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The existence of mild solutions for Hilfer fractional evolution equations with nonlocal conditions in a Banach space is
investigated in this manuscript. No assumptions about the compactness of a function or the Lipschitz continuity of a
nonlinear function are imposed on the nonlocal item and the nonlinear function, respectively. However, we assumed that the
nonlocal item is continuous, the nonlinear term is continuous and satisfies some specified assumptions, and the associated
semigroup is compact. Our theorems are proved by means of approximate techniques, semigroup methods, and fixed point
theorem. These methods are useful for fixing the noncompactness of operators caused by some specified given assumptions on
this paper. The results obtained here improve some known results. Finlay, two examples are presented for illustration of our
main results.

1. Introduction

In 1659, G.A. de L’Hospital and G.W. Leibniz presented
the concept of a fractional derivative for the first time.
Some mathematicians have recently made significant devel-
opments in this topic (see, e.g., [1–4]). Agarwal et al. [5]
presented the concept of the solution of a fractional differ-
ential equation with uncertainty. Two global existence con-
clusions for an initial value problem involving a class of
fractional differential equations were obtained by Băleanu
and Mustafa [6]. Recently, fractional calculus and its appli-
cations have been shown to be a valuable tool in a wide
range of scientific fields. In fact, there are numerous appli-
cations in viscoelasticity, electrochemistry, electromag-
netics, etc. (see, e.g., [7, 8]). Ma et al. [9] investigated
fractional impulsive neutral stochastic differential equations
via infinite delay to obtain existence of almost periodic
solutions. Krasnoselskii’s fixed point theorem, operator

semigroup, and fractional calculus were used in obtaining
the results.

In the past twenty years, Hilfer introduced a fractional
derivative named a generalized Riemann-Liouville deriva-
tive (the Hilfer derivative for short), which is the interpo-
lation of the Caputo derivative and the Riemann-Liouville
(RL for short) derivative [10, 11].

Recently, the study of fractional differential equations
with the Hilfer derivatives has received a considerable
amount of attention. Furati et al. [12] proved the nonexis-
tence of a global solution to the Cauchy problem with the
Hilfer fractional derivative and a polynomial nonlinearity.
In [13], Hilfer et al. constructed an operational calculus for
the Mikusinski type and applied it to solve linear fractional
differential equations with the Hilfer derivatives. In [14],
Furati et al. obtained existence results for an IVP for a class
of nonlinear Hilfer fractional differential equations. Abbas
et al. [15] presented the existence data dependence and
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Ulam stability of the solutions for some Hilfer fractional dif-
ferential inclusion. In [16], Zhang investigated IVPs for two
types of impulsive fractional differential equations with the
Hilfer derivatives.
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where ϱ0D
ς,κ
ϱ denotes the Hilfer derivative of order ς, 0 < ς

< 1, and type κ, 0 ≤ κ ≤ 1, and H
 ϱ0I

ð1−ςÞð1−κÞ
ϱ represents the

Hadamard fractional integral of order ð1 − ςÞð1 − κÞ. The
functions f and Φ are some appropriate continuous func-
tions. Metpattarahiran et al. [17] established the existence
of impulsive fractional differential equations with the Hilfer
derivative using sectorial operators.

Nonlocal fractional differential equations have recently
inspired many mathematicians and physicists [18]. On the
other hand, Byszewski [19–21] investigated abstract nonlo-
cal semilinear initial value problems for the first time. Phys-
ical models with nonlocal conditions have been considered
in the literature due to their significance and applications,
because they yield better results than those with initial con-
ditions (see, e.g., [22–25]). In [26], Fan investigated the exis-
tence for nondensely defined evolution equations with
nonlocal conditions; he assumed that the nonlocal item is
Lipschitz continuous or continuous. The approximate solu-
tions and fixed point theory techniques were used. In [27],
Fan and Li used the semigroup theory to investigate the exis-
tence of nonlocal impulsive semilinear differential equations.

The concept of mild solutions has recently been devel-
oped with the implementation of fixed point theorems in
the proof of the existence of solutions to differential equa-
tions in Banach spaces. The mild solution to a differential
equation is the fixed point of an associated compact operator
that is to be introduced on a Banach space [28]. To show the
compactness of the operator, some theorems and assump-
tions are used in the proof.

Recently, fixed point theory has been shown to be an
effective tool in nonlinear analysis. There is an extremely
rich literature of using the fixed point theory together with
some theories in investigating the existence of mild solutions
to linear and nonlinear fractional evolution differential
equations. The existence of mild solutions for a Hilfer frac-
tional evolution system is investigated in [29]. Sivasankar
and Udhayakumar [30] investigated the existence of neutral
stochastic Volterra integrodifferential inclusions with the
Hilfer derivative and with almost sectorial operators. Basic
fractional calculus theory, Bohnenblust-Karlin’s fixed point
theorem, and stochastic analysis were utilized. Sivasankar

et al. [31] utilized basic fractional calculus theory, semigroup
method, and M€onch fixed point theorem with the measure
of noncompactness to investigate the existence of fractional
stochastic differential systems with nonlocal conditions and
delay with almost sectorial operators involving the Hilfer
derivatives. In [32], Bedi et al. investigated the controllability
and stability of fractional evolution equations with the Hilfer
derivatives and the results obtained by means of propagation
family theory, noncompactness calculation methods, and fixed
point theory. Ravichandran et al. obtained results on controlla-
bility and the existence of a mild solution of the Hilfer frac-
tional derivative [33]. Zhou et al. [34] obtained results on
mild solutions for nonlocal Cauchy problems of fractional evo-
lution equations with the Riemann-Liouville fractional deriva-
tive. In [35], Wang and Zhang discussed the existence of
solutions to a nonlocal IVP for differential equations involving
the Hilfer derivative. Tuan et al. [36] established the existence
and uniqueness of a mild solution to a time-fractional semi-
linear differential equation with a final nonlocal condition.

Gui et al. [37] studied the existence and Hyers-Ulam sta-
bility of the almost periodic solution to quadratic mean
almost periodic nonlocal fractional differential equations
with impulse and fractional Brownian motion; the main
results were obtained by utilizing the semigroups of operator
method, M€onch fixed point theorem, and Hyers-Ulam stabil-
ity theory. Du et al. [38] proved the exact controllability results
for nonlocal fractional differential inclusions with the Hilfer
derivatives. In [39], Gu and Trujillo used the noncompact
measure method and Arzela-Ascoli theorem to investigate
the existence of a mild solution for the Hilfer fractional evolu-
tion equations. They obtained sufficient conditions to ensure
the existence of the mild solution to the following system:

Dς,κ
0+ν ϱð Þ = Aν ϱð Þ + f ϱ, ν ϱð Þð Þ, ϱ ∈ J́ = 0, bð �,

I 1−ςð Þ 1−κð Þ
0+ ν 0ð Þ = ν0,

8<
: ð2Þ

where Dς,κ
0+ notates the Hilfer fractional derivative of order

0 < ς < 1 type 0 ≤ κ ≤ 1, νð·Þ takes value in a Banach space
V , A is considered to be an infinitesimal generator of a
C0-semigroup being strongly continuous and of uniformly
bounded linear operator on Banach space V , and for J =
½0, b�, f : J ×V ⟶V is the given function satisfying some
assumptions, ν0 ∈V .

In the following system [40], Yang and Wang utilized
the basic properties of the Hilfer fractional calculus and fixed
point methods to obtain existence and uniqueness of mild
solutions for a class of the Hilfer evolution equations. The
nonlocal item is considered to be continuous and compact;
they verified two cases for the corresponding C0-semigroup,
compact and noncompact:

Dς,κ
0+ν ϱð Þ = Aν ϱð Þ + f ϱ, ν ϱð Þð Þ, ϱ ∈ J́ = 0, bð �,

I 1−ςð Þ 1−κð Þ
0+ ν 0ð Þ − h 0, ν 0ð Þð Þ½ � − g νð Þ = ν0,

8<
: ð3Þ

where the operator A is considered to be an infinitesimal gen-
erator, which generates an analytic semigroup of uniformly
bounded linear operator on a Banach space.
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In [41], Shu and Shi presented the correct form of mild
solutions to a linear fractional impulsive evolution equation.
Varun Bose and Udhayakumar [42] utilized the fractional
calculus theory, the semigroup of operator method, and
the Martelli fixed point theorem to investigate the existence
of a mild solution fractional neutral integrodifferential inclu-
sion with almost sectorial operator with the Hilfer derivative.
Varun Bose et al. studied the approximate controllability of
neutral Volterra integrodifferential inclusions via the Hilfer
fractional derivative and with almost sectorial operators.
The results were proven by making use of multivalued maps
and the Leray-Schauder fixed point theorem [43].

Inspired by the above discussion, we extend the study of
the existence of mild solutions for nonlocal Hilfer fractional
evolution problems. In this paper, no assumptions about the
compactness of a function or the Lipschitz continuity are
imposed on the nonlocal item and the nonlinear term,
respectively. However, we assume that the nonlocal item is
a continuous function, the nonlinear term is continuous,
and the associated semigroup is compact. Approximate
technique, the theory of semigroup, and fixed point theorem
are used to obtain our results. We can indicate that the
Schauder fixed point is used here because it yields only the
existence of a fixed point without its uniqueness and reliabil-
ity on the compactness of operators and can be used on infi-
nite Banach spaces. We study the following nonlocal Hilfer
fractional evolution problem:

Dς,κ
0+ν ϱð Þ = Aν ϱð Þ + f ϱ, ν ϱð Þð Þ, ϱ ∈ J́ = 0, bð �,

I 1−ςð Þ 1−κð Þ
0+ ν 0ð Þ = ν0 − g νð Þ,  

8<
: ð4Þ

where Dς,κ
0+ denotes the Hilfer fractional derivative of order ς,

0 < ς < 1, and type κ, 0 ≤ κ ≤ 1, the state νð·Þ has a value in a
Banach space V associated with a norm k·k, and A is consid-
ered to be an infinitesimal generator of a strongly C0 -semi-
group fQðϱÞgϱ≥0 of uniformly bounded linear operator on
Banach space V ; for J = ½0, b�, the f : J ×V ⟶V is the
given function that meets some assumptions which will be
stated in Section 2, ν0 ∈V , and g is the nonlocal item that
satisfies an assumption that will be specified later.

In this paper, we mainly use the approximate solutions,
the semigroup of operator method, and the fixed point theory
techniques to investigate the existence of mild solutions to the
nonlocal evolution (4). These methods are useful for fixing the
noncompactness of the operators. Therefore, we make no
assumptions such as compactness or Lipschitz continuity on
g. However, we only assume that g is regarded continuous.
We first study the existence of mild solutions for the corre-
sponding nonlocal approximate problem (5) of (4).

We now introduce the corresponding approximate prob-
lem of the nonlocal problem (4), as follows:

Dς,κ
0+ν ϱð Þ = Aν ϱð Þ + f ϱ, ν ϱð Þð Þ, ϱ ∈ J́ = 0, bð �,

I 1−ςð Þ 1−κð Þ
0+ ν 0ð Þ =Q

1
n

� �
ν0 − g νð Þ½ �, n ≥ 1,

8><
>: ð5Þ

where Dς,κ
0+, ς, κ, A, f , and g are specified in (4) and QðϱÞ is a

compact semigroup. We will prove some theorems and

lemmas utilizing some specified assumptions, the Schauder
fixed point theorem, and the Arzela-Ascoli theorem to get
the fixed points of (5). Some sufficient conditions will be
needed for proving the relatively compactness of mild solu-
tions. Consequently, by the approximate approach, (4) has
at least one mild solution on J́.

The structure of this paper is arranged as follows. In Section
2, some preliminaries such as notations, definitions, remarks,
and lemmas are recalled. Section 3 is reserved for our main
discussion about the existence of mild solutions for the non-
local evolution (4). In Section 4, we give two examples to
illustrate our results. Some conclusions are given in Section 5.

2. Preliminaries

In this section, firstly, the notations that we shall utilize in
this manuscript will be introduced. Following that, basic def-
initions such as the RL-fractional integral, RL-fractional
derivative, Caputo fractional derivative, and Hilfer fractional
derivative will be presented. In the end, essential theorems
supporting the paper will be given.

Let V be a Banach Space. We denote by CðJ ;V Þ as the
space of all continuous functions from J to V and CðJ́ ;
V Þ as the space of all continuous functions from J́ to V .
Let μ = κ + ς − κς, where 0 < ς < 1 and 0 ≤ κ ≤ 1, and then, 1
− μ = ð1 − ςÞð1 − κÞ. We define the space C1−μðJ ;V Þ and

the set B′r as follows: C1−μðJ ;V Þ = fν : ϱ1−μνðϱÞ ∈ CðJ ;
V Þg associated with the norm k·kμ, which is given by kνkμ
= sup fϱ1−μkνðϱÞk, ϱ ∈ J́, where ϱ1−μνðϱÞjϱ=0 = limϱ⟶0+

ϱ1−μνðϱÞ; one can easily see that C1−μðJ ;V Þ is a Banach

space. The subset B́r = fν ∈ C1−μðJ ;V Þ, kνkμ ≤ rg of the
space C1−μðJ ;V Þ is bounded, closed, and convex.

We now present the following definitions, which are
concerned with fractional derivative and fractional integral.

Definition 1 (see [1]). The RL-fractional integral via lower
limit a and of the order ϱ for a function f : ½a,+∞Þ⟶V

regarding that the right side is pointwise defined on ½a, +∞Þ
is given by

Iρa+ f ϱð Þ = 1
Γ ρð Þ

ðϱ
a
ϱ − sð Þρ−1 f sð Þds, ϱ > a, ρ > 0: ð6Þ

Definition 2 (see [4]). The RL-fractional derivative of order
m − 1 < ρ <m, m ∈ℤ+ for a function f : ½a,+∞Þ⟶V is
given by

RL
 D

ρ
a+ f ϱð Þ = 1

Γ m − ρð Þ
dm

dtm

ðϱ
a
ϱ − sð Þm−ϱ−1 f sð Þds, ϱ > a,m − 1 ≤ ρ <m:

ð7Þ

Definition 3 (see [40]). The Caputo fractional derivative of
order m − 1 < ρ <m, m ∈ℤ+ for a function f : ½a,+∞Þ⟶
V is introduce by

C
 D

ρ
a+ f ϱð Þ = 1

Γ ρð Þ
ðϱ
a
ϱ − sð Þρ−1 f mð Þ sð Þds, ϱ > a,m − 1 < ρ <m: ð8Þ
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Using the above definitions, we can introduce the Hilfer
fractional derivative. Differentiating fractional integrals and
interpolating the Caputo fractional derivative and the RL-
fractional derivative lead to the following definition.

Definition 4 (see [10]). The left-sided Hilfer fractional deriv-
ative of order 0 < ρ < 1 type 0 ≤ γ ≤ 1 for a function f ðϱÞ is
defined as

Dρ,γ
a+ f ϱð Þ = Iγ 1−ρð Þ

a+ D I 1−γð Þ 1−ρð Þ
a+ f

� �� �
ϱð Þ, ð9Þ

where D≔ d/dϱ:

Theorem 5 (Arzela-Ascoli’s theorem) [2]. Let H be a set of
functions in Banach space Cð½a, b� ;V Þ satisfying the
following:

(i) For any τ ∈ ½a, b�, fhðτÞ: h ∈Hg is relatively compact
in V

(ii) For any ε > 0, there exists a δ > 0, such that khðτÞ − h
ðτ′Þk < ε, for all h ∈H, and for any τ, τ′ ∈ ½a, b� implies
jτ − τ′j < δ. Thus, H is equicontinuous on ½a, b�

As a result, H is relatively compact.

Theorem 6 (equicontinuous sets of linear mappings) [44].
Let V and U be the two topological vector spaces. A set F
of linear maps of V into U is said to be equicontinuous if,
to every neighborhood of zero R in U, there is a neighborhood
of zero Q in V , such that, for all mappings q ∈ F.

t ∈Q implies q tð Þ ∈ R: ð10Þ

Theorem 7 (Schauder fixed point theorem) [45]. If H is is a
closed, bounded, and convex subset of a Banach space V , and
F : H ⟶H is completely continuous. Then, F has a fixed
point in H.

Theorem 5 and Theorem 7 are essential in proving of the
main results of this manuscript.

3. Main Results

This section is mainly focusing on investigating the main
results of the paper. To begin, some assumptions and
remarks will be presented. The definition of the mild solu-
tion of the nonlocal problem (4) will be introduced. How-
ever, to obtain such a result, we will present some
theorems and lemmas. Fixed point theorem and semigroups
method as well as the technique of approximation are
involved in the proof of our theorems. Finally, we will give
some sufficient conditions to guarantee the existence of mild
solutions of (4).

We consider the assumptions below, which are very use-
ful for the main discussion:

(HQ) The operator QðϱÞ is a C0-semigroup generated by
the infinitesimal operator A. QðϱÞ is compact for ϱ > 0, and

ðQðϱÞÞϱ≥0 is uniformly bounded; that is, there exists ~M > 1
such that supϱ∈½0,+∞ÞkQðϱÞk < ~M.

(HF) For any ϱ ∈ J, f ðϱ,Þ: V ⟶V is a continuous
function, and for each ν ∈V , f ð, νÞ: J′⟶V is a strongly
measurable function. Besides that, for p > 1, there exists a
function ψ ∈ LpðJ ;ℝ+Þ and a positive constant l such that

f ϱ, ν ϱð Þð Þk k ≤ ψ ϱð Þ + lϱ1−μ ν ϱð Þk k, ð11Þ

for each ϱ ∈ J and any ν ∈ C1−μðJ ;V Þ:
We also assume

Iς0+ψ ∈ C1−μ J ;ℝ+ð Þ,  lim
ϱ⟶0+

Iς0+ϱ
1−κð Þ 1−ςð Þψ ϱð Þ = 0: ð12Þ

(Hg) g : C1−μðJ ;V Þ⟶V is a continuous function

that maps B′r into a bounded set, and there is a λ = λðrÞ ∈
ð0, bÞ in a manner that gðνÞ = gðν′Þ for any ν, ν′ ∈B′r with
νðτÞ = ν′ðτÞ, τ ∈ ½δ, b�.

Before we propose the definition of mild solution to (4),
we first state the following lemmas.

Lemma 8. The nonlocal problem (4) is equivalent to the fol-
lowing integral equation:

ν ϱð Þ = ν0 − g νð Þ½ �
Γ κ 1 − ςð Þ + ςð Þ ϱ

μ−1 + 1
Γ ςð Þ

ðϱ
0
ϱ − sð Þς−1

Á Aν sð Þ + f s, ν sð Þð Þ½ �ds, ϱ ∈ J′:
ð13Þ

Proof. To avoid the repetition, we omit the proof because it is
contained in [14].

Lemma 9. If the given integral equation (13) holds, then we
obtain

ν ϱð Þ = Sς,κ ϱð Þ ν0 − g νð Þ½ � +
ðϱ
0
Tς ϱ − sð Þf s, ν sð Þð Þds, ϱ ∈ J′,

ð14Þ

where TςðϱÞ = ϱς−1PςðϱÞ, PςðϱÞ =
Ð∞
0 ςθMςðθÞQðϱςθÞdθ, and

Sς,κðϱÞ = Iκð1−ςÞ0+ TςðϱÞ:
The function MςðθÞ =∑∞

n=1ð−θÞn−1/ðn − 1ÞΓð1 − ρnÞ, 0
< ρ < 1, θ ∈ C, is the wright function, which satisfies the fol-
lowing equality:

Ð∞
0 θιMςðθÞdθ = Γð1 + ιÞ/Γð1 + ςιÞ for ι ≥ 0,

θ ≥ 0:

Proof. The proof can be given in a similar way to that in
Lemma 2.11 in [39]. So we omit it.

We now introduce mild solutions of the nonlocal prob-
lem (4) by the following definition.
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Definition 10. If a function ν ∈ C1−μðJ ;V Þ satisfies

ν ϱð Þ = Sς,κ ϱð Þ ν0 − g νð Þ½ � +
ðϱ
0
Tς ϱ − sð Þf s, ν sð Þð Þds, ϱ ∈ J′,

ð15Þ

where TςðϱÞ, PςðϱÞ, and Sς,κðϱÞ are notated in Lemma 9;
then, it is said to be a mild solution of (4).

Next, we recall some remarks from some cited papers
and present some lemmas to be utilized to prove Theorem
15 and the associated theorems and lemmas.

Remark 11 (see [40]). Under assumption (HQ), one can see
that PςðϱÞ is a continuous mapping in the uniform operator
for ϱ > 0.

Remark 12 (see [39]). By the assumption (HQ), we get kTς

ðϱÞνk ≤ ~Mϱς−1/ΓðςÞkνk, kSς,κðϱÞνk ≤ ~Mϱðκ−1Þð1−ςÞ/Γðκð1 − ς
Þ + ςÞkνk. In addition, TςðϱÞ and Sς,κðϱÞ are linear for any
ν ∈V and any fixed ϱ > 0.

Remark 13 (see [39]). By Remark 12 and (Hf), we have

lim
t⟶0+

ϱ 1−κð Þ 1−ςð ÞSς,κ ϱð Þν0 =
ν0

Γ κ 1 − ςð Þ + ςð Þ : ð16Þ

Remark 14 (see [40]). Under assumption (HQ), we have
fTςðϱÞgρ>0 and fSς,κðϱÞgϱ>0 that are continuous in the uni-

form operator. That means, for any ν ∈V and 0 < ϱ < s ≤ b,
we have

Tς ϱð Þν − Tς sð Þν

 

⟶ 0,

Sς,κ ϱð Þν − Sς,κ sð Þν

 

⟶ 0,
ð17Þ

as ϱ⟶ s:

Theorem 15. Suppose that (HQ)-(Hg) are fulfilled. The non-
local Hilfer evolution problem (4) thus has at least one mild
solution on J′ = ð0, b� given that

~M
2

Γ κ 1 − ςð Þ + ςð Þ sup
ν∈Br

′
ν0 − g νð Þk k +

~M
Γ ςð Þ

bκ ς−1ð Þ+1/q

q ς − 1ð Þ + 1½ �1/q
"

Â ψk kp +
~Mlr

Γ ς + 1ð Þ b
1+κ ς−1ð Þ

#
≤ r,

ð18Þ

where p > 1, q > 1, ð1/pÞ + ð1/qÞ = 1, and qðς − 1Þ + 1 > 0.

Now, we use the approximate technique to prove Theo-
rem 15. We consider the following corresponding approxi-
mate problem

Dς,κ
0+ν ϱð Þ = Aν ϱð Þ + f ϱ, ν tð Þð Þ, ϱ ∈ J′ = 0, bð �,

I 1−ςð Þ 1−κð Þ
0+ ν 0ð Þ =Q

1
n

� �
ν0 − g νð Þ½ �,  

8><
>:

ð19Þ

where n ≥ 1 and Dς,κ
0+ , ς, and κ are notated the same as of sys-

tem (4).

Lemma 16. If all the assumptions of Theorem 15 are fulfilled,
the nonlocal problem (19) then has at least one mild solution
νn ∈ C1−μðJ ;V Þ, where n ≥ 1.

Proof. Let us introduce an operator Gn : C1−μðJ ;V Þ⟶
C1−μðJ ;V Þ, n ≥ 1, as follows:

Gnνð Þ ϱð Þ = Sς,κ ϱð ÞQ 1
n

� �
ν0 − g νð Þ½ �

+
ðϱ
0
Tς ϱ − sð Þf s, ν sð Þð Þds, ϱ ∈ J′,

ð20Þ

Gnνð Þ ϱð Þ = Gn1νð Þ ϱð Þ + Gn2νð Þ ϱð Þ, ð21Þ
where

Gn1νð Þ ϱð Þ = Sς,κ ϱð ÞQ 1
n

� �
ν0 − g νð Þ½ �, ϱ ∈ J′,

Gn2νð Þ ϱð Þ =
ðϱ
0
Tς ϱ − sð Þf s, ν sð Þð Þds, ϱ ∈ J′:

ð22Þ

Gn is the mild solution of system (19).

Next, we will show that Gn has a fixed point by utilizing
Theorem 7. The proof contains the subsequent steps below.

Step 1. We prove that the operator Gn maps the set B′r into
itself. Recalling the conditions (HQ)-(Hg) and Hölder
inequality, for any ν ∈B′r , we have

Gnνk kμ = sup
ϱ∈J′

ρ1−μ Sς,κ tð ÞQ 1
n

� �
ν0 − g νð Þ½ � +

ðϱ
0
Tς ϱ − sð Þf s, ν sð Þð Þds












≤
~M

2

Γ κ 1 − ςð Þ + ςð Þ sup
ν∈Br

′
ν0 − g νð Þk k + sup

ϱ∈J′
ϱ1−μ

Á
ðϱ
0
ϱ − sð Þς−1Pς ϱ − sð Þf s, ν sð Þð Þds












≤
~M

2

Γ κ 1 − ςð Þ + ςð Þ sup
ν∈Br

′
ν0 − g νð Þk k +

~M
Γ ςð Þ sup

ρ∈J′
ϱ1−μ

·
ðϱ
0
ϱ − sð Þς−1 f s, ν sð Þð Þds
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≤
~M

2

Γ κ 1 − ςð Þ + ςð Þ sup
ν∈Br

′
ν0 − g νð Þk k

+
~M

Γ ςð Þ sup
ρ∈J′

ϱ1−μ
ðϱ
0
ϱ − sð Þς−1 ψ sð Þ + ls1−μ ν sð Þk kÀ Á

ds

≤
~M

2

Γ κ 1 − ςð Þ + ςð Þ sup
ν∈Br

′
ν0 − g νð Þk k +

~M
Γ ςð Þ sup

ρ∈J′
ρ1−μ

·
ðϱ
0
ϱ − sð Þς−1ψ sð Þds + l

ðϱ
0
ϱ − sð Þς−1s1−μ ν sð Þk kds

� �

≤
~M

2

Γ κ 1 − ςð Þ + ςð Þ sup
ν∈Br

′
ν0 − g νð Þk k +

~M
Γ ςð Þ sup

ρ∈J′
t1−μ

·
ðϱ
0
ϱ − sð Þq ς−1ð Þds

� �1/q
ψk kp +

~Ml
Γ ςð Þ b

1−μ

·
ðb
0
ϱ − sð Þς−1 sup

s∈J′
s1−μ ν sð Þk kÀ Á

ds

≤
~M

2

Γ κ 1 − ςð Þ + ςð Þ sup
ν∈Br

′
ν0 − g νð Þk k +

~M
Γ ςð Þ

"

·
bκ ς−1ð Þ+1/q

q ς − 1ð Þ + 1½ �1/q ψk kp +
~Mlr

Γ ς + 1ð Þ b
1+κ ς−1ð Þ� ≤ r:

ð23Þ

Hence, kGnνkμ ≤ r for any ν ∈Br′ ⊆ C1−μðJ ;V Þ. There-
fore, Gn is a bounded operator in C1−μðJ ;V Þ. Conse-
quently, the operator Gn is a self-mapping, that is,
Gn : B′r ⟶B′r .

Next, we verify the continuity of the operator Gn on B′r .

Step 2. The mapping Gn is continuous on B′r .

Gnν1 − Gnν2k kμ
≤ sup

ϱ∈J′
ϱ1−μ Sς,κ ϱð ÞQ 1

n

� �
ν0 − g ν1ð Þ½ � − Sς,κ ϱð ÞQ 1

n

� �




�

Â ν0 − g ν2ð Þ½ �




 +

ðϱ
0
Tς ϱ − sð Þf s, ν1 sð Þð Þds






−
ðϱ
0
Tς ϱ − sð Þf s, ν2 sð Þð Þds






�

≤ sup
ϱ∈J′

ϱ1−μ Sς,κ ϱð ÞQ 1
n

� �
g ν2ð Þ − g ν1ð Þ½ �










 + sup

ϱ∈J′
ϱ1−μ

Â
ðϱ
0
Tς ϱ − sð Þ f s, ν1 sð Þð Þ − f s, ν2 sð Þð Þ½ �ds












≤
~M

2

Γ κ 1 − ςð Þ + ςð Þ sup
ν∈Br

′
g ν2ð Þ − g ν1ð Þk k +

~M
Γ ςð Þ sup

ϱ∈J′
ϱ1−μ

Â
ðϱ
0
ϱ − sð Þς−1 f s, ν1 sð Þð Þ − f s, ν2 sð Þð Þk kds

≤
~M

2

Γ κ 1 − ςð Þ + ςð Þ sup
ν∈Br

′
g ν2ð Þ − g ν1ð Þk k +

~M
Γ ςð Þ

bκ ς−1ð Þ+1/q

q ς − 1ð Þ + 1½ �1/q

Â
ðb
0
f s, ν1 sð Þð Þ − f s, ν2 sð Þð Þk kpds

� �1/p
⟶ 0 as ν1 ⟶ ν2 inB′r,

ð24Þ

because g is continuous according to (Hg). Then, the first term
of the last inequality is continuous. By (Hf) and Lebesgue

dominated theorem, one can easily verify that the second term
is continuous. As a result, Gn is continuous on B′r.

Step 3. GnB′r is equicontinuous. The following two subsec-
tions are devoted to show that GnB′r is equicontinuous.

We prove that Gn1B′r is equicontinuous. For any ν ∈B′r,
ϱ1 = 0, 0 < ϱ2 ≤ b, by Remark 13, we have

ϱ
1−μ
2 Gn1νð Þ ϱ2ð Þ − ϱ

1−μ
1 Gn1νð Þ ϱ1ð Þ

���
ϱ1=0












≤ ϱ
1−μ
2 Sς,κ ϱ2ð ÞQ 1

n

� �
ν0 − g νð Þ½ �






−

1
Γ κ 1 − ςð Þð ÞQ

1
n

� �
ν0 − g νð Þ½ �





⟶ 0,

ð25Þ

since Qð1/nÞ is compact.
And for any ν ∈B′r , 0 < ϱ1 < ϱ2 ≤ b, we have

ϱ
1−μ
2 Gn1νð Þ ϱ2ð Þ − ϱ

1−μ
1 Gn1νð Þ ϱ1ð Þ




 



≤ ϱ

1−μ
2 Sς,κ ϱ2ð ÞQ 1

n

� �
ν0 − g νð Þ½ �






− ϱ

1−μ
1 Sς,κ ϱ1ð ÞQ 1

n

� �
ν0 − g νð Þ½ �






≤ ~M ϱ

1−μ
2 Sς,κ ϱ2ð Þ − ϱ

1−μ
1 Sς,κ ϱ1ð Þ




 


 ν0 − g νð Þk k⟶ 0,

ð26Þ

as ϱ2 ⟶ ϱ1, since ϱ1−μSς,κðϱÞ is uniformly continuous in
uniform topology by Remark 14.

Therefore, Gn1B′r is equicontinuous.
We prove that Gn2B′r is equicontinuous. For any ν ∈B′r,

ϱ1 = 0, 0 < ϱ2 ≤ b, we get

ϱ1−μ2 Gn2νð Þ ϱ2ð Þ − ϱ1−μ1 Gn2νð Þ ϱ1ð Þ
���
ϱ1=0












≤ ϱ
1−μ
2

ðϱ2
0
Tς ϱ2 − sð Þf s, ν sð Þð Þds












≤
~M

Γ ςð Þ
ϱ
κ ς−1ð Þ+1/q
2

q ς − 1ð Þ + 1½ �1/q
ψk kp +

~Mlr
Γ ς + 1ð Þ ϱ

1+κ ς−1ð Þ
2 r

⟶ 0, ϱ2 ⟶ 0:

ð27Þ

For any ν ∈B′r, 0 < ϱ1 < ϱ2 ≤ b, we have

ϱ
1−μ
2 Gn2νð Þ ϱ2ð Þ − ϱ

1−μ
1 Gn2νð Þ ϱ1ð Þ




 



≤ ϱ

1−μ
2

ðϱ2
0
Tς ϱ2 − sð Þf s, ν sð Þð Þds






− ϱ

1−μ
1

ðϱ1
0
Tς ϱ1 − sð Þf s, ν sð Þð Þds






≤ ϱ

1−μ
2

ðϱ2
ϱ1

ϱ2 − sð Þς−1Pς ϱ2 − sð Þf s, ν sð Þð Þds
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+
ðϱ1
0

ϱ
1−μ
2 ϱ2 − sð Þς−1 − ϱ

1−μ
1 ϱ1 − sð Þς−1

� �




× Pς ϱ2 − sð Þf s, ν sð Þð Þds





 +
ðϱ1
0
ϱ
1−μ
1 ϱ1 − sð Þς−1






× Pς ϱ2 − sð Þ − Pς ϱ1 − sð ÞÀ Á

f s, ν sð Þð Þds






≤ ϱ
1−μ
2

~M
Γ ςð Þ

ϱ2 − ϱ1ð Þ ς−1ð Þ+1/q

q ς − 1ð Þ + 1½ �1/q ψk kp + ϱ
1−μ
2

×
~Mlr

Γ ς + 1ð Þ ϱ2 − ϱ1ð Þς +
~M

Γ ςð Þ
×

ðϱ1
0

ϱ
1−μ
2 ϱ2 − sð Þς−1 − ϱ

1−μ
1 ϱ1 − sð Þς−1

� �q
ds

� �1/q

× ψk kp +
~Mlr
Γ ςð Þ

ðϱ1
0

ϱ
1−μ
2 ϱ2 − sð Þς−1 − ϱ

1−μ
1 ϱ1 − sð Þς−1

� �
ds

+
ðϱ1−τ
0

ϱ
1−μ
1 ϱ1 − sð Þς−1 Pς ϱ2 − sð Þ − Pς ϱ1 − sð ÞÀ Á

f s, ν sð Þð Þds











+

ðϱ1
ϱ1−τ

ϱ
1−μ
1 ϱ1 − sð Þς−1 Pς ϱ2 − sð Þ − Pς ϱ1 − sð ÞÀ Á

f s, ν sð Þð Þds













≤ ϱ

1−μ
2

~M
Γ ςð Þ

ϱ2 − ϱ1ð Þ ς−1ð Þ+1/q

q ς − 1ð Þ + 1½ �1/q
ψk kp + ϱ

1−μ
2

~Mlr
Γ ς + 1ð Þ

× ϱ2 − ϱ1ð Þς +
~M

Γ ςð Þ
ðϱ1
0
ϱ
1−μ
2 ϱ2 − sð Þq ς−1ð Þds

� �1/q
ψk kp

−
~M

Γ ςð Þ ϱ
1−μ
1

ðϱ1
0

ϱ1 − sð Þq ς−1ð Þds
� �1/q

ψk kp +
~Mlr
Γ ςð Þ

× ϱ
1−μ
2

ðϱ1
0

ϱ2 − sð Þ ς−1ð Þds − ϱ
1−μ
1

ðϱ1
0

ϱ1 − sð Þ ς−1ð Þds
� �

+
ðϱ1−τ
0

ϱ
1−μ
1 ϱ1 − sð Þς−1 Pς ϱ2 − sð Þ − Pς ϱ1 − sð ÞÀ Á

f s, ν sð Þð Þds











+

ðϱ1
ϱ1−τ

ϱ
1−μ
1 ϱ1 − sð Þς−1 Pς ϱ2 − sð Þ − Pς ϱ1 − sð ÞÀ Á

f s, ν sð Þð Þds













≤ ϱ

1−μ
2

~M
Γ ςð Þ

ϱ2 − ϱ1ð Þ ς−1ð Þ+1/q

q ς − 1ð Þ + 1½ �1/q
ψk kp + ϱ

1−μ
2

~Mlr
Γ ς + 1ð Þ ϱ2 − ϱ1ð Þς

+
~Mϱ

1−μ
2

ς − 1 + 1/qð Þð ÞΓ ςð Þ ϱ
q ς−1ð Þ+1
2 − ϱ2 − ϱ1ð Þq ς−1ð Þ+1

� �1/q
ψk kp

−
~M

Γ ςð Þ
ϱ
ς−μ+1/q
1

ς − 1 + 1/q

" #
ψk kp +

~Mlr
Γ ς + 1ð Þ

× ϱ
1−μ+ς
2 − ϱ

1−μ
2 ϱ2 − ϱ1ð Þς − ϱ

1−μ+ς
1

h i
+ ϱ

1−μð Þ
1

ς − 1 + 1/q
× ϱ

q ς−1ð Þ+1
1 − τq ς−1ð Þ+1

� �1/q
ψk kp sup

s∈ 0,ϱ1−τð Þ
Pς ϱ2 − sð Þ



− Pς ϱ1 − sð Þk + lrb1−μ

ς
ϱ
1−μ
1 ϱς1 − τςð Þ sup

s∈ 0,ϱ1−τð Þ
Pς ϱ2 − sð Þ



− Pς ϱ1 − sð Þk +
ðϱ1
ϱ1−τ

ϱ
1−μ
1 ϱ1 − sð Þς−1 Pς ϱ2 − sð Þ − Pς

À





× ϱ1 − sð ÞÞf s, ν sð Þð Þdsk⟶ 0,

ð28Þ

as ϱ2 ⟶ ϱ1 and τ⟶ 0. The above inequality tends to zero
regardless of ν ∈B′r. Therefore, Gn2B′r is equicontinuous.
As a result, GnB′r is equicontinuous.

Step 4. For any ϱ ∈ J′, we will prove that ZðϱÞ = fGnνðϱÞ,
ν ∈Br′g is relatively compact in V .

Recall equation (20) and TςðϱÞ = ϱς−1PςðϱÞ, PςðϱÞ =
Ð∞
0 ς

θMςðθÞQðϱςθÞdθ, and Sς,κðϱÞ = Iκð1−ςÞ0+ TςðϱÞ from Lemma 9,
and then, we have

Gnνð Þ ϱð Þ = 1
Γ κ 1 − ςð Þð Þ

ðϱ
0
ϱ − sð Þκ 1−ςð Þ−1sς−1

ð∞
0
ςθMς θð ÞQ

Á sςθð ÞQ 1
n

� �
ν0 − g νð Þ½ �dθds +

ðϱ
0

ð∞
0
ςθMς θð ÞQ

Á ϱ − sð Þςθð Þ ϱ − sð Þς−1 f s, ν sð Þð Þdθds:
ð29Þ

Then, ∀η ∈ ð0, ϱÞ and γ > 0; we define

Gn
η,γνð Þ ϱð Þ = 1

Γ κ 1 − ςð Þð Þ
ðϱ−η
0

ϱ − sð Þκ 1−ςð Þ−1sς−1
ð∞
γ

ςθMς

Á θð ÞQ sςθð ÞQ 1
n

� �
ν0 − g νð Þ½ �dθds

+
ðϱ−η
0

ð∞
γ

ςθMς θð ÞQ t − sð Þςθð Þ ϱ − sð Þ1−ς f

Á s, ν sð Þð Þdθds,
ð30Þ

from the compactness of QðηςθÞ and Qð1/nÞ, ðηςθÞ > 0; we
can see that ∀η ∈ ð0, ϱÞ and γ > 0, and the set Zη,γðϱÞ =
fðGn

η,γνÞðϱÞ, ν ∈Br′g is relatively compact in V . Then uti-
lizing the previous fact, we derive

Gnν ϱð Þ − Gn
η,γν ϱð Þk kμ

≤ sup
ϱ∈J′

ϱ1−μ
1

Γ κ 1 − ςð Þð Þ
ðϱ
0
ϱ − sð Þκ 1−ςð Þ−1sς−1






Â
ð∞
0
ςθMς θð ÞQ sςθð ÞQ 1

n

� �
ν0 − g νð Þ½ �dθds

+
ðϱ
0

ð∞
0
ςθMς θð ÞQ ϱ − sð Þςθð Þ ϱ − sð Þς−1 f s, ν sð Þð Þdθds

−
1

Γ κ 1 − ςð Þð Þ
ðϱ−η
0

ϱ − sð Þκ 1−ςð Þ−1sς−1
ð∞
γ

ςθMς θð ÞQ sςθð ÞQ

Â 1
n

� �
ν0 − g νð Þ½ �dθds −

ðϱ−η
0

ð∞
γ

ςθMς θð ÞQ ϱ − sð Þςθð Þ

Â ϱ − sð Þς−1 f s, ν sð Þð Þdθds






≤ sup
ρ∈J′

ϱ1−μ
1

Γ κ 1 − ςð Þð Þ
ðϱ
0
ϱ − sð Þκ 1−ςð Þ−1sς−1

ðγ
0
ςθMς θð ÞQ






Â sςθ + 1

n

� �
ν0 − g νð Þ½ �dθds + 1

Γ κ 1 − ςð Þð Þ
Â
ðϱ
0
ϱ − sð Þκ 1−ςð Þ−1sς−1

ð∞
γ

ςθMς θð ÞQ sςθ + 1
n

� �

Â ν0 − g νð Þ½ �dθds − 1
Γ κ 1 − ςð Þð Þ

ðϱ−η
0

ϱ − sð Þκ 1−ςð Þ−1sς−1
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Â
ð∞
γ

ςθMς θð ÞQ sςθ + 1
n

� �
ν0 − g νð Þ½ �dθds

+
ðϱ
0

ðγ
0
ςθMς θð ÞQ ϱ − sð Þςθð Þ ϱ − sð Þς−1 f s, ν sð Þð Þdθds

+
ðϱ
0

ð∞
γ

ςθMς θð ÞQ ϱ − sð Þςθð Þ ϱ − sð Þς−1 f s, ν sð Þð Þdθds

−
ðϱ−η
0

ð∞
γ

ςθMς θð ÞQ ϱ − sð Þςθð Þ ϱ − sð Þς−1 f s, ν sð Þð Þdθdsk

≤ sup
ϱ∈J′

ϱ1−μ
ς ~M

Γ κ 1 − ςð Þð Þ
ðϱ
0
ϱ − sð Þκ 1−ςð Þ−1sς−1






×
ðγ
0
θMς θð Þ ν0 − g νð Þ½ �dθds





 + sup
ϱ∈J′

ϱ1−μ
ς ~M

Γ κ 1 − ςð Þð Þ

×
ðϱ
ϱ−η

ϱ − sð Þκ 1−ςð Þ−1sς−1
ð∞
γ

θMς θð Þ ν0 − g νð Þ½ �dθds













+ sup

ϱ∈J′
ϱ1−μ ς

ðϱ
0

ðγ
0
θMς θð ÞQ ϱ − sð Þςθð Þ






× ϱ − sð Þς−1 f s, ν sð Þð Þdθds





 + sup
ϱ∈J′

ϱ1−μ ς
ðϱ
ϱ−η

ð∞
γ

θMς







× θð ÞQ ϱ − sð Þςθð Þ ϱ − sð Þς−1 f s, ν sð Þð Þdθds







≤

ς ~M
Γ κ 1 − ςð Þð Þ sup

ν∈Br
′

ν0 − g νð Þk kð ÞB κ 1 − ςð Þ, ςð Þ

×
ðγ
0
θMς θð Þdθ +

~M
Γ κ 1 − ςð Þð ÞΓ ςð Þ sup

ν∈Br
′

× ν0 − g νð Þk kð Þ sup
ϱ∈J′

ϱ1−μ
ðϱ
ϱ−η

ϱ − sð Þκ 1−ςð Þ−1sς−1ds +M

×
ς

q ς − 1ð Þ + 1ð Þ1/q b
κ ς−1ð Þ+1/q ψk kp + rlb1−κ 1−ςð Þ

" #

×
ðγ
0
θMς θð Þdθ + ~Mb1−μ

ης−1+1/q

q ς − 1ð Þ + 1ð Þ1/qΓ ςð Þ ψk kp
"

+ rl
Γ ς + 1ð Þ η

ς

#
≔ 〠

4

m=1
Km:

ð31Þ

In fact, one can see that the integrals Km ⟶ 0, ðm = 1,
2, 3, 4Þ as η, γ⟶ 0 + .

Thus, there exist relatively compact sets, which are arbi-
trarily close to the set ZðρÞ = fGnνðϱÞ, ν ∈Br′g; thus, by
Arzela-Ascoli theorem, we conclude that the set fGnνðϱÞ, ν
∈Br′g is also relatively compact in V .

We have proved that the mapping Gn : B′r ⟶B′r is
continuous and relatively compact. Consequently, by utiliz-
ing Theorem 7, we conclude that the operator Gn has a fixed
point in B′r , which is said to be the mild solution of the
nonlocal problem (19). Hence, the proof of Lemma 16 is
completed.

We now construct the solution set:

B = νn ∈ C1−μ J ;Vð Þ: νn =Gnνn, n ≥ 1
È É

: ð32Þ

Next, we will give some lemmas to prove that the solu-
tion set B is precompact in C1−μðJ ;V Þ.

Lemma 17. For each ϱ ∈ J′, BðϱÞ is relatively compact and B
is an equicontinuous set on J′.

Proof. We first show that for each ϱ ∈ J′, BðϱÞ is relatively
compact. Let ϱ ∈ J′, ε > 0, and νn ∈ B. By semigroup prop-
erty and condition (HQ) and the definition of mild solution
for (5), there exists h ∈ ð0, ϱÞ such that

νn ϱð Þ −Q hð Þνn ϱ − hð Þk k
≤ ϱ1−μ Sς,κ ϱð ÞQ 1

n

� �
ν0 − g νnð Þ½ � − Sς,κ ϱ − hð ÞQ 1

n

� �
Q hð Þ






Â ν0 − g νnð Þ½ �





 + ϱ1−μ
ðρ
0
Tς ϱ − sð Þf s, νn sð Þð Þds






−
ðϱ−h
0

Q hð ÞTς ϱ − h − sð Þf s, νn sð Þð Þds






≤ ϱ1−μ Sς,κ ϱð ÞQ 1
n

� �
ν0 − g νnð Þ½ � − Sς,κ ϱð ÞQ 1

n

� �
Q hð Þ






Â ν0 − g νnð Þ½ �





 + ϱ1−μ Sς,κ ϱð ÞQ 1
n

� �
Q hð Þ ν0 − g νnð Þ½ �






− Sς,κ ϱ − hð ÞQ 1

n

� �
Q hð Þ ν0 − g νnð Þ½ �





 + ϱ1−μ

Â
ðϱ−h
0

Tς ϱ − sð Þ −Q hð ÞTς ϱ − h − sð ÞÀ Á
f s, νn sð Þð Þds












+ ϱ1−μ
ðϱ
ϱ−h

Tς ϱ − sð Þ − Tς ϱ − sð ÞÀ Á
f s, νn sð Þð Þds












≤ ~Mϱ1−μ Sς,κ ϱð Þ − Sς,κ ϱð ÞQ hð Þ

 

 ν0 − g νnð Þk k + ~Mϱ1−μ

Â Sς,κ ϱð ÞQ hð Þ − Sς,κ ϱ − hð ÞQ hð Þ

 

 ν0 − g νnð Þk k + ϱ1−μ

Â
ðϱ−h
0

Tς ϱ − sð Þ −Q hð ÞTς ϱ − h − sð ÞÁ

 

qds� �1/q
ψk kp

+ lrϱ2 1−μð Þ
ðϱ−h
0

Tς ϱ − sð Þ −Q hð ÞTς ϱ − h − sð ÞÁ

 

ds + ϱ1−μ

Â
ðϱ
ϱ−h

Tς ϱ − sð Þ − Tς ϱ − sð ÞÀ Á
f s, νn sð Þð Þds










 ≤ ε:

ð33Þ

We combine the aforementioned inequality with the
compactness of QðhÞ in the uniform topology for h ∈ ð0, ϱÞ
and uniform continuity of TςðϱÞ in the uniform topology
for ϱ > 0. Therefore, BðϱÞ is relatively compact.

Then, we prove that B is equicontinuous on J′. The
argument of the proof is much similar to the proof in
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Step 3. Now, for 0 ≤ ϱ1 < ϱ2 ≤ b, we proceed the proof as
follows:

ϱ1−μ2 νn ϱ2ð Þ − ϱ1−μ1 νn ϱ1ð Þ



 




≤ ϱ
1−μ
2 Sς,κ ϱ2ð ÞQ 1

n

� �
ν0 − g νnð Þ½ � − ϱ

1−μ
1 Sς,κ ϱ1ð ÞQ 1

n

� �




Â ν0 − g νnð Þ½ �





 +
ðϱ2
0
ϱ1−μ2 Tς ϱ2 − sð Þf s, νn tð Þð Þds






−
ðϱ1
0
ϱ1−μ1 Tς ϱ1 − sð Þf s, νn ϱð Þð Þds






≤ ϱ1−μ2 Sς,κ ϱ2ð Þ − ϱ1−μ1 Sς,κ ϱ1ð Þ

h i
Q

1
n

� �
ν0 − g νnð Þ½ �












+ ϱ1−μ2

ðϱ2
ϱ1

Tς ϱ2 − sð Þf s, νn sð Þð Þds







+
ðϱ1
0

ϱ1−μ2 Tς ϱ2 − sð Þ − ϱ1−μ1 Tς ϱ1 − sð Þ
� �

f s, νn sð Þð Þds






≤ ϱ1−μ2 Sς,κ ϱ2ð Þ − ϱ1−μ1 Sς,κ ϱ1ð Þ
h i

Q
1
n

� �
ν0 − g νnð Þ½ �












+ ϱ1−μ2
~M

Γ ςð Þ
ϱ2 − ϱ1ð Þ ς−1ð Þ+1/q

q ς − 1ð Þ + 1½ �1/q
ψk kp + ϱ1−μ2

~Mlr
Γ ς + 1ð Þ ϱ2 − ϱ1ð Þς

+
~M

Γ ςð Þ
ðϱ1
0

ϱ1−μ2 ϱ2 − sð Þς−1 − ϱ1−μ1 ϱ1 − sð Þς−1
� �q

ds
� �1/q

ψk kp

+
~Mlr
Γ ςð Þ

ðϱ1
0

ϱ
1−μ
2 ϱ2 − sð Þς−1 − ϱ

1−μ
1 ϱ1 − sð Þς−1

� �
ds

+
ðϱ1−τ
0

ϱ1−μ1 ϱ1 − sð Þς−1 Pς ϱ2 − sð Þ − Pς ϱ1 − sð ÞÀ Á
f s, νn sð Þð Þds












+
ðϱ1
ϱ1−τ

ϱ1−μ1 ϱ1 − sð Þς−1 Pς ϱ2 − sð Þ − Pς ϱ1 − sð ÞÀ Á
f s, νn sð Þð Þds














≤ ϱ1−μ2 Sς,κ ϱ2ð Þ − ϱ1−μ1 Sς,κ ϱ1ð Þ
h i

Q
1
n

� �
ν0 − g νnð Þ½ �










 + ϱ1−μ2

Â
~M

Γ ςð Þ
ϱ2 − ϱ1ð Þ ς−1ð Þ+1/q

q ς − 1ð Þ + 1½ �1/q
ψk kp + ϱ

1−μ
2

~Mlr
Γ ς + 1ð Þ ϱ2 − ϱ1ð Þς

+
~Mϱ1−μ2

ς − 1 + 1/qð ÞΓ ςð Þ ϱ2 − ϱ1ð Þq ς−1ð Þ+1 − ϱ
q ς−1ð Þ+1
2

h i1/q
ψk kp

"

−
~Mϱς−μ+1/q1

ς − 1 + 1/qð Þð ÞΓ ςð Þ ψk kp +
~Mlr

Γ ς + 1ð Þ ϱ1−μ+ς2 − ϱ1−μ2 ϱ2 − ϱ1ð Þς
� �

−
~Mlr
ς + 1ð Þ ϱ

1−μ+ς
1 + ρ1−μ1

ς − 1 + 1/q ϱ
q ς−1ð Þ+1
1 − τq ς−1ð Þ+1

� �1/q

Â ψk kp sup
s∈ 0,ϱ1−τð Þ

Pς ϱ2 − sð Þ − Pς ϱ1 − sð Þ

 

 + lrb1−μ

ς
ϱ1−μ1

Â ϱς1 − τςð Þ sup
s∈ 0,ϱ1−τð Þ

Pς ϱ2 − sð Þ − Pς ϱ1 − sð Þ

 


+

ðϱ1
ϱ1−τ

ϱ1−μ1 ϱ1 − sð Þς−1 Pς ϱ2 − sð Þ − Pς ϱ1 − sð ÞÀ Á
f s, νn sð Þð Þds












≔ 〠

7

ι=0
~Iι:

ð34Þ

We can easily see that ~I1 ⟶ 0 independently of νn
∈B′r as ϱ2 ⟶ ϱ1, and ~I7, ~I7 ⟶ 0 independently of νn
∈B′r as τ⟶ 0, ϱ2 ⟶ ϱ1. Since the uniform continuity
of ϱ1−μSς,κðϱÞ, then we obtain that ð~I ι, ι = 2, 3, 4, 5, 6Þ tends
to zero as ϱ2 ⟶ ϱ1. Therefore, BðϱÞ is equicontinuous
for ϱ ∈ ½0, b�.

Lemma 18. B is relatively compact in C1−μðJ ;V Þ.

Proof.

�νn ϱð Þ =
νn ϱð Þ, ϱ ∈ δ, b½ �,
νn δð Þ, ϱ ∈ 0, δ½ �:

(
ð35Þ

By the condition (Hg), gðνnÞ = gð�νnÞ. Simultaneously,
by utilizing Lemma 17 and without loss of generality, we
may assume �νn ⟶ ~ν ∈ C1−μðJ ;V Þ. Thus, by the continu-
ity of QðϱÞ and g, we get

Sς,κ ϱð ÞQ 1
n

� �
ν0 − g νnð Þ½ � − Sς,κ ϱð ÞQ 1

n

� �
ν0 − g ~νð Þ½ �












≤ Sς,κ ϱð ÞQ 1
n

� �
ν0 − g �νnð Þ½ � − Sς,κ ϱð ÞQ 1

n

� �
ν0 − g ~νð Þ½ �












⟶ 0,
ð36Þ

as n⟶ +∞; i.e., Bð0Þ is relatively compact.

Then again, similar to the proof of Lemma 17, we obtain
that the set B ∈ C1−μðJ ;V Þ is equicontinuous at ϱ = 0. The
proof is completed.

Since Lemma 17 and Lemma 18 are proved. Then, the
set B is precompact in C1−μðJ ;V Þ. Without loss of general-
ity, we may suppose that νn ⟶ ν∗ ∈ C1−μðJ ;V Þ as n⟶
+∞. Recall the definition of mild solution for (19), which
can be formulated similarly with the mild solutions of (4)
as follows:

νn ϱð Þ = Sς,κ ϱð ÞQ 1
n

� �
ν0 − g νð Þ½ � +

ðϱ
0
Tς ϱ − sð Þf s, ν sð Þð Þds,

ð37Þ

for ϱ ∈ J. Taking the limit to the above equation, that is, n
⟶ +∞, we get

ν∗ ϱð Þ = Sς,κ ϱð Þ ν0 − g ν∗ð Þ½ � +
ðϱ
0
Tς ϱ − sð Þf s, ν∗ sð Þð Þds, ð38Þ

for ϱ ∈ J. Thus, Theorem 15 is proved, implying that ν∗ is
the mild solution of the nonlocal evolution problem (4).

4. Applications

This section is mainly concerned with the applications of
our results. Nonlocal conditions are well known for their
precision and effectiveness in physics and engineering sci-
ence models. Now, if real-life phenomenon arises in physics
or anywhere in which can be formulated same as (4), then
our results ensure that there exists a mild solution to the sys-
tem. We apply our results to the following examples.
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Example 1. We apply Theorem 15 on the following nonlocal
problem with Hilfer fractional derivative:

Dς,κ
0+y ϱ, ξð Þ = ∂2xy ϱ, ξð Þ +Φ ϱ, y ϱ, ξð Þð Þ, ϱ ∈ J′ = 0, 1ð �, ξ ∈Ω = 0, π½ �,

y ϱ, 0ð Þ = y ϱ, πð Þ = 0,

I 1−ςð Þ 1−κð Þ
0+ y 0, ξð Þ = y0 vð Þ − Ξ y 0, ξð Þð Þ,

8>><
>>:

ð39Þ

where Dς,κ
0+ , ς, and κ are specified in (4). We assume V = L2

ð½0, π� ;ℝÞ is a Banach space, y0ðξÞ ∈ X, and A is character-
ized by Au = u′′, such that A : DðAÞ ⊂ L2ð½0, π� ;ℝÞ⟶ L2

ð½0, π� ;ℝÞ with the domain DðAÞ presented by

D Að Þ =
n
u ∈V : u and u′ are absolutely continuous, u″ ∈V , u 0ð Þ

= 0 = u πð Þ
o
:

ð40Þ

Thus, A generates a compact semigroup fQðϱÞgϱ≥0,
which is strongly continuous. We now can reformulate
(39) similar to (4) as follows:

Dς,κ
0+ν ϱð Þ = Aν ϱð Þ + f ϱ, ν ϱð Þð Þ, ϱ ∈ J′ = 0, 1ð �,

I 1−ςð Þ 1−κð Þ
0+ ν 0ð Þ = ν0 − g νð Þ,  

(
ð41Þ

where νðϱÞ = yðϱ, ξÞ, ϱ ∈ ð0, 1�, ξ ∈Ω. The continuous
function f : J′ ×V ⟶V is given by

f ϱ, ν ϱð Þð Þ =Φ ϱ, y ϱ, ξð Þð Þ: ð42Þ

According to the condition (Hf), an integrable func-
tion ψ ∈ LpðJ ;ℝ+Þ and a positive constant l exist such
that kΦðϱ, yðϱ, ξÞÞk = ψðϱÞ + lϱ1−μkνðϱÞk. The operator g
: C1−μðJ ;V Þ⟶V is given by gðνÞ = Ξðyðϱ, ξÞÞ. By the

condition (Hg), we have g maps B′r ∈ C1−μðJ ;V Þ into
itself. Therefore, f and g satisfy the conditions (HQ)-
(Hg), and then,

"
~M

2

Γ κ 1 − ςð Þ + ςð Þ sup
ν∈Br

′
ν0 − g νð Þk k +

~M
Γ ςð Þ

1
q ς − 1ð Þ + 1½ �1/q

Â ψk kp +
~Mlr

Γ ς + 1ð Þ

#
≤ r

ð43Þ

holds. Thus, by Theorem 15, the nonlocal evolution equa-
tion (39) has at least one mild solution.

Example 2. This example focuses on the study of the
existence of a mild solution for the nonlocal model with
nonlocal conditions associated with electrostatic Micro-

Electro-Mechanical-Systems control with the Hilfer deriva-
tive. Let Db = ð0, b� ×Ω.

Dς,κ
0+z ϱ, hð Þ = Δz ϱ, hð Þ + λ

1 − zð Þ2 1 + β Ωj jð Þ2
inDb,

z = 0 in 0, bð � × ∂Ω,

I 1−ςð Þ 1−κð Þ
0+ z 0, hð Þ = z0 hð Þ −Π zð Þ in �Ω:

8>>>><
>>>>:

ð44Þ

The function z stands for the deformation of an elastic
membrane which is part of Micro-Electro-Mechanical-Sys-
tems device, where Δ is a Laplace operator, jΩj is one-
dimensional Lebesgue measure of Ω, h ∈Ω, β is a
constant, and λ is a positive integer. Let V = LðΩ ;ℝÞ be
a Banach space; then, z0ðhÞ ∈V . The operator A is defined
by Aρ = ρ′ such that A : DðAÞ ⊂ LðΩ ;ℝÞ⟶ LðΩ ;ℝÞ
with the following domain:

D Að Þ =
n
ρ ∈V : ρ, ρ′ are absolutely continuous, ρ′ ∈V , ρ hð Þ

= 0when h ∈Ω
o
:

ð45Þ

Then, A generates compact semigroup fQðϱÞgϱ≥0 which
is a strongly continuous. We now compare (44) with (4); we
get νðϱÞ = zðϱ, hÞ, ϱ ∈ ð0, b�, h ∈Ω. The continuous function
f : J′ ×V ⟶V is defined by f ðϱ, νðϱÞÞ = λ/ðð1 − zÞ2
ð1 + βjΩjÞ2Þ. It follows from the condition (Hf); an integra-
ble function ψ ∈ LpðJ ;ℝ+Þ and a positive constant l exist
such that kλ/ðð1 − zÞ2ð1 + βjΩjÞ2Þk = ψðϱÞ + lϱ1−μkνðϱÞk.
The operator g : C1−μðJ ;V Þ⟶V is represented by gðνÞ
=ΠðzÞ. By the condition (Hg), one can see that g maps B′r
∈ C1−μðJ ;V Þ into itself. Therefore, f and g satisfy the condi-
tions (HQ)-(Hg), and then,

"
~M

2

Γ κ 1 − ςð Þ + ςð Þ sup
ν∈Br

′
ν0 − g νð Þk k +

~M
Γ ςð Þ

1
q ς − 1ð Þ + 1½ �1/q

Â ψk kp +
~Mlr

Γ ς + 1ð Þ

#
≤ r

ð46Þ

holds. The nonlocal evolution equation (44) then has at least
one mild solution, according to Theorem 15.

5. Conclusion

In this paper, we have discussed the existence of mild solu-
tions for nonlocal Hilfer evolution equations of the type
(4). We assumed that the nonlocal item g is a continuous
function with no assumptions such as the compactness or
Lipschitz continuity utilized. Moreover, the nonlinear term
is continuous with no Lipschitz continuity used, and the
associated C0-semigroup is compact. We obtained our
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results by utilizing the approximate technique, the semi-
group methods, and the fixed point theorem. Furthermore,
some sufficient conditions to ensure the existence of mild
solutions are obtained. Finally, a theoretical and real-life
example is given to illustrate our results. It is of great interest
for future research. Using the proposed methods of the
paper, one can study the existence and Hyers-Ulam stability
of mild solutions for nonlocal differential equations with
impulse and fractional Brownian motion in the sense of
the Caputo fractional derivative or the Hilfer derivative.
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