Case 2. x > y > 0

ρ Tx, Ty = a x − a y ,

M x, y =max ρ x, y , ρ x, a x , ρ y, a y , ρ y, a x ,

ρ a2 x, y y , ρ a2 x, a y ,

ρ a2 x, a x

152

As x > y and a ∈ 0, 1 ,

M x, y =max x − y , x − a x , y − a y , y − a x ,

y y − a2 x , a y − a2 x ,

a x − a2 x,

153

Thus,

M x, y ≥ y − x ≥ a x − y 154

On the other hand,

a y − x = a a x − y 155

which implies that

θ M x, y ≥ θ ρ x, y = e x−y 156

Thus,

θ ρ x, y ω ρ x,Tx ,ρ y,Ty ,ρ x,Ty ,ρ y,Tx ,ρ T2x,y = e a x−y = e a x− y y+ x ,

θ ρ Tx, Ty = ea x− y

157

As x, y ∈ 1,∞

ea x− y ≤ e a x− y y+ x 158

Thus,

θ ρ Tx, Ty ≤ θ ρ x, y ω ρ x,y ,ρ x,Tx ,dρ y,Ty ,ρ y,Tx ,d T2x,y ,
159

where θ ∈ΘC ∩ΘG Hence, conditions (11) and (115)
are satisfied. Therefore, T has a unique fixed point z = 1.

4. Application to Nonlinear Integral Equations

In this section, we endeavour to apply Theorems 19 and 24
to prove the existence and uniqueness of the integral equa-
tion of the Fredholm type.

u t = ν
n

m
h t, r, u r ds, 160

where m, n ∈ℝ, u ∈ C m, n ,ℝ , and h m, n 2 ×
ℝ⟶ℝ are continuous functions and for some constant ν
depending on the parameters m and n.

Theorem 27. Suppose the function h is such that h t,
r, u r − h t, r, v r ≤ u t − v t ∀t, r ∈ℝ and u, v ∈
C m, n ,ℝ . Then, the equation (160) has a unique
solution u ∈ C m, n ,ℝ and ν ≤m/n.

Proof. Let C = C m, n ,ℝ and T C⟶ C defined by

T u t = ν
n

m
h t, r, u r ds 161

∀u ∈ C. Define ρ C × C⟶ 0,+∞ given by

ρ u, v = max
t∈ m,n

u t − v t 162

Then, C, ρ is a complete generalized metric space.
Assume that u, v ∈ C and t, r ∈ m, n . Then, we get

Tu t − Tv t = ν
n

m
h t, r, u r dr −

n

m
h t, r, v r dr

= ν
n

m
h t, r, u r − h t, r, v r dr

≤ ν
n

m
h t, r, u r − h t, r, v r dr

≤ ν
n

m
u r − v r dr = ν

n

m
u r − v r dr

163

Thus,

max
t∈ m,n

Tu t − Tv t = max
t∈ m,n

ν
n

m
h t, r, u r − h t, r, v r dr

≤ max
t∈ m,n

ν
n

m
u r − v r dr

≤ ν
n

m
max
r∈ m,n

u r − v r dr

164

As ρ Tx, Ty > 0 and ρ x, y > 0 for any x ≠ y, then we
can take natural exponential sides and get
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e ρ Tx,Ty = e
ν max
t∈ a,b

b

a
h t,r,x r −h t,r,y r dr

≤ e
ν

b

a
max
r∈ a,b

x r −y r dr

165

Since ν ≤m/n, which implies that

e ρ Tu,Tv = e
ν max
t∈ m,n

n

m
h t,r,u r −h t,r,v r dr

≤ e
m/n

n

m
max
r∈ m,n

u r −v r dr

166

Hence,

θ ρ Tu, Tv ≤ θ M u, v ω, 167

for all u, v ∈ C with θ t = e t and ω t = m/n . Then,
T satisfies conditions (11) and (115) which are hold.

5. Concluding Remarks

The paper deals with θ − ω − contraction in λ, μ -general-
ized metric spaces, which is an extension of the Banach con-
traction principle. We prove fixed point theorems of some
generalized contractions which are defined on generalized
metric spaces that satisfy a λ, μ -complete generalized
metric space condition. Our generalized results are based
on θ-contraction. Finally, we present an application deal-
ing with the existence of solutions for integral equation
of the Fredholm type. Further, we also need to illustrate
some generalizations of the introduced θ − ω − contraction
mappings for generalized metric spaces with a graph. Some
open problems for the future, for example, fixed circle prob-
lem or fixed figure problem of the θ − ω − contraction map-
pings for generalized metric spaces.
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