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The Fokas-Lenells equation (FLE) including the M-truncated derivative or beta derivative is examined. Using the modified
mapping method, new elliptic, hyperbolic, rational, and trigonometric solutions are created. Also, we extend some previous
results. Since the FLE has various applications in telecommunication modes, quantum field theory, quantum mechanics, and
complex system theory, the solutions produced may be used to interpret a broad variety of important physical process. We
present some of 3D and 2D diagrams to illustrate how M-truncated derivative and the beta derivative influence the exact
solutions of the FLE. We demonstrate that when the derivative order decreases, the beta derivative pushes the surface to the
left, whereas the M-truncated derivative pushes the surface to the right.

1. Introduction

Nonlinear evolution equations (NEEs) have a broad applica-
tion in engineering and scientific areas, such as chemical
kinematics, heat flow, fluid mechanics, optical fibers, wave
propagation phenomena, solid-state physics, shallow water
wave propagation, and quantummechanics. Obtaining travel-
ing wave solutions is one of the crucial physical problems for
NEEs. Consequently, in nonlinear sciences, the search for
mathematical approaches for creating the analytical solutions
to NEEs is currently a crucial and vital task. In recent years,
numerous techniques for addressing NEEs have been devel-
oped, including F-expansion technique [1], spectral methods
[2], exp −ϕ ς -expansion [3], tanh-sech method [4],
Hirota’s method [5], extended trial equation [6], extended
tanh-coth method [7, 8], Lie’s symmetry analysis [9–11],
He’s semi-inverse method [12], generalized exponential ratio-
nal function [13], generalized Riccati simplest equation [14,
15], new auxiliary equation approach [16], perturbation
method [17], G′/G -expansion [18, 19], improved Sardar

subequation [20], Jacobi elliptic function [21, 22], modified
simple equation method [23], and more recent techniques.

One of the most important of NEEs is the Fokas-Lenells
equation (FLE) [24–26]:

Φtx − γ1Φxx − 2iγ2Φx + ϑ Φ 2 Φ + iρΦx = 0, 1

where Φ x, t describes the complex field, i = −1, ϑ = ±1,
and γ1, γ2, and ρ are the positive constants. Equation (1)
has various applications in complex system theory, quantum
field theory, telecommunication, and quantum mechanics
models. Moreover, it occurs as a pattern that indicates the
propagation of nonlinear pulses in optical fibers. Many
researchers have obtained the exact solutions of Eq. (1) by
employing several methods such as the generalized Kudrya-
shov and extended trial equation methods [24], Riccati’s
equation method [27], (m + 1/G′)-expansion method [28],
complex envelope function ansatz [29], and mapping
method [30].
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In this study, we consider Eq. (1) with two different time
derivative operators as follows:

With beta derivative operator, Eq. (1) takes the form

Dα
tΦx − γ1Φxx − 2iγ2Φx + ϑ Φ 2 Φ + iρΦx = 0, 2

where Dα
t is the beta derivative (BD) operator.

And with M-truncated derivative operator, Eq. (1) takes
the form

Dα,σ
m,tΦx − γ1Φxx − 2iγ2Φx + ϑ Φ 2 Φ + iρΦx = 0, 3

where Dα,σ
m,t is the M-truncated derivative (MTD) operator.

The novelty of this study is to find of the exact solutions
of FLE (2) and (3). In order to reach these solutions, we use a
modified mapping method (MM-method). We extend some
previous results such as [24, 27]. Using the BD in Eq. (2) and
the MTD in Eq. (3), the solutions would be very helpful to
physicists in characterizing a wide variety of important
physical processes. To further explore the effect of the BD
and MTD on the acquired solution of FLE (2) and (3), we
present some figures constructed in MATLAB.

The study’s structure is as follows: In Section 2, we define
the BD and MTD and state their prosperities. In Section 3,
we explain the modified mapping method, while the wave
equation of FLE-MTD (2) is obtained in Section 4. In
Section 5, we get the exact solutions of the FLE-MTD (2).
In Section 6, we can observe how the BD and MTD affect
the obtained solutions of FLE-MTD (2). Lastly, the findings
of the study are given.

2. Preliminaries

Recently, the fractional NEEs have increased in popularity
owing to their broad variety of applications in domains such
as biological population, signal processing, plasma physics,
electrical networks, fluid flow, solid state, finance, chemical
kinematics, optical fiber, and control theory physics. Various
types of fractional derivatives were introduced by different
mathematicians. The most prominent are those suggested
by Caputo, Grunwald-Letnikov, Hadamard, Erdelyi, Rie-
mann-Liouville, Marchaud, and Riesz [31–34]. The bulk of
fractional derivatives does not involve the standard deriva-
tive rules including the product rule, chain rule, and quo-
tient rule.

2.1. Beta Derivative. Atangana et al. [35] developed a novel
operator derivative known as BD. The BD [35] is defined
for u 0,∞ ⟶ℝ as

Dα
t u t = lim

h⟶0

u t + h t + 1/Γ α 1−α − u t

h
, 0 < α ≤ 1

4

Moreover, for any constants a and b, the BD has the
following features [35]:

Dα
t u t = t + 1

Γ α

1−α du
dt

,

Dα
t au + bv = aDα

t u + bDα
t v ,

Dα
t a = 0,

Dα
t tm = t + 1

Γ α

1−α
tm−α,

Dα
t u ∘ v t = v′ t Dα

t u v t

5

2.2. M-Truncated Derivative. Sousa and de Oliveira [36] pro-
posed another derivative known as the MTD. The MTD of
order α ∈ 0, 1 is defined as

Dα,σ
m,tu t = lim

h⟶0

u tEm,σ ht−α − u t
h

, 6

where

Em,σ y = 〠
m

k=0

yk

Γ σk + 1 , for σ > 0 and y ∈ℂ 7

The MTD satisfies the following characteristics [36]:

Dα,σ
m,t au + bv = aDα,σ

m,t u + bDα,σ
m,t v ,

Dα,σ
m,t u ∘ v z = u′ v z Dα,σ

m,tv z ,
Dα,σ

m,t uv = uDα,σ
m,tv + vDα,σ

m,tu,

Dα,σ
m,t u t = t1−α

Γ σ + 1
du
dt

,

Dα,σ
m,t t

ν = ν

Γ σ + 1 tν−α

8

3. The Clarification of MM-Method

Here, we implement the MM-method from [37]. Let the
solutions to Eq. (19) take the form

Ψ η = 〠
M

i=0
ℓiφ

i η + 〠
M

i=1
ℏiφ

−i η , 9

where ℓj and ℏj are the undetermined constants for j = 1,
2, ,M and φ solves

φ′ = r + qφ2 + pφ4, 10

where the constants r, q, and p are real numbers. Equation
(10) has different solutions for r, p, and q as follows:

sn η = sn η, κ ,dn η, κ = dn η, κ , and cn η = cn η, κ
are the Jacobi elliptic functions (JEFs) for 0 < κ < 1 When
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κ⟶ 1, the following hyperbolic functions are produced
from JEFs:

cn η ⟶ sech η , sn η ⟶ tanh η , cs η ⟶ csch η ,
dn η ⟶ sech η , ds⟶ csch η

11

Moreover, when κ⟶ 0, the following trigonometric
functions are produced from JEFs:

cn η ⟶ cos η ,
cs η ⟶ cot η ,

ds⟶ csc η ,
sn η ⟶ sin η ,
dn η ⟶ 1

12

4. Traveling Wave Equation for FLE

To get the wave equation for FLE (2)/(3), we use

Φ x, t =Ψ ηα eiμα , 13

where Ψ is a real function and ηα and μα are defined as
follows:

(i) In terms of beta derivative

μα = μ1x +
μ2
α

t + 1
Γ α

α

and ηα = η1x +
η2
α

t + 1
Γ α

α

14

(ii) In terms of M-truncated derivative

μα = μ1x +
μ2Γ σ + 1

α
tα,

ηα = η1x +
η2Γ σ + 1

α
tα,

15

where μ1, μ2, η1, and η2 are the nondefined constants. Put-
ting Eq. (13) into Eq. (2)/(3), we have the following system:

η1η2 − γ1η
2
1 Ψ′′ + ν − μ1μ2 + γ21μ1 + 2γ2μ1 Ψ − νρμ1Ψ

3 = 0,
16

i η1μ2 + μ1η2 − 2γ1μ1η1 − 2γ2η1 Ψ′ + νρη1Ψ
2Ψ′ = 0

17
From imaginary part (17), we obtained

η2 =
1
μ1

−η1μ2 + 2γ1μ1η1 + 2γ2η1 − νρη1Ψ
2 , 18

while the real part is given by

Ψ′′ + AΨ − BΨ3 = 0, 19

where

A = ν − μ1μ2 + γ21μ1 + 2γ2μ1
η1η2 − γ1η

2
1

,

B = νρμ1
η1η2 − γ1η

2
1

20

5. Exact Solutions of FLE

To determine the value of M defined in Eq. (9), we balance
Ψ3 with Ψ′′ in Eq. (19) as

3M =M + 2⇒M = 1 21

Table 1: All solutions for Eq. (10) for different r, p, and q.

Case p q r φ η

1 κ2 − 1 + κ2 1 sn η

2 1 2κ2 − 1 −κ2 1 − κ2 ds η

3 1 2 − κ2 1 − κ2 cs η

4 κ2/4 κ2 − 2 /2 1/4 sn η /1 + dn η

5 1 − κ2
2/4 1 − κ2

2/2 1/4 sn η /dn + cn η

6 1 − κ2/4 1 − κ2 /2 1 − κ2 /4 cn η /1 + sn η

7 1 0 0 c/η
8 −1 2 − κ2 κ2 − 1 dn η

9 −κ2 2κ2 − 1 1 − κ2 cn η

10 κ2 − 1/4 κ2 + 1 /2 κ2 − 1 /4 dn η /1 + sn η

11 −1/4 κ2 + 1 /2 − 1 − κ2
2/4 κcn η ± dn η
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Figure 1: Continued.
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With M = 1, Eq. (9) becomes

Ψ ηα = ℓ0 + ℓ1φ ηα + ℏ1
φ ηα

22

Putting Eq. (22) into Eq. (19), we have

2ℓ1p − Bℓ31 φ3 − 3Bℓ0ℓ21φ2 + ℓ1q − 3Bℓ20ℓ1 − 3Bℏ1ℓ21 + ℓ1A φ

+ Aℓ0 − Bℓ30 − 6Bℓ0ℓ1ℏ1 + Aℏ1 + ℏ1q − 3Bℓ20ℏ1 − 3Bℓ1ℏ21 φ−1

− 3Bℏ21φ−2 + 2rℏ1 − Bℏ31 φ−3 = 0
23

Setting all coefficient of φ−k and φk in Eq. (23) be zero for
k = 3, 2, 1, 0, we get

2ℓ1p − Bℓ31 = 0,
−3Bℓ0ℓ21 = 0,

ℓ1q − 3Bℓ20ℓ1 − 3Bℏ1ℓ21 + ℓ1A = 0,
Aℓ0 − Bℓ30 − 6Bℓ0ℓ1ℏ1 = 0,

Aℏ1 + ℏ1q − 3Bℓ20ℏ1 − 3Bℓ1ℏ21 = 0,
−3Bℓ0ℏ21 = 0,

2rℏ1 − Bℏ31 = 0

24

There are three sets derived from these equations:

Set 1

ℓ0 = 0,

ℓ1 = ± 2p
B
,

ℏ1 = 0,
q = −A

25

Set 2

ℓ0 = 0,
ℓ1 = 0,

ℏ1 = ± 2r
B
,

q = −A

26

Set 3

ℓ0 = 0,

ℓ1 = ± 2p
B
,

ℏ1 = ± 2r
B
,

q = 6 pr − A

27
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Figure 1: (a–c) 3D shape of Eq. (29) with α = 0 5, 0.7, and 1. (d) 2D shape of Eq. (29) with distinct values of α.
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Set 1. The solution of Eq. (19), utilizing Eqs. (22) and (25),
takes the form

Ψ ηα = ± 2p
B
φ ηα , for p

B
> 0 28

Therefore, the solutions of FLE (2)/(3), by using Table 1,
are as follows:

Elliptic solutions

Φ x, t = ±κ 2
B
sn ηα eiμα , forB > 0, 29

Φ x, t = ± 2
B
ds ηα eiμα , forB > 0, 30

Φ x, t = ± 2
B
cs ηα eiμα , forB > 0, 31

Φ x, t = ±κ 1
2B

sn ηα
1 + dn ηα

eiμα , forB > 0, 32

Φ x, t = ± 1
2B

1 − κ2 sn ηα
dn ηα + cn ηα

eiμα , forB > 0, 33

Φ x, t = ± 2
B

cn ηα
1 + sn ηα

eiμα , forB > 0, 34

Φ x, t = ± −2
B
dn ηα eiμα , forB < 0, 35

Φ x, t = ± −2κ2
B

cn ηα eiμα , forB < 0, 36

Φ x, t = ± κ2 − 1
2B

dn ηα
1 + sn ηα

eiμα , forB < 0, 37

Φ x, t = ± −1
2B κcn ηα ± dn ηα eiμα , forB < 0 38

Rational solutions

Φ x, t = ± 2
B

c
ηα

eiμα , forB > 0 39

Hyperbolic solutions (if κ⟶ 1 in (29)-(43))

Φ x, t = ± 2
B
tanh ηα eiμα , forB > 0, 40

Φ x, t = ± 2
B
csch ηα eiμα , forB > 0, 41

Φ x, t = ± 1
2B

tanh ηα
1 + sech ηα

eiμα , forB > 0, 42

Φ x, t = ± −2
B

sech ηα eiμα , forB < 0 43
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Figure 2: (a–c) 3D shape of Eq. (40) with α = 0 5, 0.7, and 1. (d) 2D shape of Eq. (40) for distinct values of α.
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Trigonometric solutions (if κ⟶ 0 in (29)-(43))

Φ x, t = ± 2
B
csc ηα eiμα , for B > 0, 44

Φ x, t = ± 2
B
cot ηα eiμα , for B > 0, 45

Φ x, t = ± 1
2B

sin ηα
1 + cos ηα

eiμα , forB > 0, 46

Φ x, t = ± 12
2
B

cos ηα
1 + sin ηα

eiμα , forB > 0, 47

Φ x, t = ± −1
2B

1
1 + sin ηα

eiμα , forB < 0, 48

where μα and ηα are defined in (14) or (15) in the sense of
BD or MTD, respectively

Set 2. The solution of Eq. (19), utilizing Eqs. (22) and (26), is

Ψ ηα = ± 2r
B

1
φ ηα

, for r
B
> 0 49

Therefore, the solutions of FLE (2)/(3), by using Table 1,
are as follows:

Elliptic solutions

Φ x, t = ± 2
B

1
sn ηα

eiμα , forB > 0, 50

Φ x, t = ± 2 1 − κ2

B
1

cs ηα
eiμα , forB > 0, 51

Φ x, t = ± 2 1 − κ2

B
1

cn ηα
eiμα , forB > 0, 52

Φ x, t = ± 1
2B

1 + dn ηα
sn ηα

eiμα , forB > 0, 53

Φ x, t = ± 1 − κ2

2B
1 + sn ηα
cn ηα

eiμα , forB > 0, 54

Φ x, t = ± 1
2B

dn ηα + cn ηα
sn ηα

eiμα , forB > 0, 55

Φ x, t = ± −2κ2 1 − κ2

B
1

ds ηα
eiμα , forB < 0, 56

Φ x, t = ± 2 κ2 − 1
B

1
dn ηα

eiμα , forB < 0, 57

Φ x, t = ± κ2 − 1
2B

1 + sn ηα
dn ηα

eiμα , forB < 0, 58
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Figure 3: (a–c) 3D shape of Eq. (43) with α = 0 5, 0.7, and 1. (d) 2D shape of Eq. (43) for various values of α.
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Φ x, t = ± −2
B

1 − κ2

κcn ηα + dn ηα
eiμα , forB < 0 59

Hyperbolic solutions (if κ⟶ 1 in (50)-(59) for B > 0)

Φ x, t = ± 2
B
coth ηα eiμα , 60

Φ x, t = ± 1
2B coth ηα + csch ηα eiμα , 61

Φ x, t = ± 2
B
csch ηα eiμα 62

Trigonometric solutions (if κ⟶ 0 in (50)-(59) for B > 0)

Φ x, t = ± 2
B
tan ηα eiμα ,

Φ x, t = ± 2
B
sec ηα eiμα ,

Φ x, t = ± 2
B
sec ηα ± tan cn ηα eiμα ,

Φ x, t = ± 1
2B csc ηα + cot ηα eiμα ,

63

where μα and ηα are defined in (14) or (15) in the sense of BD
or MTD, respectively

Set 3. The solution of Eq. (19), utilizing Eqs. (22) and (27), is

Ψ ηα = ± 2p
B
φ ηα ± 2r

B
1

φ ηα
, for p

B
, r
B
> 0 64

Therefore, the solutions of FLE (2)/(3), by using Table 1,
are as follows:

Elliptic solutions

Φ x, t = ± 2
B

κsn ηα + 1
sn ηα

eiμα , for B > 0, 65

Φ x, t = ± 2
B
cs ηα + 2 1 − κ2

B
1

cs ηα
eiμα , forB > 0, 66

Φ x, t = ± 1
2B

κsn ηα
dn ηα + 1 + dn ηα + 1

sn ηα
eiμα , forB > 0, 67

Φ x, t = ± 1 − κ2

2B
cn ηα

sn ηα + 1 + sn ηα + 1
cn ηα

eiμα , forB > 0, 68

Φ x, t = ± 1
2B

1 − κ2 sn ηα
cn ηα + dn ηα

+ cn ηα + dn ηα
sn ηα

eiμα , for B > 0

69

Hyperbolic solutions (if κ⟶ 1 in (65)-(69))

Φ x, t = ± 2
B
tanh ηα + 2

B
coth ηα eiμα , forB > 0,

70
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Figure 4: (a–c) 3D shape of Eq. (29) with α = 0 5, 0.7, and 1. (d) 2D shape of Eq. (29) with vary values of α.
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Φ x, t = ± 2
B
coth ηα eiμα , forB > 0 71

Trigonometric solutions (if κ⟶ 0 in (65)-(69) for B > 0)

Φ x, t = ± 2
B
cot ηα + tan ηα eiμα ,

Φ x, t = ± 2
B
sec ηα eiμα ,

Φ x, t = ± 2
B
csc ηα eiμα ,

72

where μα and ηα are defined in (14) or (15) in the sense of BD
or MTD, respectively

Remark 1. If we put α = 1 (or α = 1 and σ = 0) in Eq. (40),
then we obtain the same results (71), respectively, reported
in [24].

Remark 2. If we put α = 1 (or α = 1 and σ = 0) in Eqs. (60),
(70), (44), and (41), then we get the same results (34), (35),
(36), and (37), respectively, reported in [27].

6. Effects of the Beta and M-
Truncated Derivatives

Now, we examine the effect of the BD and MTD on the
obtained solutions of the FLE (2)/(3). A number of diagrams
are presented to illustrate how these solutions behave. For
specific achieved solutions including (29), (40), and (43),

let us fix the parameters ρ = γ1 = μ1 = η1 = 1, η2 = 2, μ2 = −2,
t ∈ 0, 2 , and x ∈ 0, 4 to plot these graphs.

6.1. The Effect of Beta Derivative. From Figures 1–3, we infer
that all solution curves differ from one another. Further-
more, the surface shifts to the right as the order of the deriv-
ative decreases.

6.2. The Effect of M-Truncated Derivative. Finally, from
Figures 4–6, we deduce that all solution curves are distinct
from one another. Furthermore, the surface shifts to the left
when the derivative’s order decreases.

7. Results and Discussion

The Fokas-Lenells equation (FLE) is a nonlinear partial
differential equation that arises in various fields of mathe-
matical physics. It has several applications in fluid dynamics,
quantum mechanics, and nonlinear optics, among others.
Obtaining exact solutions for the FLE is of utmost impor-
tance. These solutions deepen our understanding of the
physical phenomena, validate approximations and numeri-
cal methods, foster the development of new mathematical
techniques, and facilitate education and training. The
pursuit of exact solutions drives progress in mathematical
physics and contributes to a broader scientific and techno-
logical advancement.

As a result, we obtained the exact solution for FLE
including the M-truncated derivative or beta derivative.
Utilizing the modified mapping method, new elliptic, hyper-
bolic, rational, and trigonometric solutions are acquired. For
some fixed parameters and for various order of fractional
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Figure 5: (a–c) 3D shape of Eq. (40) with α = 0 5, 0.7, and 1. (d) 2D shape of Eq. (40) for distinct values of α.

13Journal of Function Spaces



1.5

So
lu

tio
n 1

0.5

0
4

Space (x)

3
2

1
0 Time (t)

0
1

2
3

(a) α = 1, σ = 0

1.5

1

0.5

0
4

3
2

1
0

3
2

Time (t)
Space (x) 1

0

So
lu

tio
n

(b) α = 0 7, σ = 0 9

1.5

1

0.5

0
4

3
2

1
0

3
2

Time (t)
Space (x) 1

0

(c) α = 0 5, σ = 0 9

Figure 6: Continued.

14 Journal of Function Spaces



derivatives, we plotted many graphs to display the impacts of
fractional derivatives on the solutions. We deduced that
when the derivative order decreases, the beta derivative
pushes the surface to the left as shown in Figures 1–3,
whereas the M-truncated derivative pushes the surface to
the right as shown in Figures 4–6.

8. Conclusions

We looked at the Fokas-Lenells equation (FLE) with the beta
and M-truncated derivatives. The exact solutions of FLE
were acquired through the implementation of a modified
mapping method. These results are vital in clarifying a broad
variety of interesting and difficult physical processes. Further-
more, we extended some previous results such as the results
stated in [24, 27]. In addition, the beta and M-truncated
derivative impacts on the exact solution of FLE (2)/(3) were
addressed by using the MATLAB program. Finally, we
deducedthatwhenthederivativeorderdecreases, thebetaderiv-
ative pushes the surface to the left, whereas the M-truncated
derivativepushesthesurfacetotheright. Infuturework,we look
atEq. (1)with additive noise.
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