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We study composition-differentiation operators on the Hardy space H1 on the unit disk. We prove that if φ is an analytic self-map
of the unit disk such that the composition-differentiation operator induced by φ is bounded on the Hardy space H1, then it is
completely continuous. This result is stronger than the similar result for composition operators which says that the
composition operator induced by φ is completely continuous if and only if jφðeiθÞj < 1 almost everywhere on the unit circle.

1. Introduction

Let D denote the open unit disk in the complex plane, and
let φ : D⟶D denote an analytic self-map of D. Let X be
a Banach space of analytic functions on the unit disk such
that for each f ∈ X, the function f ∘ φ ∈ X. The composition
operator Cφ : X ⟶ X is defined by

Cφ fð Þ = f ∘ φ: ð1Þ

The composition operator was first introduced, in the
setting of Hardy-Hilbert space H2, by E. Nordgren in 1968
(see [1]). This line of investigation was then followed by sev-
eral people in the Hardy space Hp as well as in the Bergman
space Ap, for 0 < p <∞.

In this paper, the Banach space X is either the Hardy
space Hp or the Bergman space Ap. Let us recall the defini-
tions of these spaces. Assume that p is a positive number.
An analytic function f on the unit disk is said to belong to
the Hardy space Hp =HpðDÞ if

fk kpHp = sup
0<r<1

1
2π

ð2π
0

f reiθ
� ���� ���pdθ <∞: ð2Þ

In general, the Hardy space Hp for 1 ≤ p <∞ is a Banach
space of analytic functions, and for p = 2, it is a Hilbert space
with the following inner product:

f , gh i = 1
2π

ð2π
0
f ∗ eiθ
� � �

g∗ eiθ
� �

dθ, ð3Þ

where

f ∗ eiθ
� �

≔ lim
r⟶1−

f reiθ
� �

ð4Þ

is the boundary function of f ; we recall that for each f
∈Hp, the boundary function of f exists almost everywhere
on the unit circle (see [2] or [3]). It is easy to see that for f
∈H2 with Taylor series

f zð Þ = 〠
∞

n=0
anz

n, ð5Þ
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the norm of f is given by

fk kH2 = 〠
∞

n=0
anj j2

 !1/2

: ð6Þ

Another functional Hilbert space on the unit disk is the
Bergman space Ap = ApðDÞ consisting of all analytic func-
tions f in the unit disk for which the area integral

ð
D

f zð Þj jpdA zð Þ ð7Þ

is finite; here, dAðzÞ = π−1dxdy is the normalized area mea-
sure in the unit disk. The norm of f in the Bergman space is
defined by

fk kAp =
ð
D

f zð Þj jpdA zð Þ
� �1/p

: ð8Þ

It is well-known that Ap, when 1 ≤ p <∞, is a Banach
space. Moreover, for f ∈ A2 with Taylor coefficients
fang∞n=0 we have

fk k2A2 = 〠
∞

n=0

anj j2
n + 1 : ð9Þ

Note that the inner product in A2 is defined by

f , gh i =
ð
D

f zð Þ �g zð ÞdA zð Þ: ð10Þ

For a detailed account on the theory of Bergman spaces,
we refer the reader to [4, 5] and [6].

Assume now that φ : D⟶D is an analytic self-map of
the unit disk. We know that the composition operator is
bounded on the Hardy space Hp as well as on the Bergman
space Ap (see [7]). Indeed, for 1 ≤ p <∞, the composition
operator Cφ : Hp ⟶Hp is bounded and

Cφ

 
Hp ≤

1 + φ 0ð Þj j
1 − φ 0ð Þj j
� �1/p

, ð11Þ

where kCφkHp denotes the norm of Cφ on Hp (see [6]). Sim-
ilar statement holds for Cφ : Ap ⟶ Ap, that is,

Cφ

 
Ap ≤

1 + φ 0ð Þj j
1 − φ 0ð Þj j
� �2/p

: ð12Þ

In contrast, the compactness of Cφ depends on the
behavior of the function φ. For instance, it is proved in
([6], Theorem 10.3.5) that Cφ is compact on A2 if and only if

lim
zj j⟶1−

1 − zj j2
1 − φ zð Þj j2 = 0: ð13Þ

The equivalent condition for the compactness of Cφ on

the Hardy space H2 can be stated in terms of the Nevanlinna
counting function (see [6], Theorem 10.4.10).

For a function ψ ∈ X, the weighted composition operator
Cψ,φ : X ⟶ X is given by

Cψ,φ fð Þ = ψ · f ∘ φð Þ: ð14Þ

This operator was studied by several authors from differ-
ent aspects, see the papers [8–15] and the references therein.
Another operator related to the composition operator is the
composition-differentiation operator defined by

Dφ fð Þ = f ′ ∘ φ: ð15Þ

Some authors consider Dφ as the composition of two

successive operators Cφ and D where Dð f Þ = f ′ is the differ-
entiation operator. For this reason, they use the notation
CφD for what we denoted by Dφ. The weighted
composition-differentiation operator is defined by

Dψ,φ fð Þ = ψ · f ′ ∘ φ
� �

: ð16Þ

This operator was studied by many authors; see for
instance [16–18] and the references therein. Compared to
the composition operator, the behavior of composition-
differentiation operator is more subtle. This is due to the
presence of differentiation operator which is known to be
unbounded even on the Hardy space Hp. It should be
emphasized that if ψ is a bounded analytic function on the
open unit disk, and if φ is a nonconstant self-map of the unit
disk such that kφk∞ ≤ r < 1, then Dψ,φ is bounded on H2;
indeed, Fatehi and Hammond ([17], Proposition 4) proved
that

Dφ

  ≤ r + φ 0ð Þj j
r − φ 0ð Þj j
� �1/2 1

1 − r

� �
r 1/ 1−rð Þb c−1, ð17Þ

where b·c denotes the greatest integer function.
In this paper, we study the complete continuity of the

composition-differentiation operator Dψ,φ and its higher-
order variants

D kð Þ
ψ,φ fð Þ = ψ · f kð Þ ∘ φ

� �
, ð18Þ

where k is a positive integer. When k = 1, we suppress the
superscript(1) and just write Dψ,φ.

We intend to study the complete continuity of these
operators on the nonreflexive Banach space H1. We recall
that an operator T : X⟶ X is said to be completely contin-
uous if xn ⟶ x weakly in X implies kTxn − Txk⟶ 0. It is
well-known that on a Banach space X, every compact oper-
ator is completely continuous. On the other hand, if the
Banach space X is reflexive, these two notions coincide. In
this paper, we shall focus on the nonreflexive Hardy space
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H1 and try to find conditions under which the weighted
composition-differentiation operator Dψ,φ is completely con-

tinuous. We prove that if DðkÞ
ψ,φ is bounded, then ψ = 0 almost

everywhere in

eiθ : φ eiθ
� ���� ��� = 1

n o
: ð19Þ

This implies that DðkÞ
ψ,φ is completely continuous on H1.

The results we obtain are in line with similar results already
obtained by Cima and Matheson [8] for composition opera-
tors and then by Contreras and Hernández-Diaz [9] for
weighted composition operators.

2. Boundedness and Compactness

Given ψ ∈Hp and a self-map φ on the unit disk, we define

μ Eð Þ = μψ,φ Eð Þ =
ð
φ−1 Eð Þ∩T

ψj jpdm, E ⊆ �D, ð20Þ

where

T = z ∈ℂ : zj j = 1f g ð21Þ

is the boundary of the unit disk, and dm is the normalized
Lebesgue measure on T .

Theorem 1. Let ψ ∈Hp and let φ be a self-map on D. For
1 ≤ p, q <∞, the operator Dψ,φ : Hp ⟶Hq is bounded

(compact, resp.) if and only if f ↦Dð f Þ = f ′ maps Hp

boundedly (compactly, resp.) into LqðD, dνÞ.

Proof. Let g =∑n
i=1ciχEi

be a nonnegative simple function.
Since χE ∘ φ = χφ−1ðEÞ, it follows that

ð
�D
gdμ = 〠

n

i=1
ciμ Eið Þ = 〠

n

i=1
ci

ð
φ−1 Eið Þ∩T

ψj jpdm

=
ð
T

ψj jp 〠
n

i=1
ciχφ−1 Eið Þ∩Tdm =

ð
T

ψj jp g ∘ φð Þdm:

ð22Þ

This is indeed true for each nonnegative measurable
function g on �D (for details, see [9], Lemma 2.1). Now let-
ting g = j f ′jp, we obtain

ð
�D

f ′
�� ��pdμ =

ð
T

ψj jp f ′ ∘ φ
�� ��pdm = Dψ,φ fð Þ p

Hp : ð23Þ

Assume that p, q ∈ ½1,∞Þ. It follows from (23) that
Dψ,φ : Hp ⟶Hq is bounded (compact, resp.) if and only

if f ↦ f ′ maps Hp boundedly (compactly, resp.) into
Lqð�D, dμÞ.

We now consider the weighted composition-
differentiation operator Dψ,φ on the Bergman space Ap.
Given ψ ∈ Ap and a self-map φ on the unit disk, we define

ν Eð Þ = μψ,φ Eð Þ =
ð
φ−1 Eð Þ

ψj jpdA, E ⊆D: ð24Þ

It is easy to see that for every non-negative measurable
function g on the unit disk,ð

D

gdν =
ð
D

ψj jp g ∘ φð ÞdA: ð25Þ

Theorem 2. Let ψ ∈ Ap and let φ, φ′ be self-maps on D. For
1 ≤ p, q <∞, the operator Dψ,φ : Ap ⟶ Aq is bounded (com-

pact, resp.) if and only if f ↦Dð f Þ = f ′ maps Ap boundedly
(compactly, resp.) into LqðD, dνÞ.

Proof. Letting g = j f ′jp in (25), we obtainð
D

f ′
�� ��pdν = ð

D

ψj jp f ′ ∘ φ
�� ��pdA = Dψ,φ fð Þ p

Ap , f ∈ Ap:

ð26Þ

On the other hand, assume there is a constant C > 0 such
that for each f ∈ Ap we have

f ′
 

Lq D,dνð Þ ≤ C fk kAp : ð27Þ

This together with (26) implies that

Dψ,φ fð Þ 
Aq = f ′

 
Lq D,dνð Þ ≤ C fk kAp , ð28Þ

which means that Dψ,φ is bounded. Conversely, assume that

Dψ,φ fð Þ 
Aq ≤ C′ fk kAp ð29Þ

for some C′ > 0. It then follows from (26) that

f ′
 

Lq D,dνð Þ ≤ C′ fk kAp : ð30Þ

Therefore, D is bounded. The equivalence of compact-
ness of two operators is a consequence of (28).

3. Complete Continuity

In this section, we study the complete continuity of
composition-differentiation operators on the Hardy space
H1. We begin by recalling two statements; one in measure
theory that characterizes weak convergence in L1 and the
other from general functional analysis on the weak-to-
weak continuity of bounded operators. Let ðX, S , μÞ be a
measure space. A sequence f n : X⟶ℝ of measurable
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functions is said to converge in measure to a measurable
function f : X ⟶ℝ if for every η > 0,

lim
n⟶∞

μ x ∈ Xf : f n xð Þ − f xð Þj j > ηð Þ = 0: ð31Þ

It is well-known that if μðXÞ <∞, and if f n ⟶ f almost
everywhere, then f n ⟶ f in measure (see [19], page 100).

Lemma 3 (see [20], page 295). Let ð f nÞ be a sequence in L1

ðX, S, μÞ that converges weakly to f . Then, f n converges
strongly to f if and only if f n converges to f in measure on
every measurable subset of finite measure.

Lemma 4. Let X be a Banach space and T be a bounded oper-
ator on X. Assume that fxng is a sequence in X such that
xn ⟶ 0 weakly. Then, Txn ⟶ 0 weakly.

Proof. Let f be an arbitrary element in the dual spaceX∗.
Since f ∘ T is continuous, it follows that ð f ∘ TÞðxnÞ⟶ ð f
∘ TÞð0Þ = 0 which is the desired result.

Theorem 5. Let φ be an analytic self-map of the open unit
disk D such that Dφ is bounded on H1. Then, Dφ is completely
continuous.

Proof. We first consider the following sequence of functions
in H1:

wn zð Þ = zn+1

n + 1 , n ≥ 0: ð32Þ

It is clear that

wnk kH1 = 1
n + 1 ⟶ 0, n⟶∞: ð33Þ

Since Dφ is bounded, it follows that

φnk kH1 = Dφ wnð Þ 
H1 ⟶ 0, n⟶∞, ð34Þ

which is not possible if jφðeiθÞj = 1 on a set of positive mea-
sure. Therefore,

φ eiθ
� ���� ��� < 1, a:e:on T : ð35Þ

To prove the complete continuity of the composition-
differentiation operator Dφ, we let ð f nÞ be a sequence that

converges weakly to zero in H1. It follows that f n ⟶ 0 uni-
formly on compact subsets of D. This, in turn, implies that
f n′ ⟶ 0 uniformly on compact subsets of the unit disk.
Therefore, f n′ðφðzÞÞ⟶ 0 pointwise in D, and hence (due
to the fact that jφðeiθÞj < 1 a.e. on T )

Dφ f nð Þ eiθ
� �

= f n′ φ eiθ
� �� �

⟶ 0, a:e:on T : ð36Þ

We should recall that in finite measure spaces, almost
everywhere (pointwise) convergence implies convergence
in measure (see [19], page 100). Therefore Dφð f nÞ converges
in measure to zero in L1ðT , dmÞ. Moreover, according to
Lemma 4, the boundedness of Dφ on H1 implies that Dφ

ð f nÞ⟶ 0 in the weak topology of H1, and hence in the
weak topology of L1ðTÞ. Finally, we know from ([20], page
295) that weak convergence of Dφð f nÞ together with its
convergence in measure implies that kDφð f nÞkH1 con-
verges to zero. Hence, Dφ is completely continuous.

Theorem 6. Let φ be an analytic self-map of the open unit
disk D such that DðkÞ

φ is bounded on H1. Then, DðkÞ
φ is

completely continuous.

Proof. Let us consider the sequence of functions

wn zð Þ = zn+k

n + 1ð Þ⋯ n + kð Þ , n ≥ 1, ð37Þ

in H1. It follows that ðdk/dzkÞwn = zn, and

wnk kH1 =
1

n + 1ð Þ⋯ n + kð Þ ⟶ 0, n⟶∞: ð38Þ

Therefore, the boundedness of DðkÞ
φ implies that

φnk kH1 = D kð Þ
φ wnð Þ

 
H1

⟶ 0, n⟶∞, ð39Þ

which is impossible unless jφj < 1 almost everywhere on T .
For the complete continuity of DðkÞ

φ , we note that if ð f nÞ
is a weak null sequence in H1, then f ðkÞn ⟶ 0 uniformly on
compact subsets of D, from which it follows that

D kð Þ
φ f nð Þ eiθ

� �
= f kð Þ

n φ eiθ
� �� �

⟶ 0, a:e:on T : ð40Þ

The rest of the argument is routine.

Theorem 7. Let ψ ∈H1 and φ be an analytic self-map of the
open unit disk D such that Dψ,φ is bounded on H1. Then, Dψ,φ
is completely continuous.

Proof. Again, we consider the sequence

wn zð Þ = zn+1

n + 1 , n ≥ 1, ð41Þ

which converges to zero in H1. Since Dψ,φ is bounded, it fol-
lows that

Dψ,φ wnð Þ 
H1 ⟶ 0, n⟶∞: ð42Þ
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On the other hand,

ð
eiθ: φ eiθð Þj j=1f g

ψj jdm =
ð

eiθ: φ eiθð Þj j=1f g
ψj j φj jndm

≤
ð
T

ψj j φj jndm = Dψ,φ wnð Þ 
H1 ⟶ 0, n⟶∞:

ð43Þ

Therefore, the integral on the left-hand side must be
zero, from which it follows that

ψ eiθ
� �

= 0, a:e:in eiθ : φ eiθ
� ���� ��� = 1

n o
: ð44Þ

To prove that Dψ,φ is completely continuous, we let ð f nÞ
be a weak null sequence in H1. It follows that f n′ ⟶ 0
uniformly on compact subsets of D. Using this fact
together with the assumption that ψ = 0 almost everywhere
in feiθ : jφðeiθÞj = 1g, we conclude that

Dψ,φ f nð Þ eiθ
� �

= ψ eiθ
� �

f n′ φ eiθ
� �� �

⟶ 0, a:e:on T :

ð45Þ

It now follows that Dψ,φð f nÞ converges to zero in mea-

sure in L1ðTÞ (see [19], page 100). Moreover, the bound-
edness of Dψ,φ on H1 implies that Dψ,φð f nÞ⟶ 0 in the

weak topology of H1, and hence in the weak topology of
L1ðTÞ (by Lemma 4). Finally, we invoke the fact that weak
convergence of a given sequence together with its conver-
gence in measure implies its norm convergence (see [20],
page 295), that is, kDψ,φð f nÞkH1 ⟶ 0 as n⟶∞.

In the following theorem, we extend the above result to
weighted composition-differentiation operators.

Theorem 8. Let ψ ∈H1 and φ be an analytic self-map of the

unit disk D such that DðkÞ
ψ,φ is bounded on H1. Then, DðkÞ

ψ,φ is
completely continuous.

Proof. Using the sequence introduced in Theorem 6, we have

ð
eiθ: φ eiθð Þj j=1f g

ψj jdm =
ð

eiθ: φ eiθð Þj j=1f g
ψj j φj jndm

≤
ð
T

ψj j φj jndm = D kð Þ
ψ,φ wnð Þ

 
H1

⟶ 0, n⟶∞:

ð46Þ

The rest of argument is routine.

4. Conclusion

In this paper, we studied the composition-differentiation
operator Dφ and its variants including the weighted

composition-differentiation operators Dψ,φ and DðkÞ
ψ,φ. We

have proved that each of these operators is completely con-
tinuous provided that is it bounded. The motivation for

the above description comes from the following theorem
proved in ([8], Proposition 1): the composition operator
Cφ is completely continuous on H1 if and only if jφðeiθÞj
< 1 almost everywhere on the unit circle. This result was
then generalized to weighted composition operators ([9],
Theorem 4.1): the weighted composition operator Cψ,φ is

completely continuous on H1 if and only if ψ = 0 almost
everywhere on the set feiθ : jφðeiθÞj = 1g.

As a matter of fact, given an analytic self-map of the unit
disk φ, the composition operator Cφ is always bounded on

H1 while Dφ may not be bounded; so in our results, we have

assumed that Dφ is bounded on H1. On the other hand, as
we have seen in the proofs presented in this paper, the
boundedness assumption on Dφ implies that jφðeiθÞj < 1
almost everywhere on the unit circle. In this way, we
obtained the stronger result that the composition-
differentiation operators are completely continuous pro-
vided that they are bounded.
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