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The fractional-stochastic Radhakrishnan-Kundu-Lakshmanan equation (FSRKLE) is considered here. To attain new hyperbolic,
elliptic, rational, and trigonometric stochastic-fractional solutions, we use two various methods such as the sine-cosine and the
Jacobi elliptic function methods. The solutions acquired are important in understanding some interesting physical phenomena
due to the significance of the Radhakrishnan-Kundu-Lakshmanan equation in designing the propagation of solitons through
an optical fiber. Furthermore, we graph some of the obtained solutions in 3D to display the influence of fractional derivative
and multiplicative noise on these solutions. Finally, we show that when the order of fractional derivative decreases, the surface
shrinks, while the multiplicative noise stabilizes the solutions of FSRKLE a round zero.

1. Introduction

Partial differential equations (PDEs) are found in several
areas of applied science, including quantum mechanics,
plasma physics, nonlinear optics, surface of water waves,
hydrodynamics, molecular biology, fluid dynamics, elastic
media, and biology. Obtaining solutions of PDEs is crucial
for understanding physical phenomena. Therefore, many
effective methods, including exp-function method [1], auxil-
iary equation [2], Darboux transformation [3], sine-cosine
[4], Jacobi elliptic function [5], exp ð−ϕðςÞÞ-expansion [6],
sine-Gordon expansion [7], ðG′/GÞ-expansion [8–10], gen-
eralized Kudryashov [11], perturbation [12–14], extended
trial equation [15, 16], Jacobi elliptic function [17, 18],
Riccati equation [19], tanh-coth [20], homotopy perturbation
[21], modified decomposition [22], and F-expansion [23],
have been constructed to attain exact solutions of PDEs.

Researchers and scientists have focused their attention
over the last two decades on fractional differential equations
(FDEs) that have been found to be more precise than classi-
cal differential equations in explaining complex physical

phenomena in the real life. The idea of fractional derivative
has been used to define various phenomena including fluid
dynamics porous medium, signal processing, viscoelastic
materials, ocean wave, electromagnetism, photonic, chaotic
systems, wave propagation, optical fiber communication,
plasma physics, and nuclear physics. Recently, Atangana
and Goufo [24] have suggested the new conformable frac-
tional derivative called beta-derivative. From this point, let
us define the Atangana conformable derivative (ACD) for
the function ψ : ð0,∞Þ⟶ℝ of order β ∈ ð0, 1� as follows:

Dβ
xψ xð Þ = lim

ε⟶0

ψ x + ε x + 1/Γ βð Þð Þð Þ1−β
� �

− ψ xð Þ
ε

: ð1Þ

The ACD satisfies the following properties for any con-
stant a and b: (1) Dβ

x ½aφðxÞ + bψðxÞ� = aDβ
xφðxÞ + bDβ

xψðxÞ,
(2) Dβ

x ½a� = 0, (3) Dβ
xψðθÞ = ðx + ð1/ΓðβÞÞÞ1−βdψ/dx, (4) If

θ = a/βðx + ð1/ΓðβÞÞÞβ, then Dβ
xψðθÞ = adψ/dθ.

Stochastic partial differential equations (SPDEs), on the
other hand, have been widely addressed as theoretical
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equations for spatial-temporal physical, chemical, and
biological systems related to random perturbations. The
significance of involving stochastic impacts in complex sys-
tem modeling has been emphasized. For example, there is
gaining awareness in using SPDEs to mathematically model
complex phenomena in information systems, condensed
matter physics, biology, climate systems, electrical and
mechanical engineering, materials sciences, and finance.

It is worth noting that two forms widely utilized for sto-
chastic integral are Itô and Stratonovich [25]. Modeling
problems primarily determine which form is acceptable;
however, once that form is selected, an equivalent equation
of the other form can be produced using the same solutions.
As a result, the following relationship can be utilized to
switch between Itô (written as

Ð t
0ϕdW) and Stratonovich

(written as
Ð t
0ϕ ∘ dW):

ðt
0
σϕ sð ÞdW sð Þ =

ðt
0
σϕ sð Þ ∘ dW sð Þ − σ2

2

ðt
0
ϕ sð Þds, ð2Þ

where WðtÞ is a Brownian motion (BM).
To satisfy a higher degree of quality agreement, the fol-

lowing stochastic Radhakrishnan-Kundu-Lakshmanan
equation (FSRKLE) [26–28] is considered:

idφ + γ1D
β
xxφ − iγ2D

β
xφ + γ3 φj j2φ − iγ4φD

β
x φj j2À Áh

−−iγ5D
β
x φj j2φÀ Á

+ iγ6D
β
xxxφ

i
dt + iσφ ∘ dW = 0,

ð3Þ

where φ ∈ℂ, γk for k = 1, 2, 3, 4, 5, 6 are constants and σ is
the noise strength and φ ∘ dW is multiplicative Brownian
motion in the Stratonovich sense. Recently, many investiga-
tors have created exact solutions of FSRKLE (3), with β = 0
and σ = 0, using different methods such as extended simple
equation method [29], first integral method [30], sine-
cosine method [31], Lie group analysis [32], and trial equa-
tion method [33].

The motivation of this article is to attain the exact solu-
tions for FSRKLE (3). We use two separate approaches, the
sine-cosine and the Jacobi elliptic function methods, to
provide a wide range of solutions, including hyperbolic, trig-
onometric, rational, and elliptic functions. The acquired
solutions are helpful for understanding several fascinating
scientific events because of the significance of the RKL in
describing the propagation of solitons through an optical
fiber. Also, by creating 3D representations of the obtained
FSRKLE (3) solutions, we examine the effect of BM on
these solutions.

The article is in the following format: in Section 2, we
determine the wave equation of the FSRKLE (3) by applying
a suitable wave transformation. To develop the analytical
solutions for the FSRKLE in Section 3, we use two different
approaches (3). In Section 4, the impact of the BM on the
solutions obtained is examined. The final section of the
document is the conclusion.

2. Wave Equation for FSRKLE

To obtain the wave equation of the FSRKLE (3), the follow-
ing transformation is utilized:

φ x, tð Þ = ψ ζð Þe iq x,tð Þ−σW tð Þ−σ2tð Þ,

ζ = 1
β

x + 1
Γ βð Þ

� �β

− νt,

q x, tð Þ = −
k
β

x + 1
Γ βð Þ

� �β

+ ωt,

ð4Þ

where the function ψ is deterministic and ν,k, and ω are
unknown constants. Putting Equation (4) into Equation (3)
and utilizing

dφ = −νψ′ + iωψ + 1
2 σ

2ψ − σ2ψ

� �
dt − σψdW

� �
e iq x,tð Þ−σW tð Þ−σ2t½ �,

= −νψ′ + iωψ
� �

dt − σψ ∘ dW
h i

e iq x,tð Þ−σW tð Þ−σ2tð Þ,
ð5Þ

where ð1/2Þσ2ψ is the Itô correction term, and

Dβ
xφ = ψ′ − ikψ

� �
e iq x,tð Þ−σW tð Þ−σ2tð Þ,

Dβ
xxφ = ψ′′ − 2ikψ′ − k2ψ

h i
e iq x,tð Þ−σW tð Þ−σ2tð Þ,

Dβ
xxxφ = ψ′′′ − 3ikψ′′ − 3k2ψ′ + ik3ψ

h i
e iq x,tð Þ−σW tð Þ−σ2tð Þ

φDβ
x φj j2À Á

= 2ψ2ψ′e iq x,tð Þ−3σW tð Þ−3σ2tð Þ,

Dβ
x φj j2φÀ Á

= 3ψ2ψ′ − ikψ3
� �

e iq x,tð Þ−3σW tð Þ−3σ2tð Þ,
ð6Þ

we get for imaginary part

γ6k
3ψ′′′ − 3γ6k2 + γ2 + 2kγ1 + ν

À Á
ψ′

− 3γ5 + 2γ4ð Þψ2ψ′e −2σW tð Þ−2σ2tð Þ = 0,
ð7Þ

and for real part

γ1 + 3kγ6ð Þψ′′ − k2γ1 + kγ2 − k3γ6
À Á

ψ

+ γ3 − kγ5ð Þψ3e −2σW tð Þ−2σ2tð Þ = 0:
ð8Þ

Taking expectation Eð·Þ on both sides for Equations (7)
and (8) and using

E eσW tð Þ
� �

= e σ2/2ð Þt , ð9Þ
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we have

γ6k
3ψ′′′ − 3γ6k2 + γ2 + 2kγ1 + ν

À Á
ψ′ − 3γ5 + 2γ4ð Þψ2ψ′ = 0,

ð10Þ

γ1 + 3kγ6ð Þψ′′ − ω + k2γ1 + kγ2 + k3γ6
À Á

ψ − kγ5 − γ3ð Þψ3 = 0:
ð11Þ

Integrating Equation (10), we get

γ6k
3ψ′′ − 3γ6k2 + γ2 + 2kγ1 + ν

À Á
ψ − γ5 +

2
3 γ4

� �
ψ3 = 0:

ð12Þ

We obtain the next constraint conditions where the
same function ψ achieves both Equations (11) and (12):

γ1 + 3kγ6
γ6

= ω + k2γ1 + kγ2 + k3γ6
3γ6k2 + γ2 + 2kγ1 + ν

= 3 kγ5 − γ3ð Þ
3γ5 + 2γ4

, ð13Þ

whenever

γ3 = −
3γ5γ1 + γ1γ4 + 6kγ6γ5 + 3kγ6γ4

3γ6
, ð14Þ

ω = 8k3γ26 + 8k2γ1γ6 + 2kγ21 + 2kγ2γ6 + γ1γ2 + ν 3kγ6 + γ1ð Þ
γ6

:

ð15Þ
Plugging Equation (14) into Equation (11), we have the

wave equation as follows:

ψ′′ − ℏ1ψ
3 − ℏ2ψ = 0, ð16Þ

where

ℏ1 =
3γ5γ1 + γ1γ4 + 9kγ6γ5 + 3kγ6γ4

3γ6 γ1 + 3kγ6ð Þ , ð17Þ

ℏ2 =
9k3γ26 + 9k2γ1γ6 + 2kγ21 + 3kγ2γ6 + γ1γ2 + ν 3kγ6 + γ1ð Þ

γ6 γ1 + 3kγ6ð Þ :

ð18Þ
3. The Exact Solutions of the FSRKLE

We employ two various methods such as the Jacobi elliptic
function [18] and sine-cosine [4], to determine the exact
solutions to Equation (16). As a consequence, we can obtain
the solutions of the FSRKLE (3).

3.1. Jacobi Elliptic Function Method. We suppose the solu-
tions of Equation (16) has the type

ψ ζð Þ = a + bsn θζð Þ, ð19Þ

where snðθζÞ = snðθζ,mÞ, for 0 <m < 1, is Jacobi elliptic sine
function and a, b, and θ are undefined constants. Differenti-

ate Equation (19) twice, we get

ψ′′ ζð Þ = − m2 + 1
À Á

bθ2sn θζð Þ + 2m2bθ2sn3 θζð Þ: ð20Þ

Putting Equations (19) and (20) into Equation (16), we
obtain

2m2bθ2 − ℏ1b
3À Á
sn3 θζð Þ − 3ℏ1ab2sn2 θζð Þ

− m2 + 1
À Á

bθ2 + 3ℏ1a2b + ℏ2b
Â Ã

sn θζð Þ
− ℏ1a

3 + aℏ2
À Á

= 0:
ð21Þ

Equating each coefficient of ½snðθζÞ�n to zero, we have for
n = 0, 1, 2, 3,

ℏ1a
3 + aℏ2 = 0,

m2 + 1
À Á

bθ2 + 3ℏ1a2b + ℏ2b = 0,

3ℏ1ab2sn2 = 0,
2m2bθ2 − ℏ1b

3 = 0:

ð22Þ

The outcomes of solving the previous equations are

a = 0,

b = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
m2 + 1ð Þℏ1

s
,

θ2 = −ℏ2
m2 + 1ð Þ :

ð23Þ

As a result, using (19), the solution of Equation (16) is

ψ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
m2 + 1ð Þℏ1

s
sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ℏ2

m2 + 1ð Þ

s
ζ

 !
: ð24Þ

Hence, the exact solution of the FSRKLE (3) is

φ x, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
m2 + 1ð Þℏ1

s
sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ℏ2

m2 + 1ð Þ

s
1
β

x + 1
Γ βð Þ

� �β

− νt

 ! !
e iq x,tð Þ−σW tð Þ−σ2t½ �,

ð25Þ

for ℏ2 < 0 and ℏ1 > 0: If m⟶ 1, then solution (25) tends to

φ x, tð Þ = ±
ffiffiffiffiffiffiffiffi
−ℏ2
ℏ1

s
tanh

ffiffiffiffiffiffiffiffi
−ℏ2
2

r
1
β

x + 1
Γ βð Þ

� �β

− νt

 ! !
e iq x,tð Þ−σW tð Þ−σ2t½ �:

ð26Þ

Analogously, we can replace sn in (19) with cnðξÞ =
cnðξ,mÞ and dnðξ,mÞ = dnðξ,mÞ to obtain the following
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solutions of Equation (16):

ψ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
2m2 − 1ð Þℏ1

s
cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2

2m2 − 1ð Þ

s
ζ

 !
,

ψ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
2 −m2ð Þℏ1

s
dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2

2 −m2ð Þ

s
ζ

 !
:

ð27Þ

Thus, the exact solutions of the FSRKLE (3) are as
follows:

φ x, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
2m2 − 1ð Þℏ1

s
cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ℏ2

2m2 − 1ð Þ

s
1
β

x + 1
Γ βð Þ

� �β

− νt

 ! !
e iq x,tð Þ−σW tð Þ−σ2t½ �,

ð28Þ

for ℏ2/ð2m2 − 1Þ > 0, ℏ1 < 0, and

φ x, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
2 −m2ð Þℏ1

s
dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2

2 −m2ð Þ

s
1
β

x + 1
Γ βð Þ

� �β

− νt

 ! !
e iq x,tð Þ−σW tð Þ−σ2t½ �,

ð29Þ

for ℏ2 > 0, ℏ1 < 0, respectively. If m⟶ 1, then the Equa-
tions (28) and (29) tends to

φ x, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
sech

ffiffiffiffiffi
ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 ! !
e iq x,tð Þ−σW tð Þ−σ2tð Þ,

ð30Þ

for ℏ2 > 0, ℏ1 < 0:

3.2. Sine-Cosine Method. Suppose the solution ψ of Equation
(16) takes the form

ψ ζð Þ = AY n, ð31Þ

where

Y = cos Bζð Þ orY = sin Bζð Þ: ð32Þ

Setting Equation (31) into Equation (16), we get

−AB2 −n2Y n + n n − 1ð ÞY n−2Â Ã
− ℏ1A

3Y 3n − ℏ2AY
n = 0,

ð33Þ

rewriting the above equation

ℏ2A −AB2n2
À Á

Y n + n n − 1ð ÞAB2Y n−2 + ℏ1A
3Y 3n = 0: ð34Þ

Balancing the term of Y in Equation (34), we obtain

n − 2 = 3n⇒ n = −1: ð35Þ

Plugging Equation (35) into Equation (34),

ℏ2A −AB2À Á
Y −1 + ℏ1A

3 + 2AB2À Á
Y −3 = 0: ð36Þ

We get by setting each coefficient of Y −3 and Y −1 equal
to zero

ℏ2A −AB2 = 0, ð37Þ

ℏ1A
3 + 2AB2 = 0: ð38Þ

By solving Equations (37) and (38), we get

B =
ffiffiffiffiffi
ℏ2

p
andA =

ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
: ð39Þ

Hence, the solution of Equation (16) is

ψ ζð Þ = A sec Bζð Þ orψ ζð Þ = A csc Bζð Þ: ð40Þ

Depending on the sign of ℏ1 and ℏ2, there are numerous
cases:

Case 1. If ℏ2 > 0 and ℏ1 < 0, then FSRKLE (3) has the
solutions

φ x, tð Þ =
ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
sec

ffiffiffiffiffi
ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ,

ð41Þ

or

φ x, tð Þ =
ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
csc

ffiffiffiffiffi
ℏ2

p 1
β
xβ − νt

� �� �
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ:

ð42Þ

Case 2. If ℏ2 < 0 and ℏ1 < 0, then the analytical solutions of
FSRKLE (3) have the form

φ x, tð Þ = i

ffiffiffiffiffiffiffi
2ℏ2
ℏ1

s
sec h

ffiffiffiffiffiffiffiffi
−ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ,

ð43Þ

or

φ x, tð Þ =
ffiffiffiffiffiffiffi
2ℏ2
ℏ1

s
csc h

ffiffiffiffiffiffiffiffi
−ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ:

ð44Þ

Case 3. If ℏ2 < 0 and ℏ1 > 0, then the solutions of FSRKLE (3)
are

φ x, tð Þ =
ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
sec h

ffiffiffiffiffiffiffiffi
−ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ,

ð45Þ
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or

φ x, tð Þ = −i

ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
csc h

ffiffiffiffiffiffiffiffi
−ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ:

ð46Þ

Case 4. If ℏ2 > 0 and ℏ1 > 0, then FSRKLE (3) has the
solutions

φ x, tð Þ = i

ffiffiffiffiffiffiffi
2ℏ2
ℏ1

s
sec

ffiffiffiffiffi
ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ,

ð47Þ

or

φ x, tð Þ = i

ffiffiffiffiffiffiffi
2ℏ2
ℏ1

s
csc

ffiffiffiffiffi
ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2t½ �,

ð48Þ

where ℏ1,ℏ2 are defined in (17).

Remark 1. Setting β = 1 and σ = 0 in Equations (41), (42),
and (45), we get the identical solutions as asserted in [31].

4. Effect of BM and Fractional Derivative on
the Solutions

Here, the impact of BM and the fractional derivative on the
exact solutions of the FSRKLE (3) is described. Fix the con-
stants γ1 = γ2 = γ4 = γ5 = γ6 = 1, k = −1,ν = 3, and m = 0:5.
Hence, γ3 = 5/3,ℏ1 = 4/3, and ℏ2 = −1. Now, we present some
diagrams for various value of σ (intensity of noise) and for
t ∈ ½0, 5�, x ∈ ½0, 6�. We apply the MATLAB to simulate the
solutions of Equation (3).

Firstly, the impact of noise: in Figure 1, when σ = 0, we
note that the surface fluctuates.

In Figure 2, if the noise appeared, then after small transit
behaviors, the surface gets more planer when the intensity of
noise increases as follows:

Secondly, the impact of fractional derivative: in Figures 3
and 4, if σ = 0, we can observe that as β increases, the surface
extends:
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Figure 1: 3D diagram of Equations (25) and (45) with σ = 0:
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Figure 2: 3D diagram of Equations (25) and (45) with σ = 1, 2.
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5. Conclusions

In this paper, we obtained the exact solutions of the fractional-
stochastic Radhakrishnan-Kundu-Lakshmanan Equation (3).
To obtain rational, elliptic, trigonometric, and hyperbolic sto-
chastic solutions, we used two different methods: the Jacobi
elliptic function and the sine-cosine. Because of the priority

of the FSRKLE in fluid dynamics and plasma physics, the
results produced are useful for understanding some exciting
physical phenomena. Finally, we plotted the obtained solu-
tions using MATLAB tools to provide a number 3D diagram
to demonstrate the impact of fractional derivative and multi-
plicative noise on these solutions. In future work, we can con-
sider the FSRKLE (3) with additive noise.
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Figure 3: 3D diagram of Equation (25) with σ = 0 and various β.
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Figure 4: 3D diagram of Equation (45) with σ = 0 and various β.
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