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In this paper, we consider a class of fractional p-Laplacian problems with critical and negative exponents. By decomposition of the
Nehari manifold, the existence and multiplicity of nontrivial solutions for the above problems are established with respect to a

sufficiently small parameter.

1. Introduction and Main Result

Laplace transformation is an integral transformation com-
monly used in engineering mathematics. The transformation
is a linear transformation that transforms a function with a real
parameter number #(¢>0) into a function with complex
parameters. The Laplace transform has extensive applications
in many fields of engineering technology and scientific
research, especially when it plays an important role in mechan-
ical systems, electrical systems, automatic control systems, reli-
ability systems, and random service systems. In circuit analysis,
it is often necessary to solve the differential equation or the
integral equation, which can be solved by the Laplace transfor-
mation. The application of nonlinear equations promoted the
development of nonlinear sensitive electronic devices on the
load side and grid side of the power system. The stable opera-
tion of the power system at each level can be effectually pro-
tected by exploring the nonlinear phenomena in the case of
ferromagnetic resonance overvoltage situation. So, studying
the Laplacian system is an important topic.

In this paper, we study the following fractional p-Lapla-
cian system:

A
(—A);y = ﬁu"‘"vﬁ +f(x)u?, inQ,
s A o, B— — .
(-4),v= ﬁu ligor?, nQ, (1)
u>0,v>0, inQ,

u=v=0, in]RN\Q,

where Q is a bounded domain in RY, N > ps with s € (0, 1),
0<y<l<p,a>1,B>1 with a+ B =p;, where p; = Np/N
— ps is the fractional critical Sobolev exponent, and A is a
parameter. f(x) and g(x) satisfy the conditions f,g: Q
— R such that 0 < f, g € L (Q), where y* =p*/p; — 1 +y.
The fractional p-Laplacian operator (~A), is defined as

SN T |u(y) = u(x) [ (u(y) - u(x)) N
(—A)Pu(x) =2 181{%.‘.1;1'”\36(;() x _y|N+PS dy, xeR™.
(2)
We define

X= {uu ‘RN —>]Rismeasur:11ble,u’Q EL"(Q)

(3)
J dedy<+00},
Q |x—yM

where Q = R\ (8Q x €Q) with Q2 =R" \ Q and X, = {
ueX|u=0o0n%Q}. The space X is equipped with the norm
[[ullx = lull o) + lluell x> where

— 4
Jully, = jQdedy. (4)

‘x _y|N+ps

Set E = X, x X,, with the norm ||u, v|[* = |Jul% + [|v|% . (
0 0
u,v) € E is called a weak solution of problem (1) if
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ESE )W) ) () =90
Q

|x _y|N+pS

+J v(x) = v(y)|"* (v(x) —:I(y))(%(x) -9,(») dxdy
Q e = y|7

= —A“ J u"‘_lvﬁq)ldx+ —Mg J u“vﬁ_l(pzdx
a+f)a a+f)a
| (g, + gl g

()

for all (¢,,¢,) € E. The best fractional critical Sobolev con-
stant S is defined as

o () = () P11 = y| Py

= inf .
S (et a0

ueX,\{0}

In recent years, fractional Laplacian and p-Laplacian sys-
tems with subcritical and critical nonlinearities have been
studied widely. Chen and Deng [1] and Li and Yang [2] stud-
ied the following critical fractional Laplacian system with a
lower-order term:

2
(=AY u=AulTu+ 2y 2upyff, in Q,
a+f

2
(-ayv = 2v e 2B ey,

in O,
a+f mn

in RN\ Q,
(7)

L u=v=0,

where Q ¢ RY is a bounded domain with a smooth boundary,
0<s<1,1<q<2, o B>1 satisfy a + =27, where 27 =2N
IN —2s and N >2s, a, 3> 0 are parameters. The main diffi-
culty lies in finding the interval of ¢ where the local (PS), con-
dition is satisfied. The authors both adopted the explicit
formula of extremal function related to the best Sobolev con-
stant and some useful estimates established in Barrios et al.
[3] (Lemma 3.8) to overcome this difficulty. Compared with
the fractional Laplacian system with critical nonlinearities,
for the critical fractional p-Laplacian system with p # 2, we
must face the difficulty that the explicit formula for
minimizers of critical Sobolev constant S does not exist. Chen
and Squassina [4] overcame this difficulty by borrowing the
asymptotic estimates for minimizers of S, which were obtained
in Brasco et al. [5].

On the other hand, much attention has been focused on
discussing the fractional p-Laplacian system with negative
exponent and subcritical nonlinearity. In [6], Goyal first
investigated the following fractional Laplacian system with
sign-changing nonlinearity:
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(=AYu=Af (x)u + “f"ﬁ b(x)u W, inQ,
(-A)Y'w=pug(x)w™ + (Hﬁﬁb(x)u“wﬁ_l, inQ,
u>0,w>0, in©,
u=w=0, in]RN\Q,

(8)

where0<gq<1,a>1, >1,2<a+ <2 —1and b(x) is a
sign-changing function. Using the decomposition of the
Nehari manifold, the multiplicity of positive solutions for
(8) with respect to the pair of parameters (A, ) was estab-
lished. Furthermore, the author extended the above same
result to the following p-fractional Laplacian system:

(—AYu=Af (x)u + ﬁ bx)ut W, inQ,
(-A),w =pg(x)w+ % b(x)u"wf, inQ,
u>0,w>0, inQ,
u=w=0, inRM\ Q,

©)

wherea>1,5>1,0<q<1l<p-l<a+f<pi-1,b(x)isa
sign-changing function. Very recently, Saoudi [7] investi-
gated the following fractional p-Laplacian system:

-«
2-a-f

(-2 = bl ve LBt e,

(=4)yu=Aa(x)[u|u + () |u ", in Q,

in Q,

in RV\ Q,
(10)

where 0 <a <1, 0< <1, 2-a—-B<p<qg<p;. Using the
variational method, the author proved that (10) has at least
two positive solutions when the pair of parameters (A, )
satisfies certain conditions. We have found that it is easier
to deal with subcritical problems than critical ones because
compact conditions for Sobolev embedding are satisfied in
the subcritical case, while global (PC), condition for the
energy functional corresponding to (1) does not usually hold
in the case of critical problems. Moreover, Arora and Fiscella
[8] studied a class of double-phase problems with a negative
exponent and a critical Sobolev nonlinearity. The proof of
the main result is based on a suitable minimization argu-
ment on the Nehari manifold. Zuo et al. [9] combined the
effects of a nonlocal operator with critical nonlinearity. Suit-
able embedding results were developed to establish the exis-
tence of infinitely many solutions and to provide an estimate
of the boundedness of these solutions. For more recent
results on fractional p-Laplacian problems with singular
terms and critical terms simultaneously, see [10-13] and ref-
erences therein. In fact, Ghanmi et al. [10] studied a class of

u=v=0,
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nonlocal p-Kirchhoff problems with a negative exponent and
critical nonlinearity. The authors established the multiplicity
of positive solutions to the above problems by using a trun-
cation argument. Sang [11] considered a fractional critical
system with p-Laplacian operator and negative exponents.
By applying fibering map analysis, the existence of two pos-
itive solutions for the above systems was obtained. Further-
more, Saoudi et al. [12] proved the existence of solutions
to a nonlocal problem with a singular term and a discontin-
uous critical nonlinearity. Fiscella et al. [13] investigated the
existence of nontrivial solutions for critical systems driven
by the fractional p-Laplacian operator. The main features
of this paper are the presence of critical nonlinearities and
singular terms.

Motivated by the above results, we consider fractional
critical p-Laplacian system (1). We combine critical prob-
lems with negative exponents. Note that the energy func-
tional corresponding to (1) is not differentiable in the
sense of Giteaux; the method used in [1, 2, 4, 14-20] cannot
be applied to our problem directly. Since p # 2, we cannot
also extend the methods used in a single equation with crit-
ical and negative exponents [21, 22] when p =2 to problem
(1). We use the concentration compactness principle [23,
24] to avoid this barrier. Our idea comes from Wang et al.
[25].

The energy functional associated with problem (1) is
defined by

1
L (uv) =1;|IM»V||”

Vﬁ X — !
a+l3J a l—yJ (11)
[f(x)u'™ + g(x)v' ] dx.

We define a set

Ny = {(u, v) € E|||u, v|]P - AJQu“dex —J
[f(x)u' ™" + g(x)v ] dx =0}

Q (12)

and decompose /', with the following subsets:

N = {(u,v) e p-1+p)|wv|f —AMa+p-1 +y)J uvPdx > (<)0},

0
/ng {(u,v) eMNy|(p-1 +y)|\u,v\|P—A(oc+ﬁ—l+y)J u"‘vﬁdx:O}.
0

(13)

Our main result is the following.

Theorem 1. There exists A* > 0 such that for every A € (0, A")
, problem (1) has at least two nontrivial solutions (u,, v;) and
(uy, v,) in E. More specifically, (u;,v;) is a local minimizer of
Iy in E with I, (u;,v,) <0, and (u,,v,) € N3 is a minimizer
of I, on Ny with I)(uy,v,) > 0.

2. Preliminaries and Some Lemmas

Let

P
inf I 7] (14)

Sup = ot
> [7RY ot+p
(1,v)€E\{(0,0)} (I ul° |V|ﬁdx)P +

and the relationship between S,z and S has been

revealed in [4]. In order to prove our main result, the follow-
ing lemmas are needed.

Lemma 2. The functional I, has a local minimum m in E
with m < 0.

Proof. Since

- - 1- 1-
J fo)ul’ y+[ gV dx < |Ifll lully:” + gl vl
Q Jo

<, (n 1) g (1)
Vs 5
P P\ Ve
o N
< (I + gl ) | =

/1 e\ 17 (s v\ Y
= (g ety (L) (15)

u VHP a+flp
W vPdx < ”’7 < S;‘”ﬁm”u, v||‘”ﬁ, (16)
Q Sa,ﬁ b

for every (u, v) € E, where we have used the Holder inequal-
ity, (6) and (14). We come to

1 A —oc+,8/p ||

o 1-
Li(uv) 2 EIIWII" PR v[|F = Cy v,

V(u,v) €E.
(17)

Hence, there exist A, >0 and R>0 such that I, is
bounded on By = {(u, v) € E|||u, v|| < R} for every A € (0, A,
). It follows that m= inf I,(u,v) is well defined for fixed

(u.v)eBy
A€ (0, A,). Furthermore, choosing (u, v) € By with all u, v
#0, we have

I (tu,t 1
lim A(tu: 1) =-
t—o0t Y 1-y

J [f(x)u' Y + g(x)v' V]dx < 0;
(18)

thus, I, (tu, tv) <0 for all u, v# 0 and ¢ small enough. Con-
sequently, m < 0. O

Lemma 3. There exists (u;, v,) € By such that I,(u;, v;) =m.



Proof. The definition of m tells us that there exists a mini-

mizing sequence {(u,,v,)} such that lim I,(u,,v,)=m
n—aoo

<0. We assume that u, >0 and v,>0. By ||u,,v,|| <R,

there is a subsequence, which is still denoted by {(u,,v,)},
such that

(> V) =

In terms of the fractional concentration compactness
principle [10] (Theorem 2.5), there exist two Borel regular
measures ¢ and v, ] denumerable, x; € Q, ;2 0, v; > 0 with

p;+v;>0,j €], such that

(uy,v,)in E. (19)

— p _ p
[RECETIP L SATP
R ey T

x y|N+PS ly — du, ufl‘vf —dv,

(20)

vi()f
N+ps Y

| |u1<x>—z;1+<{>|de+J 71 () -
RY  |x—y[7P RY  |x -y

_ B 1P
+ Z]:‘uj(?xj,dv— uyvy + Z]vjéxj,yszv? .
je je

(21)

It follows from Vitali’s theorem that

[Fm ™ + gl |
(22)

n—~oo

lim J]R\ [f(x)u, Y + g(x)v, V]dx = J

]RN

which, coupled with (20) and (21), gives

N e e AR C I

A 1 |t (x) —w ()
- u‘,’fvfdx} > - J J 7V 1y
“+ﬁJQ p\UJrvlry  Jx—yNP 4

vi(x) =vi(y) P Ip:
+JRNJR~4x P dydx + Y'sV! )

j€J

A B 1 J
- uvidx+ Y v, | — ——
0(+[)’<LRN 1 ; J) 1—)/ RN

{f(x)ui_y + g(x)vi_y} dx.

(23)

If J = @, then

1 |uy (x) — 1y (y) ‘P J
z 7 V7 dydx +
p <J]RNJ]RN |x —y|N+PS 4 RN

|V1(x 5218 A « f 1
J N+PS dydx m ]Rt\yulvldx—m o

m

[\

y+g }dx

(24)
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Combining with the definition of m, we deduce that

Q Jw P e |,

P
|V1 1}l(y| _ A a, B _ 1
J N+PS dydx “+ﬂ,[RNu1V1dx I_VJRN

1-
x)uy ! X)) y] dx.

m=

(25)

In the following, we focus on showing J = &. Firstly, by
(21), we have J]RN dv> LRN u‘l"vf dx, so we only need to prove
that LRNdv = LRN u‘fvf dx. We assume by contradiction that
J‘]RN dv > LRN u‘fv”fdx. Since Zjejvj = LRNdv - j]RN u‘l"v/fdx >0,
we derive that

m<m-— — Z vplp‘ Zv (26)

JEI JEI

If0< v; < 1, for all j € ], it follows that

mgm_;z ZV (a+ﬁ p),ezj ’

€] JGI
(27)
which is wrong if we choose A < (a0 + f3)S/p.
If there exists a subsequence {v;}(j€{1,2,--}) such

that v; > 1, then

m<m+< A S)
¢X+ﬂ p je]\{j\vjzl} “+Bv>1 Py

where A < Xz with (Xz/cx +B- Slp)Zj&]\{jlvjzl}vj + Xz/oc +B
Zvjzlvj <0, which is a contradiction. Set A <A, =min {(«

+B)S/p, Xz}, we have that ] = &. This completes the proof
of Lemma 3. O

Lemma 4. [ is coercive in A.

Proof. For (u,v) € A, we have

b= (5= gl - (75 - 2p) |

L e [T

1 1 Leylp _
(55 ap) (W7 hglge ) ™ s v,
(29)

it follows from p > 1 —y that I, is coercive on A. O
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Let (t,u, tv) € AT, (tu, t,v) € A7, (31)
-1+ "
= %Sa}f"’ forall e (0,),) and (u, v) € E.
{ i;ﬁif 0v%9”+|mﬂ“0m”9ﬂﬂaprW1. Proof. For t >0, we define ¢,,,(1): (0,+00) x E— R by
a+tp-1L+y
(30)
¢, (1) = p(a+p) |, v||P — AJ uP dx — tl—y—(a+ﬁ)J
Lemma 5. There exist two and only two numbers t, and t, - 12} o (32)
with 0< t; <t, such that [fx)u'™" + g(x)v' ] dx.
bt (a+B—p)l|u v e
ST (et BT y) [lf ()u Y + g(x)v!]dx ’ (33)
33

(a+B-p)ll(w )]

¢”WUmQ=H%WV@—“—ﬁXP—1+w<

Therefore, ¢, ,(¢) achieves its maximum at ¢, and

. B p- 1 +y a+ﬂ_P a+f-plp-1+y
¢u,v(max)_ aJrﬂ*lJr}/ aJrﬂ,ler

” (u’ V) Hpoz+571+y/p71+y

ol e
(J“Q[f(x)ulfy +g(x)vl,y]dx)mﬁ—p/pqw )‘Jnu vPdx >

P_1+Y a+ﬁ_p a+f-plp-1+y
a+f-1+y)\a+B-1+y

H“’ v”pa+ﬁ—1+y/p—1+y
/1 /1 1+ylp 1-y
[ (12 + 1) ™ (i) |
- -1 - a+f-plp-l+y
—ASa,ﬁ%’l\u,vl\“*ﬁ: {( p-l+y > < atp-p )

a+f-plp-1+y

a+f-1+y)\a+p-1+y

(1=n)@B-p)ip-1+y . |~ @ Bp)p(p-147)
(¥5) (WA + gl
- AS;'E“"’} It 7] **F = E(A) [t v .
(34)
Note that E(A) =0 if and only if A = ;. By the condition

that A <A;, we deduce that E(A) >0 and ¢, ,(¢,,,)>0. A
simple computation leads to

lim ¢ =co, lim ¢= —AJ uvPdx < 0. (35)
Q

t—0* t—+00

Consequently, ¢, (¢) has exactly two zero points ¢, and
t, with 0 < t, < t, such that ¢'(t,) <0< ¢'(¢,).

(@ + B=14y) [olf ()u'™ + g(x)v~]dx

p-a=p-2/1-y—p
) <0.

Let </5/W(t) =0, which yields
If ¢,,(t)=0and ¢, (t) >0, then

[|tu, tv||f - AJQ(tu)(tv)ﬁdx - JQ [f(x)(tu)'™ + g(x) (tv) V] dx =0,

(36)

so (tu, tv) € A.
Furthermore, gb’u’v(t) >0 implies that

(0= (et B vl act )07
Q
[f(x)u' ™ + g(x)v'7]dx>0; (37)

by the definition of A, we have

@—1+ymawnmv—Am+ﬂ—1+wL;mfanﬂu>a
(38)

namely, (fu,tv) € A*. Therefore, (t,u,t,v) € A*. Similarly,
we get (£, u, £,v) € A™. O

Lemma 6. For A € (0, A;), we have A° = {(0,0)}.
Proof. Assume that A° # {(0,0)}. If (u,v) € A°, then

[|u, v||P - Ajgu“vﬁdx - JQ [f(x)[|u'™Y + g(x)v' " ]dx =0,

(39)



6
p-1+y)|wv||f —A(a+B-1+ y)JQu“vﬁdx =0.
(40)
By (39) and (40), we get
P_oc+ﬁ 1+yJ 1y 1y
vl = ST | (oot ¢ gl )
06 + ,3 1+y pli+y pllay\ LHVIP —1-yip 1y
< gy (VI + gl ) s o0 v,
(41)
1
1= %J s
° (42)
0£+,B 1+V —OH'/;/PH( )||(x+ﬁ
p-1+y '
Combining with (41) and (42), we derive that
p 1+ V S v |p—a—ﬁ
Ta+f-1+y P
p -1+ V S"”’ﬁ/P
Ta+f-1+y P
- atp-ply+p-1
o+ ﬁ p pll+y pily ~1HVIP 1-ylp "
g (A gl ) ™™
=1,
(43)
which contradicts with A € (0, A5). O

Lemma 7. Assume that A € (0, A;), then A~ is a closed set in
E-topology.

Proof. Assume that {(u,,v,)} C A” and (u,,
strongly in E. In the following, we prove that (u,
For {(u,,v,)} ¢ A~, we have

v,) = (,7)
v)eA.

(p—1+y>|\un,vn||P—A<a+ﬁ—1+y>J b <o, (44)
(0]

and so,

(p—1+y)||u,v|\1’—)t(oc+ﬁ—1+y)JQu“vﬁSO. (45)

Therefore, (u, v) € A~ U A°. We can show that (u, v)eA°
by contradiction. Otherwise, if (u, v) € A°, we get that from
the definition of A° that

[Jus VI[P - AJQu“vﬁdx - L) [f(x)u" " + g(x)v' ¥]dx =0,
(46)
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<p—1+y>||u,v||P—A<a+ﬁ—1+y>J uvhdx = 0.

) (47)

By (34), (46), and (47), we deduce that

_ _ a+f-plp-1+
E(A)”M,VHDHI; < P 1+y (X+ﬁ P Y
a+f-1+y)\a+B-1+y

|| u, V| ‘pa+ﬁ—l+y/p—1+y

(.[Q [f(x)ulr + g(x)vPY]dx) a+p-plp-1+y

A uPdx = b1ty
a a+f-1+y

a+ ‘8 -p a+f-plp-1l+y
((x +p-1+ y)
”u’ V||poc+[3—1+y/p—1+y
((o+ B=p)l| V][l + B= 14 y) = FFP7
p-1l+vy
Ca+t ﬁ

IIu’VIIP 0,

(48)

which contradicts with E(A) > 0 for all A € (0, A). O

Lemma 8. Let (u,v) € N}, then for every (¢,, ¢,) € E, there
exist a number € >0 and a continuous function h : [0,400)
—> (0,400) such that

h(0) = Lh(t)(u+1d,,v+td,) € N5, |t| <& (49)

Proof. We define F : Ex R" — R as follows:

EF(t,r) =" ||u+tg,, v +tg,||F - M"‘*ﬁ_“"J
o

(1 + 66, (v + 06, Pdx - jﬂ [F(0)(u+ 1)1 + g(x)
(v+1¢,) " ]dx.
(50)

For (u,v) € /' C W, we have

F(0,1) = ||u, v|]P - AJQu"‘vﬁdx - J‘Q [f(x)u'™ + g(x)v' V]dx =0,

uvPdx <.

F(0.1)=(p-1 +V)HMH"—A(0¢+13—1+V)JQ
(51)

We deduce that there exists € > 0 such that F(¢, r) = 0 has
a unique continuous solution r = h(t) > 0 for |t| <&, t € R by

using the implicit function theorem at the point (0, 1). Since
F(0,1) =0, then h(0) =1. By F(t,h(t)) =0 for [t| <& t€R,
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we obtain

0= (h(t))PﬂwHu + 1y, v+ 1, || - )L(h(t))mﬁ—le

[0}

(1 + 19 (v + 9P - JQ [F()(u+ 1)) + g(x)

v G

<h<t><u+r¢1>>“<h<t><v+t¢2>>ﬁdx—JQ

[F)(R(t) (u+16,))" ™ + g(x) ((£) (v + t9,)) 7 dlx],
(52)
that s,
h(t)(u+td,,v+tp,) €N, VEeR,|t| <& (53)
Since F,(0,1) >0 and

E,(th(t)) = (p = 1+y)(h(t)" 7 [u+t¢,, v + 16, ||
= Mot B=1+y) ()™ F>7

u (v Bdx = ;
J, o070 = b

{(p— L+ y) [B(E) (1 + £ v+ 1) PN

(a+f-1+ V)L(h(t)(u +10)) (h(£)(v + f¢z))ﬁdX} ’
(54)

we can choose ¢ >0 sufficiently small (e <€) such that for
every t € R with [f| <¢,

(o= 14 PO+ 19, v+ 187 = Macs = 1+7)

Q
(h(t)(u+ t,))*(h(t) (v + t$,))Pdx <0, (55)
that is,
h(t)(u+te,,v+td,) €Ny, VteR. (56)
This completes the proof of Lemma 8. |

Lemma 9. There exists a constant A, > 0 such that I)(u,v)
> 0 for each (u,v) € A and all A € (0,A,).

Proof. Assume that there exists (&, v) € 4, such that I, (,
v) < 0 thus,

Goale ),

JQ [f(x)a"™ + g(x)v'7]dx <0.

T C S I
(o)

7
Equations (14) and (15) lead
[[wan [olnierD
Q A(1-y)(a+B-p)
S 1-y a+Bla+f-1+y
1+ 1y 1TYP a,
(W + ™) ( f) ] .
(58)

On the other hand, from (6) and (14), we have

—1+v)S a+flo+f-p
J uvPdx > [w} , forevery (u,v) e 4.
o

A(Of + /3 -1+ y)
(59)
Choosing
e b et (Hf“w*Hy + Hg”f’{“y)“w ?[Sap o (Mﬁ)(mﬁ*")’lfvfp.
A -y)(a+B-p) y Y :
atpotey IO
(P-1+9)S.s
(60)
we have

-1 S a+pla+p-p
J uvPdx < {—(P +7)Sap } , (61)
o Ma+pB-1+7y)

which is a contradiction. This completes the proof of Lemma
6. O

3. The Proof of Theorem 1

Our proof is divided into the following three steps.
Step 1. Problem (1) has a weak solution (u,,v,) in E.

Let m_= inf I,(u,v)>—00.In terms of Lemma 4, we

(wv)eny
know that I, is coercive in //; hence, m_ is well defined.

Ekeland’s variational principle guarantees to extract a mini-
mizing sequence {(i1,, v,)} c A} with

1
+—lu—t,v-=v,|,¥Y (u,v)eN;.
n

We assume that i, ¥, >0 in Q and (i,, v,) (up to sub-
sequence if necessary) converges to a nonnegative function,
denoted by (u,,v,) satisfying

u,v,)— (u,,v,) weakly in E,
( n n) ( 2 2) y (63)
v,) — (uy, v,) a.e.in Q.

Fix (¢,,¢,) € E with ¢, ¢, >0, by using Lemma 5, there



exists a sequence of functions f, : [0,+00) — (0,+00) such
that f,(0) =1 and f(£) (@, + td,, Vi + t¢,) € A} for all (i,
V) € 7 and t small enough. It follows from the definition
of &, that

P [+ 1y, 7y + 15 = AL (1 >j9<ak+t¢1>“<vk+ t,)Pdx

—fi’y“)L [ () (g + 1) + g () (7 + 1) V] dx =0,
(64)

Jiw 5l -A| e | [pa
(0} Q

SO

%ka( ) = Yl viell + £ (D)]161 6211 2 k”fk( ) (i + 1y, Vi + 19y)
= (o Vi) 1 2 I Vi) = I[f1(8) (i + £y Vi + £6,)]

) a+f _
) # a0 P + A%)ﬁljg(ﬁk +1¢,)" (7 + 19,)Pdx

oy
' kl(it)yl JQ MO th)' " + g(x) (Vi + t¢2)l_y] dx
t

\

HG . - -
T (1o Pl = [ + £y, W + 155 |17)

A

a+f
1

~

+

0

5 | e[ 0 -7 ax

1 - Ly 1e
+ HL“") [+ 12)7 =57
(66)
thus,
[ 7+ 1910651 = ~£100) o 7P
+/\fk(0)J WA dx+ f1(0 )L} { fa "+ g(x)f/};q dx
= [ () - O ) - ) (19
alx-yl
— DI ~ TP (3500) ~ ) (623
Oy + 25 [ e 2B [ oot

o[ rwars, +g<x>vky¢z]dx:—fL<o>{Huk, w2 afax
0
J’ 1

J e gt e} - | s e -Gt
I (71(x) = V() ($2(%) = ¢ (7)) | dxdy
+ %jﬂﬁflf/fgbldx#— atﬁ ﬁJ A, dx + JQ [f(x)ii" ¢, + g(x)7" $,] dx

(67)

1 (7)) ($1(¥) = 1 () H7(x) =
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We derive that

|| FC0m6, + 9" 0.Jdx = ¢ 71007l + 9 421
(0}
| B = RO )~ B0 (1)
= NI = O x) ~ 500) (62(3) - 4,0y
A [ .y AB ~a~f-1
—mj iy qubldx— +ﬂJQukvf ¢, dx.
(68)

Furthermore, there exists a constant C, >0 such that |
f4(0)|<C,. Taking k— 00, we deduce from Fatou’s
lemma that

|| (606, + g(avs"g, )< imine | {7379,

+ ()79, dx < jQW [16) = 0,2 (1 ()
) () ~ 0N )~ 12 0) P (2(x) ~ 120) ()
~o0)ldsdy= 25 [ s 2B g

(69)

Consequently,

jQﬁ [J12(5) = 16 () P2 (025) = 1(9)) (8, (5) = 6, )

Hva(x) = v ()2 (12 (%) = 12 (0))(82(x) = 9, (9)) | dxdy
Aa us! ﬁ x — AP U dx — x)u,"
- 2| e CE L und e | (e
+g(x )v2y¢2}dx2 0.Y (¢, ¢,) € C.

(70)

Since (¢,,9,) is arbitrary, this inequality also holds for
=(¢1> ¢,); thus,

J oy a8) =0 0) = 1)) 012
=B 0)H(x) = 720002 () = ) (2(3)

A A |
-0 0ldsdy = 55| vigdn- L] o

i J fT 6+ g(a)ga]dx =0 (91, ¢,) € Cr,
(71)
which implies that (u,, v,) is a weak solution of the problem
(1).

Step 2. There exists a constant As > 0 such that (u,, v,) € /3
when 0 < A < A..



Journal of Function Spaces

For each (u,v) € /3, we have

B(wo) = [wo)lf - | wofr

A
+BJa
1
- — (v P—/\J u“vﬁdx}
|l -a]

- (515 ) lwor

.y ((x Jlr 5 li—y) JQu“uﬁdx (72)

< MJ u“vﬁdx
plp-1+y) Jo

—/\(—1 - )J uvPdx
a+f 1-vy)])a

{oc+ﬁ—1+y_ 1 N 1 }J 0By
plp-1+y) a+f 1-y|)q
inf I,(u,v)<1/N

(uv)eny

We only need to prove that m_=

SN2, when A < A; with

As [a+ﬁ—1+y ML ]J WP < = SN,
pp-1+y) a+p 1-yllg N
(73)
Repeating the arguments as in Step 1, we have
7 (x) — 5(x) — ()P
[ WO 4 [ BB 4y,
Q |x-y* Q |x-yf* (74)

- A.[Qagafdx - JQ [ F)i + g(x)a,iﬂ dx=o(1).

In the following, we show that (u,,v,) € /. Note that
N7 is closed and (i, ) — (u,, v,) in E, it suffices to prove
that ||i, V|| — ||, v,||. We suppose that (i, ) and (u,,
v,) satisfy the same properties as in (20) and (21). Let x; € Q2
in the support of v and . Define ¢, € C°(B,,(x;)) with

C
(P520’¢£|BE:1’ ‘(P£| <1 |V(P£| < ?3 (75)

Applying (74), we derive that

J [ (%) = i ()P (i (%) = (7)) (8, (%) = 64 (9)) dxdy
Q

|x _y|N+ps
[ ) = B () W02 20,0 4 g,
Q =y
Aa A 1
- mjgaz*vf%dx— %J;gvﬁ ¢,dx
~ | @61+ ()7 ;] dx = o(1) (k—o0),

for every (¢,,¢,) € E. Since (¢,ii, ¢.v;) € E, repeating the
arguments as in Lemma 3, we derive that

J | (%) = ()P (%) = 0(0)) (@i (%) = @i (1)) dxdy
Q e =y
+J 7 (%) = 7 0) P (7 () —‘7/;](32)(%{%(’6) - ¢ (7)) dxdy
Q |x =y

Ao e AB a~f-1
- oc+ﬁJ iy 1vf(peukdx— mJQukvf @ Vi dx

—jﬂ ()i + (%), 7] dx = o(1),

(77)
k — 00. Moreover,
J et =2 gutv=[ [, + goi g
_ _J | (%) = () [P (%) = () (9(%) = 9. (0)) i () dxdy
Q e — y VP
_ J (%) = 1) (7(x) = 950) (@ (%) = 9. (1) 7k (») dxdy
Q e =y
+0(1) (k—>0c0).
(78)
Thus,

0= lim {J Podu - AJQ%dv - JQ £, + g(x)) "] dx}

e—0
=4~ )LV’
(79)
by HjZSvf/P:, namely, AijSV;’/P:, we get v;=0 or v;>
(SIMNP,

Next, we prove that v; > (S/A)N's does not hold. Other-

wise, there exists j, such that v, 2 (S/A)N/Sp , then

1 A 1
= Tim |l 112 — oL
= Jim i 517 - g | e [
~1-y ~1-y 1
(f(x)uk T+ g(x)v )dx}>l{ i
+(l- ! >“+ﬁ_1+V“ il dx
p 1-y) p-1+y Jlo
ZA[ 11 _< 1 >(x+ﬁ—1+y}
I-y a+Bp \I-y p) p-l+y

(J ”zvde]eZ]v) L—V ) aiﬁ ) (liV _Il)>

a+f-1+y
p-1l+y

:| —N/SpsN/Sp > NSN/Sp’

(80)



10

where A < A5 with A5 < {N[1/1 =y - l/a+ B~ (1/1 -y - 1/p)
a+ B —1+y/p—1+y]}P"; this contradicts the fact m_ <
1/NSV/7*, Choosing As = min {15, A5}, we have ﬁ,f?/f - ug‘vf
and (u,,v,) € /) when 0 <A < A;.

Step 3. (uy,v;) is a nontrivial solution to problem (1).

Let A* =min {A,},i=1,2,3,4,5, then Lemmas 2-9 and
Steps 1 and 2 hold for all 0 <A <A*. Using Lemma 3, we
have

minly (uy + 1y, vy +1¢,) =1 (g + 1y, vy +1¢,)], =0
V(¢1,¢,) €E.

=I)(u, ),

(81)

Hence, (u;,v,) is a weak solution of (1). Since

0< Iy (uy +tdy, vy +1dy) = Iy (up, vy) = —[Juy + ty, vy + 1, [P

ST

- %L( 1)) (v + 14,) dx - ﬁJQ (£ + 1)

1 A
I-y i P a
# gl +16) s P+ g vl
1 - . 1
o | [ g des i, gl
1
7;}HL11,1/1||",¢120,</>220.

(82)

Dividing by ¢ > 0 and passing to the limit as t — 0, we
obtain

[ Lt u0) P09~ ) () = $10)
Q

=y
NECE <y>|"‘2<v|;<f>y D00 gy
(83)

Hence, (u;, v;) is a nontrivial solution of (1). This com-
pletes the proof of Theorem 1.
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