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In this paper, we deal with the following Schrödinger-Kirchhoff equation with potentials vanishing at infinity: −ðε2a + εb
Ð
ℝ3

j∇uj2ÞΔu +VðxÞu = KðxÞjujp−1u inℝ3and u > 0, u ∈H1ðℝ3Þ, where VðxÞ ~ jxj−α and KðxÞ ~ jxj−β with 0 < α < 2, and β > 0. We
first prove the existence of positive ground state solutions uε ∈H1ðℝ3Þ under the assumption that σ < p < 5 for some σ = σα,β,

then we show that uε concentrates at a global minimum point of AðxÞ =V2/ðp−1Þ−1/2ðxÞ/K2/ðp−1ÞðxÞ.

1. Introduction

In this paper, the following Schrödinger-Kirchhoff equations
with potentials vanishing at infinity are studied:

− ε2a + εb
ð
ℝ3

∇uj j2
� �

Δu +V xð Þu = K xð Þ uj jp−1u inℝ3,

u > 0, u ∈H1 ℝ3À Á
,

8><
>:

ð1Þ

where a, b > 0 are constants, and ε > 0 is a small parameter.
The potentials VðxÞ and KðxÞ satisfy

(V) V : ℝ3 ⟶ℝ is Hölder continuous and �a/ð1 + jxjαÞ
≤VðxÞ ≤ A for some �a, A > 0, and 0 < α < 2

(K) K : ℝ3 ⟶ℝ is Hölder continuous and 0 < KðxÞ ≤
k/ð1 + jxjβÞ for some β, k > 0

Problem (1) is related to the stationary analogue of the
equation

utt − a + b
ð
Ω

∇uj j2
� �

Δu = g x, tð Þ, ð2Þ

proposed by Kirchhoff [1] as an extension of the classical
D’Alembert’s wave equation for free vibrations of elastic

strings. Early studies on Kirchhoff equations (2) were Bern-
stein [2] and Pohozaev [3]. In recent years, lots of interesting
results on the elliptic Kirchhoff equations have been
obtained. Here, we only refer to [4–12] and references
therein.

Let b = 0 in (1), then equation (1) becomes the well-
known Schrödinger equation

−ε2Δu +V xð Þu = f uð Þ inℝN : ð3Þ

There have been enormous results on (3). Since we can-
not give a complete list of references here, we only refer to
[13–22].

Recently, many authors considered the existence and
concentration of positive solutions for Schrödinger-
Kirchhoff equations. In [23], He and Zou studied the
Schrödinger-Kirchhoff equation with subcritical nonlinear-
ity. In [24], Wang et al. studied the Schrödinger-Kirchhoff
equation with critical nonlinearity. In [25], Figueiredo et al.
treated the Schrödinger-Kirchhoff equation with the almost
optimal Berestycki-Lions type nonlinearity. In [26], Sun
and Zhang investigated the existence and concentration of
ground state solutions for Schrödinger-Kirchhoff equations
with competing potentials. In [27], Sun and Zhang studied
the ground state solutions for Schrödinger-Kirchhoff
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equations with a critical frequency. Further results can be
seen in [28–36] etc.

In [37], Ambrosetti et al. studied a class of nonlinear
Schrödinger equations with potentials vanishing at infinity.
Inspired by [37], we consider the Schrödinger-Kirchhoff
equation (1) which contains a nonlocal term

Ð
ℝ3 j∇vj2 in it.

Because of the nonlocal term, several special difficulties will
occur in our arguments. For instance, the estimate (34) in
our paper would not be obtained if we follow the proof of
Lemma 17 in [37] directly. As a result, we can only prove
Lemma 6 for small b > 0 in (1). To overcome this difficulty,
new definition of Rn,ε is given, and the desired inequality
(34) is finally proved by delicate analysis.

Let

σ≔ σα,β =
5 − 4β

α
, if 0 < β < α

2 ,

3, otherwise:

8<
: ð4Þ

Our main results are as follows.

Theorem 1. Assume that (V) and (K) are satisfied. Let

σ < p < 5: ð5Þ

Then, for every ε > 0, there exists a positive ground state
solution uε ∈H1ðℝ3Þ of (1).

Concerning the concentration behaviour of the ground
state solutions uε obtained in Theorem 1, we have the fol-
lowing theorem.

Theorem 2. Under the same assumptions as in Theorem 1,
the positive ground state solutions fuεg concentrate at a
global minimum point x∗ of AðxÞ = V2/ðp−1Þ−1/2ðxÞ/K2/ðp−1Þ

ðxÞ. That is, uε has a unique maximum point xε and xε ⟶
x∗ as ε⟶ 0+, and

uε xð Þ =U∗ x − xε
ε

� �
+ ωε xð Þ as ε⟶ 0+, ð6Þ

where ωε ⟶ 0 in L∞ðℝ3Þ and in C2
locðℝ3Þ as ε⟶ 0+ andU∗

is the unique positive ground state solution of

− a + b
ð
ℝ3

∇U∗j j2
� �

ΔU∗ + V x∗ð ÞU∗ = K x∗ð Þ U∗ð Þp: ð7Þ

Remark 3.The uniqueness of ground state solution of (7) can be
seen in [26].

2. Existence of Positive Ground State Solutions

2.1. Preliminaries. To prove our results, we work in the fol-
lowing weighted Sobolev spaces:

H ε ≔ v ∈D1,2 ℝ3À Á
:
ð
ℝ3

ε2a ∇vj j2 +V xð Þv2À Á
< +∞

� �
:

ð8Þ

H ε is a Hilbert space, and the scalar product and norm
are as follows:

vk k2ε =
ð
ℝ3

ε2a ∇vj j2 +V xð Þv2À Á
,

u, vð Þε =
ð
ℝ3

ε2a∇u∇v + V xð ÞuvÀ Á
:

ð9Þ

Set H =H 1 with norm k·kH . Let LqK be the weighted
space of measurable functions u : ℝ3 ⟶ℝ such that

uj jq,K =
ð
ℝ3
K xð Þ uj jqdx

� �1/q
<∞: ð10Þ

The following result can be seen in [38].

Theorem 4. Assume that (V) and (K) are satisfied. Then
H ε ⊂ Lp+1K provided σ ≤ p ≤ 5, and

vj jp+1,K ≤ Cε vk kε,∀v ∈H ε, ð11Þ

where Cε > 0 is a constant. Furthermore, the embedding is
compact if (5) holds.

2.2. Proof of Theorem 1. In this section, we will prove
Theorem 1.

Define Iε : H ε ⟶ℝ by

Iε uð Þ≔ 1
2

ð
ℝ3

ε2a ∇uj j2 + V xð Þu2À Á
+ b
4 ε

ð
ℝ3

∇uj j2
� �2

−
1

p + 1

ð
ℝ3
K xð Þ uj jp+1:

ð12Þ

Then, Iε ∈ C1ðH ε,ℝÞ and the critical point of the energy
functional Iε are just a weak solution of problem (1).

We have the following theorem.

Theorem 5. Assume that (V) and (K) are satisfied, and let (5)
hold. Then

cε = inf
v∈H ε\ 0f g

max
t≥0

Iε tvð Þ ð13Þ

is the ground energy level of Iε, and equation (1) has a posi-
tive ground state solution uε ∈H ε. Furthermore,

uεk k2ε ≤ Ccε, ð14Þ

where C > 0 is a constant.

Proof. As Lemma 3.2 in [26] (or Lemma 2.2 in [27]), we
know that cε is the ground energy level of Iε, i.e.,

cε = inf
v∈N ε

Iε vð Þ, ð15Þ

where N ε is the Nehari manifold of Iε : H ε ⟶ℝ defined
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by

N ε = v ∈H ε \ 0f g:
ð
ℝ3

ε2a ∇vj j2 + V xð Þv2À Á
+ εb

ð
ℝ3

∇vj j2
� �2

=
ð
ℝ3
K xð Þ vj jp+1

( )
:

ð16Þ

It is easy to verify the Mountain-Pass geometry of Iε : H ε
⟶ℝ (see [26] or [27] for example). Now, we prove that Iε
satisfies the Palais-Smale condition.

Let fvng ⊂H ε be such that IεðvnÞ⟶ c for some c > 0 and
Iε ′ðvnÞ⟶ 0. First standard arguments show that fvng is
bounded in H ε. Thus, there exists v ∈H ε and if necessary a
subsequence of fvng such that vn ⇀ v inH ε. Since the embed-
ding ofH ε into L

p+1
K is compact (see Theorem 4), we can get a

subsequence of fvng (also denoted by fvng) such that vn ⟶ v
in Lp+1K . Note that

Iε ′ vnð Þ − Iε ′ vð Þ, vn − v
D E
= ε2a + εb

ð
ℝ3

∇vnj j2
� �ð

ℝ3
∇vn · ∇ vn − vð Þ +

ð
ℝ3
V xð Þ vn − vð Þ2

− ε2a + εb
ð
ℝ3

∇vj j2
� �ð

ℝ3
∇v · ∇ vn − vð Þ −

ð
ℝ3
K xð Þ vnj jp−1vn − vj jp−1vÀ Á

Á vn − vð Þ = ε2a + εb
ð
ℝ3

∇vnj j2
� �

·
ð
ℝ3

∇ vn − vð Þj j2 +
ð
ℝ3
V xð Þ vn − vð Þ2

+ εb
ð
ℝ3

∇vnj j2 −
ð
ℝ3

∇vj j2
� �

·
ð
ℝ3
∇v · ∇ vn − vð Þ

−
ð
ℝ3
K xð Þ vnj jp−1vn − vj jp−1vÀ Á

vn − vð Þ ≥ vn − vk k2ε

− εb
ð
ℝ3

∇vj j2 −
ð
ℝ3

∇vnj j2
� �ð

ℝ3
∇v · ∇ vn − vð Þ

−
ð
ℝ3
K xð Þ vnj jp−1vn − vj jp−1vÀ Á

vn − vð Þ,

ð17Þ

which implies that

vn − vk k2ε ≤ Iε ′ vnð Þ − Iε ′ vð Þ, vn − v
D E
+ εb

ð
ℝ3

∇vj j2 −
ð
ℝ3

∇vnj j2
� �

·
ð
ℝ3
∇v · ∇ vn − vð Þ

+
ð
ℝ3
K xð Þ vnj jp−1vn − vj jp−1vÀ Á

vn − vð Þ:

ð18Þ

Since fvng is bounded in H ε, Iε′ðvnÞ⟶ 0 and vn ⇀ v in
H ε, we have that hIε ′ðvnÞ − Iε ′ðvÞ, vn − vi⟶ 0 and εbðÐℝ3

j∇vj2 − Ðℝ3 j∇vnj2Þ
Ð
ℝ3∇v · ∇ðvn − vÞ⟶ 0 as n⟶∞. Fur-

thermore,

ð
ℝ3
K xð Þ vnj jp−1vn − vj jp−1vÀ Á

vn − vð Þ
����

����
=
ð
ℝ3
Kp/ p+1ð Þ xð Þ vnj jp−1vn − vj jp−1vÀ Á

K1/ p+1ð Þ xð Þ vn − vð Þ
����

����
≤
ð
ℝ3
K xð Þ vnj jp−1vn − vj jp−1v�� p+1ð Þ/p

� �p/ p+1ð Þ

Á
ð
ℝ3
K xð Þ vn − vj jp+1

� �1/ p+1ð Þ
:

ð19Þ

Since fvng is bounded in Lp+1K ðℝ3Þ and vn ⟶ v in
Lp+1K ðℝ3Þ, we have

ð
ℝ3
K xð Þ vnj jp−1vn − vj jp−1vÀ Á

vn − vð Þ⟶ 0, ð20Þ

as n⟶∞. Thus, we have kvn − vkε ⟶ 0 as n⟶∞, i.e.,
vn ⟶ v in H ε.

From the above arguments, we know that Iε : H ε ⟶ℝ
satisfies the Mountain-Pass geometry and the Palais-Smale
condition; hence, by the Mountain-Pass theorem, we can
get a critical point uε ∈H ε of Iε with cε = IεðuεÞ. As in
[26], we can also know that uε > 0. From

− ε2a + εb
ð
ℝ3

∇uεj j2
� �

Δuε + V xð Þuε = K xð Þupε , ð21Þ

we have

ð
ℝ3

ε2a ∇uεj j2 +V xð Þu2ε
À Á

+ εb
ð
ℝ3

∇uεj j2
� �2

=
ð
ℝ3
K xð Þ uεj jp+1:

ð22Þ

Thus,

cε = Iε uεð Þ = 1
2 −

1
p + 1

� �ð
ℝ3

ε2a ∇uεj j2 +V xð Þu2ε
À Á

+ 1
4 −

1
p + 1

� �
εb

ð
ℝ3

∇uεj j2
� �2

≥
1
2 −

1
p + 1

� �
uεk k2ε ,

ð23Þ

which implies (14).
Next, we will show that the positive ground state solu-

tion uε of (1) found in Theorem 5 belongs indeed to H1

ðℝ3Þ. We first prove

Lemma 6. Let uε be solutions of (1) found in Theorem 5 and
suppose there exists Γ > 0 such that

uεk k2ε ≤ Γε3: ð24Þ

Then, there exist KΓ > 0 and RΓ > 0 such that for R ≥ RΓ

and Ωn,ε ⊂ℝ3 \ BR,
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ð
Ωn+1,ε

ε2a ∇uεj j2 +V xð Þu2ε
À Á

≤
3
4

ð
Ωn,ε

ε2a ∇uεj j2 +V xð Þu2ε
À Á

,

ð25Þ

where Ωn,ε =ℝ3 \ BRn,ε
and Rn,ε = εKΓn

2/ð2−αÞ.where �CΓ > 0 is
a constant.

Proof. By (24), we have

ð
ℝ3
a ∇uεj j2 ≤ Γε: ð26Þ

Then

ε2a + εb
ð
ℝ3

∇uεj j2 ≤ ε2 a + b
Γ

a

� �
: ð27Þ

Let M1 ≔ a + bðΓ/aÞ, and choose KΓ > 0 large enough
such that

M2
1

a
Kα−2

Γ ≤
�a
2 , ð28Þ

where �a is defined in (V). Let Rn,ε ≔ εKΓn
2/ð2−αÞ, and let

χn,εðrÞ be piecewise affine functions such that

χn,ε rð Þ = 0 for r ≤ Rn,ε,
χn,ε rð Þ = 1 for r ≥ Rn+1,ε:

ð29Þ

Then

Rn+1,ε − Rn,ε
�� �� = εKΓ n + 1ð Þ2/ 2−αð Þ − n2/ 2−αð Þ

��� ���
= εKΓ n + 1ð Þα/ 2−αð Þ n + 1ð Þ − n

n
n + 1
� �α/ 2−αð Þ����

����
= ε 2−αð Þ/2K 2−αð Þ/2

Γ εKΓ n + 1ð Þ2/ 2−αð Þ
� �α/2

Á n + 1ð Þ − n
n

n + 1
� �α/ 2−αð Þ����

����
≥ ε 2−αð Þ/2K 2−αð Þ/2

Γ Rα/2
n+1,ε,

ð30Þ

which yields

Rn+1,ε − Rn,ε
�� ��−2 ≤ εα−2Kα−2

Γ R−α
n+1,ε: ð31Þ

By (28) and (31), we have

M2
1

a
ε2 ∇χn,ε xð Þ�� ��2 = M2

1
a

ε2 Rn+1,ε − Rn,ε
�� ��−2 ≤ M2

1
a

εαKα−2
Γ R−α

n+1,ε

≤
M2

1
a

Kα−2
Γ R−α

n+1,ε ≤
�a
2R

−α
n+1,ε ≤ V xð Þ, x ∈ℝ3:

ð32Þ

Now, we test (1) on χn,εuε. We get

ε2a + εb
ð
ℝ3

∇uεj j2
� �ð

Ωn,ε

χn,ε ∇uεj j2 +
ð
Ωn,ε

χn,εVu
2
ε

=
ð
Ωn,ε

χn,εKu
p+1
ε − ε2a + εb

ð
ℝ3

∇uεj j2
� �ð

Ωn,ε

∇uε∇χn,εuε:

ð33Þ

Now, by (32), we have

− ε2a + εb
ð
ℝ3

∇uεj j2
� �ð

Ωn,ε

∇uε∇χn,εuε

≤ ε2M1

ð
Ωn,ε

∇uεj j ∇χn,ε
�� �� uεj j

=
ð
Ωn,ε

ε
ffiffiffi
a

p
∇uεj jÀ Á

ε
1ffiffiffi
a

p M1 ∇χn,ε
�� �� uεj j

� �

≤
1
2

ð
Ωn,ε

ε2a ∇uεj j2 + M2
1

a
ε2 ∇χn,ε xð Þ�� ��2u2ε

≤
1
2

ð
Ωn,ε

ε2a ∇uεj j2 +V xð Þu2ε :

ð34Þ

Then (33) and (34) imply that

ð
Ωn+1,ε

ε2a ∇uεj j2 + V xð Þu2ε
À Á

≤
ð
Ωn,ε

χn,ε ε2a ∇uεj j2 +V xð Þu2ε
À Á

≤ ε2a + εb
ð
ℝ3

∇uεj j2
� �ð

Ωn,ε

χn,ε ∇uεj j2

+
ð
Ωn,ε

χn,εVu
2
ε ≤
ð
Ωn,ε

Kup+1ε

+ 1
2

ð
Ωn,ε

ε2a ∇uεj j2 + V xð Þu2ε
À Á

:

ð35Þ

Then, by Proposition 11 in [37], let δ > 0 be fixed, and
for sufficiently large R > 0, we have
ð
Ωn+1,ε

ε2a ∇uεj j2 +V xð Þu2ε
À Á

≤
1
2

ð
Ωn,ε

ε2a ∇uεj j2 +V xð Þu2ε
À Á

+ δε−3 p−1ð Þ/2
ð
Ωn,ε

ε2a ∇uεj j2 + V xð Þu2ε
 ! p+1ð Þ/2

:

ð36Þ

By (24), we have

ð
Ωn,ε

ε2a ∇uεj j2 + V xð Þu2ε
 ! p+1ð Þ/2

≤ Γ p−1ð Þ/2ε3 p−1ð Þ/2
ð
Ωn,ε

ε2a ∇uεj j2 + V xð Þu2ε :
ð37Þ
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Thus, by the above two estimates, we know

ð
Ωn+1,ε

ε2a ∇uεj j2 +V xð Þu2ε
À Á

≤
1
2 + δΓ p−1ð Þ/2
� �ð

Ωn,ε

ε2a ∇uεj j2 +V xð Þu2ε
À Á

:

ð38Þ

Choosing δ > 0 sufficiently small, we can get that

ð
Ωn+1,ε

ε2a ∇uεj j2 + V xð Þu2ε
À Á

≤
3
4

ð
Ωn,ε

ε2a ∇uεj j2 +V xð Þu2ε
À Á

:

ð39Þ

Lemma 7. Let uε be solutions of (1), and let Γ, RΓ, and KΓ be
as in Lemma 6. Then, for all ρ ≥ 2RΓ,ð

xj j>ρ
ε2a ∇uεj j2 +V xð Þu2ε
À Á

≤ �CΓε
3 exp −

1
2
log 3

4

����
���� KΓεð Þ− 2−αð Þ/2 ρ 2−αð Þ/2 − R 2−αð Þ/2

Γ

� �� �
,

ð40Þ

Proof. The proof is just as the proof of Lemma 18 in [37], we
give it here for the sake of completeness.

Let ρ > 2RΓ and choosing two positive integers ~n > �n
with

R~n,ε ≤ ρ ≤ R~n+1,ε,
R�n,ε ≤ RΓ ≤ R�n+1,ε,

ð41Þ

where Rn,ε is defined in Lemma 6. From Lemma 6, we can
know that

ð
xj j>ρ

ε2a ∇uεj j2 +V xð Þu2ε
À Á

≤
ð

xj j>R~n,ε

ε2a ∇uεj j2 +V xð Þu2ε
À Á

≤
3
4

� �~n−�nð
xj j>RΓ

ε2a ∇uεj j2 +V xð Þu2ε
À Á

:

ð42Þ

Then, from (24), we have

ð
xj j>ρ

ε2a ∇uεj j2 +V xð Þu2ε
À Á

≤
3
4

� �~n−�n

Γε3: ð43Þ

By the choices of ~n, �n,

ρ ~ εKΓ~n
2/ 2−αð Þ,

RΓ ~ εKΓ�n
2/ 2−αð Þ,

ð44Þ

which implies

~n − �n ≥
1
2 KΓεð Þ− 2−αð Þ/2 ρ 2−αð Þ/2 − R 2−αð Þ/2

Γ

� �
: ð45Þ

Then, from (43) and the above formula, we can get the
estimate (40).

Now, we are in position to prove Theorem 1. To prove
uε ∈H1ðℝ3Þ, we actually need to show that uε ∈ L2ðℝ3Þ. In
the following, we follow [37] to give a proof here.

First, for the simplicity of the notation, we can take ε to 1.
Let u ∈H be a solution of (1)(with ε = 1), and we choose
y ∈ℝ3 such that jyj > 2. Then
ð
B1 yð Þ

u2 =
ð
B1 yð Þ

V xð Þu2 · 1
V xð Þ ≤ c1 yj jα

ð
B1 yð Þ

V xð Þu2: ð46Þ

For R = ð1/2Þjyj we know that

ð
B1 yð Þ

V xð Þu2 ≤
ð
ℝ3\BR

V xð Þu2: ð47Þ

From the above two estimates and Lemma 2.8, we have

ð
B1 yð Þ

u2 ≤ C1 yj jα exp −C2 yj j1−α/2
È É

,∀ yj j≫ 1: ð48Þ

Let B5 \ B2 ⊂ ∪m
i=1B1ðyiÞ where m ∈ℕ and yi ∈ℝ

3.
Define yi,k ≔ 2kyi. Then

ð
ℝ3\B2

u2 ≤ 〠
∞

k=0

ð
2k B5\B2ð Þ

u2 ≤〠
i,k

ð
B2k yi,kð Þ

u2: ð49Þ

By (48) and 0 < α < 2, we have

ð
ℝ3\B2

u2 ≤ C1〠
i,k

yi,k
�� ��α exp −C2 yi,k

�� ��1−α/2n o
<∞: ð50Þ

Thus, we have that u ∈ L2ðℝ3Þ, whence u ∈H1ðℝ3Þ.
Finally, standard elliptic estimate (see Theorem 4.1 in [39]
for example) shows that limjxj⟶∞uεðxÞ = 0.

3. Concentration Behaviour of Ground
State Solutions

In this section, we will study the concentration behaviour of
the positive ground state solutions fuεg obtained in Theo-
rem 1 as ε⟶ 0+. Assume that (V) and (K) are satisfied,
and let (5) hold. By (5), we can know that AðxÞ⟶∞ as
jxj⟶∞, where AðxÞ =V2/ðp−1Þ−1/2ðxÞ/K2/ðp−1ÞðxÞ is
defined in Theorem 2, and therefore, AðxÞ has a global min-
imum point x0 in ℝ3. Now, let u0 > 0 be the unique positive
ground state solution (see [26]) of

− a + b
ð
ℝ3

∇uj j2
� �

Δu +V x0ð Þu = K x0ð Þup, x ∈ℝ3, ð51Þ

and let c0 be the ground energy level associated to (51),
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i.e., c0 = I0ðuoÞ where

I0 uð Þ≔ 1
2

ð
ℝ3

a ∇uj j2 +V x0ð Þu2À Á
+ b
4

ð
ℝ3

∇uj j2
� �2

−
1

p + 1

ð
ℝ3
K x0ð Þ uj jp+1:

ð52Þ

Let cε be as in Theorem 5, then we have the following
lemma.

Lemma 8.

limsup
ε⟶0+

ε−3cε ≤ c0: ð53Þ

Proof. Since the proof is just the same as the proof of Lemma
11 in [26], we omit it here.

Remark 9. In particular, there exists C∗ > 0 such that cε ≤
C∗ε3 for sufficiently small ε > 0.

Corollary 10. Let uε be the ground state solutions obtained in
Theorem 1. Then by Lemma 8 and (14), we have that there
exists Γ > 0 such that for sufficiently small ε > 0,

uεk k2ε ≤ Γε3: ð54Þ

Now, we give a uniform pointwise decay estimate for the
solutions uε:

Lemma 11. Let Γ, RΓ, , KΓ and uε be as in Lemma 6.
Then, there exist constants C > 0 and d > 0, such that for
jxj ≥ 2RΓ + C,

uε xð Þj j ≤ C xj jdε−d exp −
1
4
log 3

4

����
���� KΓεð Þ− 2−αð Þ/2 xj j 2−αð Þ/2 − R 2−αð Þ/2

Γ

� �� �
,

ð55Þ

where C depends only on Γ and p and d depends on p, α,
and β.

Proof. Let x0 ∈ℝ3 be such that jx0j ≥ 2RΓ + 2, and let η be a
smooth cut-off funtion satisfying η = 1 for x ∈ B1ðx0Þ, η = 0
for x ∈ℝ3 \ B2ðx0Þ, and j∇ηj ≤ 2. For simplicity of notation,
we let v = uε. For L > 0 and s ≥ 0, define ϕ = ϕs,L ≔ v min
fjvj2s, L2gη2. The function v satisfies

− ε2a + εb
ð
ℝ3

∇vj j2
� �

Δv + V xð Þv = K xð Þvp, ð56Þ

and by (24), we have
Ð
ℝ3ε2aj∇vj2 ≤ Γε3, which implies

that
Ð
ℝ3 j∇vj2 ≤ ðΓ/aÞε. Now, test (56) on ϕ we can obtain

that

ε2
ð
a ∇vj j2 min vj j2s, L2È É

η2

+ s
2 ε

2
ð

vj js≤Lf g
a ∇ vj j2À Á�� ��2v2s−2η2+ ð V xð Þv2η2 min vj j2s, L2È É

≤ −2ε2
ð
avη min vj j2s, L2È É

∇v · ∇η − 2εb
ð
ℝ3

∇vj j2

Á
ð
vη min vj j2s, L2È É

∇v · ∇η+
ð
Kvp+1η2 min vj j2s, L2È É

≤ 2ε2
ð
avη min vj j2s, L2È É

∇v · ∇ηj j

+ 2ε2bΓ
a

ð
vη min vj j2s, L2È É

∇v · ∇ηj j+
ð
Kvp+1η2

Á min vj j2s, L2È É
≤
1
2 ε

2
ð
a ∇vj j2 min vj j2s, L2È É

η2

+ Cε2
ð
av2 min vj j2s, L2È É

∇ηj j2+
ð
Kvp+1η2 min vj j2s, L2È É

:

ð57Þ

Next, we can follow the proof of Lemma 22 in [37]
directly, so we omit the details here.

By Lemma 11, we know that limjxj⟶∞uε = 0 for any
small and fixed ε > 0. Thus, there exists a maximum point
xε in ℝ3 for uε. We have the following lemma.

Lemma 12. Let uε be the solution of (1) satisfying (24), and
let xε be any maximum point of uε. Then, for sufficiently
small ε > 0, jxεj ≤ C, where C = CðΓÞ.

Proof. As xε is a maximum point of uε, we know that Δ
uεðxεÞ ≤ 0, and furthermore, −ðε2a + εb

Ð
ℝ3 j∇uεj2ÞΔuεðxεÞ

≥ 0. Therefore, from (1), we have that

V xεð ÞK−1 xεð Þ ≤ up−1ε xεð Þ: ð58Þ

Now, by (V) and (K), we know that

c xεj jβ−α ≤V xεð ÞK−1 xεð Þ, ð59Þ

where c > 0 is a constant. Combining (58), (59), and (55),
we have that for jxεj ≥ 2RΓ,

c xεj jβ−α ≤ xεj jd p−1ð Þε−d p−1ð Þ

Á exp −
1
4 p − 1ð Þ log 3

4

����
���� KΓεð Þ− 2−αð Þ/2 xεj j 2−αð Þ/2 − R 2−αð Þ/2

Γ

� �� �
:

ð60Þ

This shows that jxεj must be bounded as ε⟶ 0+, and
Lemma 12 has been proved.
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Lemma 13. Let uε be as in Lemma 12. Then, for sufficiently
small ε > 0, kuεkL∞ ≥ C where C > 0 is a constant.

Proof. From (1) we know that

uεk k2ε =
ð
ℝ3

ε2a ∇uεj j2 + V xð Þu2ε
À Á

≤
ð
ℝ3
K xð Þup+1ε : ð61Þ

Now, let δ < Γ−ðp−1Þ/2 be fixed. By Proposition 11 in [37],
we know that there exists R > 0 such that

ð
xj j>R

K xð Þup+1ε ≤ δε−3 p−1ð Þ/2 uεk kp+1ε : ð62Þ

Then, from the proof of Lemma 25 in [37], we have

ð
xj j≤R

K xð Þup+1ε ≤
k
�a

1 + Rαð Þ up−1ε

 
L∞

uεk k2ε : ð63Þ

Combining (61), (62), and (63), we get

uεk k2ε ≤
ð
ℝ3
K xð Þup+1ε ≤ δε−3 p−1ð Þ/2 uεk kp+1ε

+ k
�a

1 + Rαð Þ up−1ε

 
L∞

uεk k2ε ,
ð64Þ

which implies that

1 ≤ δε−3 p−1ð Þ/2 uεk kp−1ε + k
�a

1 + Rαð Þ up−1ε

 
L∞
: ð65Þ

By Corollary 10, we know that kuεkp−1ε ≤ Γðp−1Þ/2ε3ðp−1Þ/2.
Then, from (65), we get

1 ≤ δΓ p−1ð Þ/2 + k
�a

1 + Rαð Þ up−1ε

 
L∞
: ð66Þ

Now, by δ < Γ−ðp−1Þ/2, we have that

uεk kp−1ε ≥ 1 − δΓ p−1ð Þ/2
� � �a

k 1 + Rαð Þ > 0: ð67Þ

Thus, we have proved the lemma.

Proof of Theorem 14. Let xε be a global maximum point of uε.
From Lemma 12, we know that going to a subsequence if nec-
essary, there exists x∗ ∈ℝ3 such that xε ⟶ x∗. Since x0 is a
global minimum point of AðxÞ in ℝ3, then by Lemma 13 of
[26], we have

c x∗ð Þ ≥ c0, ð68Þ

where cðx∗Þ is the ground energy level corresponding to
equation (51) with x0 replaced by x∗ in it. Set ϕεðxÞ≔ uε
ðεx + xεÞ, then ϕε satisfies

− a + b
ð
ℝ3

∇ϕεj j2
� �

Δϕε +V εx + xεð Þϕε = K εx + xεð Þϕpε :

ð69Þ

From Corollary 10 and (V), we know that

Γ ≥ ε−3 uεk k2ε ≥ ε−3
ð
ℝ3
ε2a ∇ϕεj j2 + �a

1 + xj jα u
2
ε

=
ð
ℝ3
a ∇ϕεj j2 + �a

1 + εx + xεj jα ϕ
2
ε :

ð70Þ

From Lemma 12, we know that jεx + xεj ≤ Cð1 + jxjÞ,
and therefore,

ð
ℝ3
a ∇ϕεj j2 + �a

1 + xj jα ϕ
2
ε ≤ C′, ð71Þ

where C′ > 0 is a constant. Then fϕεg is bounded in �H ≔
fv ∈D1,2ðℝ3Þ: Ðℝ3�a/1 + jxjαv2 < +∞g, and therefore, going
to a subsequence if necessary there exists U∗ ∈ �H such that
ϕε ⇀U∗ in �H , ϕε ⟶U∗ in Lp+1K , and ϕε ⟶U∗ a.e. in ℝ3 .
By standard arguments (see [37]), we have that ϕε con-
verges in C2

locðℝ3Þ to U∗ and ϕε ⟶U∗ in L∞ðℝ3Þ. Now,
we assume that up to a subsequence,

Ð
ℝ3 j∇ϕεj2 ⟶ A, then

A ≥
Ð
ℝ3 j∇U∗j2 and

− a + bAð ÞΔU∗ +V x∗ð ÞU∗ = K x∗ð Þ U∗ð Þp, x ∈ℝ3, ð72Þ

since 0 is the maximum point of ϕε , so does U∗ . More-
over, Lemma 13 shows that ϕεð0Þ = uεðxεÞ = kuεkL∞ ≥ C for
some C > 0, thus U∗ð0Þ =max U∗ ≥ C > 0. Therefore,
U∗ ≢ 0 and by the maximum principle we have that
U∗ > 0. Now, for Rn ⟶∞, by Corollary 10, we have

ð
�BRn

a ∇ϕεj j2 +V εx + xεð Þϕ2ε ≤ ε−3 vεk k2ε ≤ Γ: ð73Þ

Thus, by the Dominated Convergence Theorem,
ϕε ⟶U∗ in C1ð�BRn

Þ, and (73) we have

ð
�BRn

a ∇U∗j j2 +V x∗ð Þ U∗ð Þ2 ≤ Γ: ð74Þ

Now, let Rn ⟶∞, we get that U∗ ∈H1ðℝ3Þ.
Next, we prove actually A = Ðℝ3 j∇U∗j2, where A is in

(72). Otherwise, we assume A >
Ð
ℝ3 j∇U∗j2. Then, from

(72), we have

ð
ℝ3

a ∇U∗j j2 + V x∗ð Þ U∗ð Þ2
� �

+ Ab
ð
ℝ3

∇U∗j j2 −
ð
ℝ3
K x∗ð Þ U∗j jp+1 = 0,

ð75Þ

which implies that hIx∗ ′ðU∗Þ,U∗i < 0, where hIx∗ ′ðU∗Þ,U∗i
is defined by
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Ix∗ ′ U∗ð Þ,U∗
D E

=
ð
ℝ3

a ∇U∗j j2 + V x∗ð Þ U∗ð Þ2
� �

+ b
ð
ℝ3

∇U∗j j2
� �2

−
ð
ℝ3
K x∗ð Þ U∗j jp+1:

ð76Þ

Then, there is a unique 0 < t < 1 such that

Ix∗ ′ tU∗ð Þ, tU∗
D E

= 0: ð77Þ

Now,

c x∗ð Þ ≤ Ix∗ tU∗ð Þ − 1
4 Ix∗ ′ tU∗ð Þ, tU∗
D E

= t2

4

ð
ℝ3

a ∇U∗j j2 +V x∗ð ÞU∗2
� �

+ tp+1

4 −
tp+1

p + 1

� �ð
ℝ3
K x∗ð Þ U∗j jp+1

< 1
4

ð
ℝ3

a ∇U∗j j2 +V x∗ð ÞU∗2
� �

+ 1
4 −

1
p + 1

� �ð
ℝ3
K x∗ð Þ U∗j jp+1

≤ lim
ε⟶0

1
4

ð
ℝ3

a ∇ϕεj j2 +V εx + xεð Þϕε2
À Á�

+ 1
4 −

1
p + 1

� �ð
ℝ3
K εx + xεð Þ ϕεj jp+1

�

= lim
ε⟶0

�Iε ϕεð Þ − 1
4

�Iε′ ϕεð Þ, ϕε
D E� �

,

ð78Þ

where �IεðvÞ: H ε ⟶ℝ is defined by

�Iε vð Þ≔ 1
2

ð
ℝ3

a ∇vj j2 +V εx + xεð Þv2À Á
+ b
4

ð
ℝ3

∇vj j2
� �2

−
1

p + 1

ð
ℝ3
K εx + xεð Þ vj jp+1:

ð79Þ

Then, by Lemma 8,

lim
ε⟶0

�Iε ϕεð Þ = lim
ε⟶0

ε−3Iε vεð Þ = lim
ε⟶0

ε−3cε ≤ limsup
ε⟶0

ε−3cε ≤ c0:

ð80Þ

Thus, by (78), we have cðx∗Þ < c0 which is a contradic-
tion to (68), and hence, we have proved A = Ðℝ3 j∇U∗j2.
From the above arguments, we know that U∗ is the unique
positive ground state solution of

− a + b
ð
ℝ3

∇U∗j j2
� �

ΔU∗ +V x∗ð ÞU∗ = K x∗ð Þ U∗ð Þp: ð81Þ

Furthermore, from (78), we know that cðx∗Þ = c0,
which implies that x∗ is a minimum point of the function

AðxÞ =V2/ðp−1Þ−1/2ðxÞ/K2/ðp−1ÞðxÞ. Since the proof of the
uniqueness of maximum point is just similar as in [37],
we omit it here. Now, we have proved Theorem 2.
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