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In this paper, we consider a class of fractional p-Laplacian problems with critical and negative exponents. By decomposition of the
Nehari manifold, the existence and multiplicity of nontrivial solutions for the above problems are established with respect to a
sufficiently small parameter.

1. Introduction and Main Result

Laplace transformation is an integral transformation com-
monly used in engineering mathematics. The transformation
is a linear transformation that transforms a function with a real
parameter number tðt ≥ 0Þ into a function with complex
parameters. The Laplace transform has extensive applications
in many fields of engineering technology and scientific
research, especially when it plays an important role inmechan-
ical systems, electrical systems, automatic control systems, reli-
ability systems, and random service systems. In circuit analysis,
it is often necessary to solve the differential equation or the
integral equation, which can be solved by the Laplace transfor-
mation. The application of nonlinear equations promoted the
development of nonlinear sensitive electronic devices on the
load side and grid side of the power system. The stable opera-
tion of the power system at each level can be effectually pro-
tected by exploring the nonlinear phenomena in the case of
ferromagnetic resonance overvoltage situation. So, studying
the Laplacian system is an important topic.

In this paper, we study the following fractional p-Lapla-
cian system:

−Δð Þspu =
λα

α + β
uα−1vβ + f xð Þu−γ, inΩ,

−Δð Þspv =
λβ

α + β
uαvβ−1 + g xð Þv−γ, inΩ,

u > 0, v > 0, inΩ,
u = v = 0, inℝN \Ω,

8>>>>>>>>><>>>>>>>>>:
ð1Þ

where Ω is a bounded domain in ℝN , N > ps with s ∈ ð0, 1Þ,
0 < γ < 1 < p, α > 1, β > 1 with α + β = p∗s , where p∗s =Np/N
− ps is the fractional critical Sobolev exponent, and λ is a
parameter. f ðxÞ and gðxÞ satisfy the conditions f , g : Ω
⟶ℝ such that 0 < f , g ∈ Lγ∗ðΩÞ, where γ∗ = p∗s /p∗s − 1 + γ.
The fractional p-Laplacian operator ð−ΔÞsp is defined as

−Δð Þspu xð Þ = 2 lim
ε↘0

ð
ℝN\Bε xð Þ

u yð Þ − u xð Þj jp−2 u yð Þ − u xð Þð Þ
x − yj jN+ps dy, x ∈ℝN :

ð2Þ

We define

X = u u : ℝN ⟶ℝ ismeasurable, u
�� ��

Ω
∈ Lp Ωð Þ

(
ð
Q

u xð Þ − u yð Þj jp
x − yj jN+ps dxdy<+∞

)
,

ð3Þ

where Q =ℝ2N \ ðCΩ ×CΩÞ with CΩ =ℝN \Ω and X0 = f
u ∈ X ∣ u = 0 onCΩg. The space X is equipped with the norm
kukX = kukLpðΩÞ + kukX0

, where

uk kpX0
=
ð
Q

u xð Þ − u yð Þj jp
x − yj jN+ps dxdy: ð4Þ

Set E = X0 × X0 with the norm ku, vkp = kukpX0
+ kvkpX0

. ð
u, vÞ ∈ E is called a weak solution of problem (1) if
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ð
Q

u xð Þ − u yð Þj jp−2 u xð Þ − u yð Þð Þ φ1 xð Þ − φ1 yð Þð Þ
x − yj jN+ps dxdy

+
ð
Q

v xð Þ − v yð Þj jp−2 v xð Þ − v yð Þð Þ φ2 xð Þ − φ2 yð Þð Þ
x − yj jN+ps dxdy

= λα

α + β

ð
Ω

uα−1vβφ1dx +
λβ

α + β

ð
Ω

uαvβ−1φ2dx

+
ð
Ω

f xð Þu−γφ1 + g xð Þv−γφ2ð Þdx

ð5Þ

for all ðφ1, φ2Þ ∈ E. The best fractional critical Sobolev con-
stant S is defined as

S = inf
u∈X0\ 0f g

Ð
ℝ2N u xð Þ − u yð Þj jp/ x − yj jN+psdxdyÐ

Ω
u xð Þj jNp/N−psdx

À ÁN−ps/N : ð6Þ

In recent years, fractional Laplacian and p-Laplacian sys-
tems with subcritical and critical nonlinearities have been
studied widely. Chen and Deng [1] and Li and Yang [2] stud-
ied the following critical fractional Laplacian system with a
lower-order term:

−Δð Þsu = λ uj jq−2u + 2α
α + β

uj jα−2u vj jβ, in Ω,

−Δð Þsv = μ vj jq−2v + 2β
α + β

uj jα vj jβ−2v, in Ω,

u = v = 0, in ℝN \Ω,

8>>>>>><>>>>>>:
ð7Þ

whereΩ ⊂ℝN is a bounded domain with a smooth boundary,
0 < s < 1, 1 < q < 2, α, β > 1 satisfy α + β = 2∗s , where 2∗s = 2N
/N − 2s and N > 2s, α, β > 0 are parameters. The main diffi-
culty lies in finding the interval of c where the local ðPSÞc con-
dition is satisfied. The authors both adopted the explicit
formula of extremal function related to the best Sobolev con-
stant and some useful estimates established in Barrios et al.
[3] (Lemma 3.8) to overcome this difficulty. Compared with
the fractional Laplacian system with critical nonlinearities,
for the critical fractional p-Laplacian system with p ≠ 2, we
must face the difficulty that the explicit formula for
minimizers of critical Sobolev constant S does not exist. Chen
and Squassina [4] overcame this difficulty by borrowing the
asymptotic estimates for minimizers of S, which were obtained
in Brasco et al. [5].

On the other hand, much attention has been focused on
discussing the fractional p-Laplacian system with negative
exponent and subcritical nonlinearity. In [6], Goyal first
investigated the following fractional Laplacian system with
sign-changing nonlinearity:

−Δð Þsu = λf xð Þu−q + α

α + β
b xð Þuα−1vβ, inΩ,

−Δð Þsw = μg xð Þw−q + β

α + β
b xð Þuαwβ−1, inΩ,

u > 0,w > 0, inΩ,
u =w = 0, inℝN \Ω,

8>>>>>>>><>>>>>>>>:
ð8Þ

where 0 < q < 1, α > 1, β > 1, 2 < α + β < 2∗s − 1 and bðxÞ is a
sign-changing function. Using the decomposition of the
Nehari manifold, the multiplicity of positive solutions for
(8) with respect to the pair of parameters ðλ, μÞ was estab-
lished. Furthermore, the author extended the above same
result to the following p-fractional Laplacian system:

−Δð Þspu = λf xð Þu−q + α

α + β
b xð Þuα−1vβ, inΩ,

−Δð Þspw = μg xð Þw−q + β

α + β
b xð Þuαwβ−1, inΩ,

u > 0,w > 0, inΩ,
u =w = 0, inℝN \Ω,

8>>>>>>>><>>>>>>>>:
ð9Þ

where α > 1, β > 1, 0 < q < 1 ≤ p − 1 < α + β < p∗s − 1, bðxÞ is a
sign-changing function. Very recently, Saoudi [7] investi-
gated the following fractional p-Laplacian system:

−Δð Þspu = λa xð Þ uj jq−2u + 1 − α

2 − α − β
c xð Þ uj j−α vj j1−β, in Ω,

−Δð Þspv = μb xð Þ vj jq−2v + 1 − β

2 − α − β
c xð Þ uj j1−α vj j−β, in Ω,

u = v = 0, in ℝN \Ω,

8>>>>>><>>>>>>:
ð10Þ

where 0 < α < 1, 0 < β < 1, 2 − α − β < p < q < p∗s . Using the
variational method, the author proved that (10) has at least
two positive solutions when the pair of parameters ðλ, μÞ
satisfies certain conditions. We have found that it is easier
to deal with subcritical problems than critical ones because
compact conditions for Sobolev embedding are satisfied in
the subcritical case, while global ðPCÞc condition for the
energy functional corresponding to (1) does not usually hold
in the case of critical problems. Moreover, Arora and Fiscella
[8] studied a class of double-phase problems with a negative
exponent and a critical Sobolev nonlinearity. The proof of
the main result is based on a suitable minimization argu-
ment on the Nehari manifold. Zuo et al. [9] combined the
effects of a nonlocal operator with critical nonlinearity. Suit-
able embedding results were developed to establish the exis-
tence of infinitely many solutions and to provide an estimate
of the boundedness of these solutions. For more recent
results on fractional p-Laplacian problems with singular
terms and critical terms simultaneously, see [10–13] and ref-
erences therein. In fact, Ghanmi et al. [10] studied a class of

2 Journal of Function Spaces



nonlocal p-Kirchhoff problems with a negative exponent and
critical nonlinearity. The authors established the multiplicity
of positive solutions to the above problems by using a trun-
cation argument. Sang [11] considered a fractional critical
system with p-Laplacian operator and negative exponents.
By applying fibering map analysis, the existence of two pos-
itive solutions for the above systems was obtained. Further-
more, Saoudi et al. [12] proved the existence of solutions
to a nonlocal problem with a singular term and a discontin-
uous critical nonlinearity. Fiscella et al. [13] investigated the
existence of nontrivial solutions for critical systems driven
by the fractional p-Laplacian operator. The main features
of this paper are the presence of critical nonlinearities and
singular terms.

Motivated by the above results, we consider fractional
critical p-Laplacian system (1). We combine critical prob-
lems with negative exponents. Note that the energy func-
tional corresponding to (1) is not differentiable in the
sense of Gâteaux; the method used in [1, 2, 4, 14–20] cannot
be applied to our problem directly. Since p ≠ 2, we cannot
also extend the methods used in a single equation with crit-
ical and negative exponents [21, 22] when p = 2 to problem
(1). We use the concentration compactness principle [23,
24] to avoid this barrier. Our idea comes from Wang et al.
[25].

The energy functional associated with problem (1) is
defined by

Iλ u:vð Þ = 1
p

u, vk kp − λ

α + β

ð
Ω

uαvβdx −
1

1 − γ

ð
Ω

f xð Þu1−γ + g xð Þv1−γÂ Ã
dx:

ð11Þ

We define a set

N λ = u, vð Þ ∈ Ej u, vk kp − λ
ð
Ω

uαvβdx −
ð
Ω

�
f xð Þu1−γ + g xð Þv1−γÂ Ã

dx = 0
É ð12Þ

and decompose N λ with the following subsets:

N ±
λ = u, vð Þ ∈N λj p − 1 + γð Þ u, vk kp − λ α + β − 1 + γð Þ

ð
Ω

uαvβdx > <ð Þ0
� �

,

N 0
λ = u, vð Þ ∈N λj p − 1 + γð Þ u, vk kp − λ α + β − 1 + γð Þ

ð
Ω

uαvβdx = 0
� �

:

ð13Þ

Our main result is the following.

Theorem 1. There exists λ∗ > 0 such that for every λ ∈ ð0, λ∗Þ
, problem (1) has at least two nontrivial solutions ðu1, v1Þ and
ðu2, v2Þ in E. More specifically, ðu1, v1Þ is a local minimizer of
Iλ in E with Iλðu1, v1Þ < 0, and ðu2, v2Þ ∈N −

λ is a minimizer
of Iλ on N −

λ with Iλðu2, v2Þ ≥ 0.

2. Preliminaries and Some Lemmas

Let

Sα,β ≔ inf
u,vð Þ∈E\ 0,0ð Þf g

u, vk kpÐ
Ω
uj jα vj jβdx

� �p/α+β , ð14Þ

and the relationship between Sα,β and S has been
revealed in [4]. In order to prove our main result, the follow-
ing lemmas are needed.

Lemma 2. The functional Iλ has a local minimum m in E
with m < 0.

Proof. Sinceð
Q
f xð Þ uj j1−γ +

ð
Ω

g xð Þ vj j1−γdx ≤ fk kγ∗ uk k1−γp∗s
+ gk kγ∗ vk k1−γp∗s

≤ fk kγ∗
uk kX0ffiffiffi
Sp

p
� �1−γ

+ gk kγ∗
uk kX0ffiffiffi
Sp

p
� �1−γ

≤ fk kp/1+γγ∗ + gk kp/1+γγ∗

� �1+γ/p uk kpX0
+ vk kpX0

S

 !1−γ/p

= fk kp/1+γγ∗ + gk kp/1+γγ∗

� �1+γ/p u, vk kffiffiffi
Sp

p
� �1−γ

, ð15Þ

ð
Ω

uαvβdx ≤
u, vk kp
Sα,β

 !α+β/p

≤ S−α+β/pα,β u, vk kα+β, ð16Þ

for every ðu, vÞ ∈ E, where we have used the Hölder inequal-
ity, (6) and (14). We come to

Iλ u, vð Þ ≥ 1
p

u, vk kp − λ

α + β
S−α+β/pα,β u, vk kα+β − C1 u, vk k1−γ, 

∀ u, vð Þ ∈ E:
ð17Þ

Hence, there exist λ1 > 0 and R > 0 such that Iλ is
bounded on BR = fðu, vÞ ∈ Ejku, vk ≤ Rg for every λ ∈ ð0, λ1
Þ. It follows that m = inf

ðu:vÞ∈BR

Iλðu, vÞ is well defined for fixed

λ ∈ ð0, λ1Þ. Furthermore, choosing ðu, vÞ ∈ BR with all u, v
≠ 0, we have

lim
t⟶0+

Iλ tu, tvð Þ
t1−γ

= −
1

1 − γ

ð
Ω

f xð Þu1−γ + g xð Þv1−γÂ Ã
dx < 0 ;

ð18Þ

thus, Iλðtu, tvÞ < 0 for all u, v ≠ 0 and t small enough. Con-
sequently, m < 0.

Lemma 3. There exists ðu1, v1Þ ∈ BR such that Iλðu1, v1Þ =m.
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Proof. The definition of m tells us that there exists a mini-
mizing sequence fðun, vnÞg such that lim

n⟶∞
Iλðun, vnÞ =m

< 0. We assume that un ≥ 0 and vn ≥ 0. By kun, vnk ≤ R,
there is a subsequence, which is still denoted by fðun, vnÞg,
such that

un, vnð Þ⇀ u1, v1ð Þ in E: ð19Þ

In terms of the fractional concentration compactness
principle [10] (Theorem 2.5), there exist two Borel regular
measures μ and ν, J denumerable, xj ∈ �Ω, μj ≥ 0, νj ≥ 0 with
μj + νj > 0, j ∈ J , such that

ð
ℝN

un xð Þ − un yð Þj jp
x − yj jN+ps dy +

ð
ℝN

vn xð Þ − vn yð Þj jp
x − yj jN+ps dy⇀ dμ, uαnvβn ⇀ dν,

ð20Þ

dμ ≥
ð
ℝN

u1 xð Þ − u1 yð Þj jp
x − yj jN+ps dy +

ð
ℝN

v1 xð Þ − v1 yð Þj jp
x − yj jN+ps dy

+〠
j∈J
μjδxj , dν = uα1v

β
1 +〠

j∈J
νjδxj , μj ≥ Sνp/p

∗
s

j :

ð21Þ
It follows from Vitali’s theorem that

lim
n⟶∞

ð
ℝN

f xð Þu1−γn + g xð Þv1−γn

Â Ã
dx =

ð
ℝN

f xð Þu1−γ1 + g xð Þv1−γ1
h i

dx,

ð22Þ

which, coupled with (20) and (21), gives

m = lim
n⟶∞

1
p

un, vnk kp − 1
1 − γ

ð
ℝN

f xð Þu1−γn + g xð Þv1−γn

Â Ã
dx

�
−

λ

α + β

ð
Ω

uαnv
β
ndx
�
≥
1
p

ð
ℝN

ð
ℝN

u1 xð Þ − u1 yð Þj jp
x − yj jN+ps dydx

 

+
ð
ℝN

ð
ℝN

v1 xð Þ − v1 yð Þj jp
x − yj jN+ps dydx +〠

j∈J
Sνp/p

∗
s

j

!

−
λ

α + β

ð
ℝN

uα1v
β
1dx +〠

j∈J
νj

 !
−

1
1 − γ

ð
ℝN

f xð Þu1−γ1 + g xð Þv1−γ1
h i

dx:

ð23Þ

If J =∅, then

m ≥
1
p

ð
ℝN

ð
ℝN

u1 xð Þ − u1 yð Þj jp
x − yj jN+ps dydx +

ð
ℝN

 
ð
ℝN

v1 xð Þ − v1 yð Þj jp
x − yj jN+ps dydx

!
−

λ

α + β

ð
ℝN

uα1v
β
1dx −

1
1 − γ

ð
ℝN

f xð Þu1−γ1 + g xð Þv1−γ1

h i
dx:

ð24Þ

Combining with the definition of m, we deduce that

m = 1
p

ð
ℝN

ð
ℝN

u1 xð Þ − u1 yð Þj jp
x − yj jN+ps dydx +

ð
ℝN

 
ð
ℝN

v1 xð Þ − v1 yð Þj jp
x − yj jN+ps dydx

!
−

λ

α + β

ð
ℝN

uα1v
β
1dx −

1
1 − γ

ð
ℝN

f xð Þu1−γ1 + g xð Þv1−γ1

h i
dx:

ð25Þ

In the following, we focus on showing J =∅. Firstly, by

(21), we have
Ð
ℝN dν ≥

Ð
ℝN uα1v

β
1dx, so we only need to prove

that
Ð
ℝN dν =

Ð
ℝN uα1v

β
1dx. We assume by contradiction thatÐ

ℝN dν >
Ð
ℝN uα1v

β
1dx. Since ∑j∈Jνj =

Ð
ℝN dν −

Ð
ℝN uα1v

β
1dx > 0,

we derive that

m ≤m −
1
p
〠
j∈J
Sνp/p

∗
s

j + λ

α + β
〠
j∈J
νj: ð26Þ

If 0 < νj < 1, for all j ∈ J , it follows that

m ≤m −
1
p
〠
j∈J
Sνj +

λ

α + β
〠
j∈J
νj =m + λ

α + β
−
S
p

� �
〠
j∈J
νj,

ð27Þ

which is wrong if we choose λ < ðα + βÞS/p.
If there exists a subsequence fνjgðj ∈ f1, 2,⋯gÞ such

that νj ≥ 1, then

m ≤m + λ

α + β
−
S
p

� �
〠

j∈J\ j∣ν j≥1f g
νj +

λ

α + β
〠
ν j≥1

ν j −
1
p
〠
ν j≥1

Sνp/α+βj <m,

ð28Þ

where λ < bλ2 with ðbλ2/α + β − S/pÞ∑j∈J\fj∣ν j≥1gνj + bλ2/α + β

∑ν j≥1νj < 0, which is a contradiction. Set λ < λ2 = min fðα
+ βÞS/p, bλ2g, we have that J =∅. This completes the proof
of Lemma 3.

Lemma 4. I is coercive in Λ.

Proof. For ðu, vÞ ∈Λ, we have

Iλ u, vð Þ = 1
p
−

1
α + β

� �
u, vk kp − 1

1 − γ
−

1
α + β

� �ð
Ω

f xð Þu1−γ + g xð Þv1−γÂ Ã
dx ≥

1
p
−

1
α + β

� �
u, vð Þk kp −

1
1 − γ

−
1

α + β

� �
fk kp/1+γγ∗ + gk kp/1+γγ∗

� �1+γ/p
Sγ−1/p u, vk k1−γ,

ð29Þ

it follows from p > 1 − γ that Iλ is coercive on Λ.
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Let

λ3 =
p − 1 + γ

α + β − 1 + γ
Sα+β/pα,β

α + β − p
α + β − 1 + γ

fk kp/1+γγ∗ + gk kp/1+γγ∗

� �−1+γ/p
S1−γ/p

� �α+β−p/γ+p−1
:

ð30Þ

Lemma 5. There exist two and only two numbers t1 and t2
with 0 < t1 < t2 such that

t1u, t1vð Þ ∈Λ+, t2u, t2vð Þ ∈Λ−, ð31Þ

for all λ ∈ ð0, λ3Þ and ðu, vÞ ∈ E.

Proof. For t > 0, we define ϕu,vðtÞ: ð0,+∞Þ × E⟶ℝ by

ϕu,v tð Þ = tp− α+βð Þ u, vk kp − λ
ð
Ω

uαvβdx − t1−γ− α+βð Þ
ð
Ω

f xð Þu1−γ + g xð Þv1−γÂ Ã
dx:

ð32Þ

Let ϕ′u,vðtÞ = 0, which yields
Therefore, ϕu,vðtÞ achieves its maximum at tmax, and

ϕu,v tmaxð Þ = p − 1 + γ

α + β − 1 + γ

� �
α + β − p

α + β − 1 + γ

� �α+β−p/p−1+γ

u, vð Þk kpα+β−1+γ/p−1+γÐ
Ω

f xð Þu1−γ + g xð Þv1−γ½ �dxÀ Áα+β−p/p−1+γ − λ
ð
Ω

uαvβdx >

p − 1 + γ

α + β − 1 + γ

� �
α + β − p

α + β − 1 + γ

� �α+β−p/p−1+γ

u, vk kpα+β−1+γ/p−1+γ

fk kp/1+γγ∗ + gk kp/1+γγ∗

� �1+γ/p
u, vð Þk k/

ffiffiffi
Sp

p� �1−γ� �α+β−p/p−1+γ
− λS−α+β/pα,β u, vk kα+β = p − 1 + γ

α + β − 1 + γ

� �
α + β − p

α + β − 1 + γ

� �α+β−p/p−1+γ
"

ffiffiffi
Sp

p� � 1−γð Þ α+β−pð Þ/p−1+γ
fk kp/1+γγ∗ + gk kp/1+γγ∗

� �− 1+γð Þ α+β−pð Þ/p p−1+γð Þ

− λS−α+β/pα,β

#
u, vk kα+β ≔ E λð Þ u, vk kα+β:

ð34Þ

Note that EðλÞ = 0 if and only if λ = λ3. By the condition
that λ < λ3, we deduce that EðλÞ > 0 and ϕu,vðtmaxÞ > 0. A
simple computation leads to

lim
t⟶0+

ϕ =∞, lim
t⟶+∞

ϕ = −λ
ð
Ω

uαvβdx < 0: ð35Þ

Consequently, ϕu,vðtÞ has exactly two zero points t1 and
t2 with 0 < t1 < t2 such that ϕ′ðt2Þ < 0 < ϕ′ðt1Þ.

If ϕu,vðtÞ = 0 and ϕu,vðtÞ > 0, then

tu, tvk kp − λ
ð
Ω

tuð Þ tvð Þβdx −
ð
Ω

f xð Þ tuð Þ1−γ + g xð Þ tvð Þ1−γÂ Ã
dx = 0,

ð36Þ

so ðtu, tvÞ ∈Λ.
Furthermore, ϕu,v′ ðtÞ > 0 implies that

p − α + βð Þð Þtp−α−β−1 u, vk kp + γ + α + β − 1ð Þt−γ−α−β
ð
Ω

f xð Þu1−γ + g xð Þv1−γÂ Ã
dx > 0 ; ð37Þ

by the definition of Λ, we have

p − 1 + γð Þ tu, tvð Þk kp − λ α + β − 1 + γð Þ
ð
Ω

tuð Þα tvð Þβdx > 0,

ð38Þ

namely, ðtu, tvÞ ∈Λ+. Therefore, ðt1u, t1vÞ ∈Λ+. Similarly,
we get ðt2, u, t2vÞ ∈Λ−.

Lemma 6. For λ ∈ ð0, λ3Þ, we have Λ0 = fð0, 0Þg.

Proof. Assume that Λ0 ≠ fð0, 0Þg. If ðu, vÞ ∈Λ0, then

u, vk kp − λ
ð
Ω

uαvβdx −
ð
Ω

f xð Þku1−γ + g xð Þv1−γÂ Ã
dx = 0,

ð39Þ

t ≔ tmax =
α + β − pð Þ u, vk kp

α + β − 1 + γð ÞÐΩ f xð Þu1−γ + g xð Þv1−γ½ �dx
� �−1/p−1+γ

,

ϕ′′u,v tmaxð Þ = u, vk kp p − α − βð Þ p − 1 + γð Þ α + β − pð Þ u, vð Þk kp
α + β − 1 + γð ÞÐΩ f xð Þu1−γ + g xð Þv1−γ½ �dx

� �p−α−β−2/1−γ−p
< 0:

ð33Þ
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p − 1 + γð Þ u, vk kp − λ α + β − 1 + γð Þ
ð
Ω

uαvβdx = 0:

ð40Þ

By (39) and (40), we get

u, vk kp = α + β − 1 + γ

α + β − p

ð
Ω

f xð Þu1−γ + g xð Þv1−γÂ Ã
dx

≤
α + β − 1 + γ

α + β − p
fk kp/1+γγ∗ + gk kp/1+γγ∗

� �1+γ/p
S−1−γ/p u, vk k1−γ,

ð41Þ

u, vk kp = λ
α + β − 1 + γ

p − 1 + γ

ð
Ω

uαvβdx

≤ λ
α + β − 1 + γ

p − 1 + γ
S−α+β/pα,β u, vð Þk kα+β:

ð42Þ

Combining with (41) and (42), we derive that

λ ≥
p − 1 + γ

α + β − 1 + γ
Sα+β/pα,β u, vk kp−α−β

≥
p − 1 + γ

α + β − 1 + γ
Sα+β/pα,β

α + β − p
α + β − 1 + γ

fk kp/1+γγ∗ + gk kp/1+γγ∗

� �−1+γ/p
S1−γ/p

� �α+β−p/γ+p−1
= λ3,

ð43Þ

which contradicts with λ ∈ ð0, λ3Þ.

Lemma 7. Assume that λ ∈ ð0, λ3Þ, then Λ− is a closed set in
E-topology.

Proof. Assume that fðun, vnÞg ⊂Λ− and ðun, vnÞ⟶ ðu, vÞ
strongly in E. In the following, we prove that ðu, vÞ ∈Λ−.
For fðun, vnÞg ⊂Λ−, we have

p − 1 + γð Þ un, vnk kp − λ α + β − 1 + γð Þ
ð
Ω

uαnv
β
n < 0, ð44Þ

and so,

p − 1 + γð Þ u, vk kp − λ α + β − 1 + γð Þ
ð
Ω

uαvβ ≤ 0: ð45Þ

Therefore, ðu, vÞ ∈Λ− ∪Λ0. We can show that ðu, vÞ∈Λ0

by contradiction. Otherwise, if ðu, vÞ ∈Λ0, we get that from
the definition of Λ0 that

u, vk kp − λ
ð
Ω

uαvβdx −
ð
Ω

f xð Þu1−γ + g xð Þv1−γÂ Ã
dx = 0,

ð46Þ

p − 1 + γð Þ u, vk kp − λ α + β − 1 + γð Þ
ð
Ω

uαvβdx = 0:

ð47Þ

By (34), (46), and (47), we deduce that

E λð Þ u, vk kα+β < p − 1 + γ

α + β − 1 + γ

� �
α + β − p

α + β − 1 + γ

� �α+β−p/p−1+γ

u, vk kpα+β−1+γ/p−1+γÐ
Ω

f xð Þu1−γ + g xð Þv1−γ½ �dxÀ Áα+β−p/p−1+γ
− λ
ð
Ω

uαvβdx = p − 1 + γ

α + β − 1 + γ

� �
α + β − p

α + β − 1 + γ

� �α+β−p/p−1+γ

u, vk kpα+β−1+γ/p−1+γ
α + β − pð Þ u, vk kp/α + β − 1 + γ

À Áα+β−p/p−1+γ
−

p − 1 + γ

α + β − 1 + γ
u, vk kp = 0,

ð48Þ

which contradicts with EðλÞ > 0 for all λ ∈ ð0, λ3Þ.

Lemma 8. Let ðu, vÞ ∈N −
λ , then for every ðϕ1, ϕ2Þ ∈ E, there

exist a number ε > 0 and a continuous function h : ½0,+∞Þ
⟶ ð0,+∞Þ such that

h 0ð Þ = 1, h tð Þ u + tϕ1, v + tϕ2ð Þ ∈N −
λ , tj j < ε: ð49Þ

Proof. We define F : E ×ℝ+ ⟶ℝ as follows:

F t, rð Þ = rp−1+γ u + tϕ1, v + tϕ2k kp − λrα+β−1+γ
ð
Ω

u + tϕ1ð Þα v + tϕ2ð Þβdx −
ð
Ω

f xð Þ u + tϕ1ð Þ1−γ + g xð ÞÂ
v + tϕ2ð Þ1−γÃdx:

ð50Þ

For ðu, vÞ ∈N −
λ ⊂N , we have

F 0, 1ð Þ = u, vk kp − λ
ð
Ω

uαvβdx −
ð
Ω

f xð Þu1−γ + g xð Þv1−γÂ Ã
dx = 0,

Fr 0, 1ð Þ = p − 1 + γð Þ u, vk kp − λ α + β − 1 + γð Þ
ð
Ω

uαvβdx < 0:

ð51Þ

We deduce that there exists �ε > 0 such that Fðt, rÞ = 0 has
a unique continuous solution r = hðtÞ > 0 for jtj < �ε, t ∈ℝ by
using the implicit function theorem at the point ð0, 1Þ. Since
Fð0, 1Þ = 0, then hð0Þ = 1. By Fðt, hðtÞÞ = 0 for jtj < �ε, t ∈ℝ,
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we obtain

0 = h tð Þð Þp−1+γ u + tϕ1, v + tϕ2k kp − λ h tð Þð Þα+β−1+γ
ð
Ω

u + tϕ1ð Þα v + tϕ2ð Þβdx −
ð
Ω

f xð Þ u + tϕ1ð Þ1−γ + g xð ÞÂ
v + tϕ2ð Þ1−γÃdx = 1

h tð Þð Þ1−γ h tð Þ u + tϕ1, v + tϕ2ð Þk kp − λ
ð
Ω

�
h tð Þ u + tϕ1ð Þð Þα h tð Þ v + tϕ2ð Þð Þβdx −

ð
Ω

f xð Þ h tð Þ u + tϕ1ð Þð Þ1−γ + g xð Þ h tð Þ v + tϕ2ð Þð Þ1−γdxÂ Ã
,

ð52Þ

that is,

h tð Þ u + tϕ1, v + tϕ2ð Þ ∈N λ, ∀t ∈ℝ, tj j < �ε: ð53Þ

Since Frð0, 1Þ > 0 and

Fr t, h tð Þð Þ = p − 1 + γð Þ h tð Þð Þp−2+γ u + tϕ1, v + tϕ2k kp
− λ α + β − 1 + γð Þ h tð Þð Þα+β−2+γð

Ω

u + tϕ1ð Þα v + tϕ2ð Þβdx = 1
h tð Þð Þ2−γ

p − 1 + γð Þ h tð Þ u + tϕ1, v + tϕ2ð Þk kp
�

−λ

α + β − 1 + γð Þ
ð
Ω

h tð Þ u + tϕ1ð Þð Þα h tð Þ v + tϕ2ð Þð Þβdx
�
,

ð54Þ

we can choose ε > 0 sufficiently small ðε < �εÞ such that for
every t ∈ℝ with jtj < ε,

p − 1 + γð Þ h tð Þ u + tϕ1, v + tϕ2ð Þk kp − λ α + β − 1 + γð Þ
ð
Ω

h tð Þ u + tϕ1ð Þð Þα h tð Þ v + tϕ2ð Þð Þβdx < 0, ð55Þ

that is,

h tð Þ u + tϕ1, v + tϕ2ð Þ ∈N −
λ , ∀t ∈ℝ: ð56Þ

This completes the proof of Lemma 8.

Lemma 9. There exists a constant λ4 > 0 such that Iλðu, vÞ
≥ 0 for each ðu, vÞ ∈N −

λ and all λ ∈ ð0, λ4Þ.

Proof. Assume that there exists ð�u, �vÞ ∈N −
λ such that Iλð�u,

�vÞ < 0; thus,

λ
1
p
−

1
α + β

� �ð
Ω

�uα�vβdx −
1

1 − γ
−
1
p

� �
ð
Ω

f xð Þ�u1−γ + g xð Þ�v1−γÂ Ã
dx < 0:

ð57Þ

Equations (14) and (15) leadð
Ω

�uα�vβdx < p − 1 + γð Þ α + βð Þ
λ 1 − γð Þ α + β − pð Þ
�

fk kp/1+γγ∗ + gk kp/1+γγ∗

� �1+γ/p ffiffiffiffiffiffiffi
Sα,β
S

p

r !1−γ#α+β/α+β−1+γ
:

ð58Þ

On the other hand, from (6) and (14), we have

ð
Ω

uαvβdx ≥
p − 1 + γð ÞSα,β

λ α + β − 1 + γð Þ
� �α+β/α+β−p

, for every u, vð Þ ∈N −
λ:

ð59Þ

Choosing

λ < λ4 =
p − 1 + γð Þ α + βð Þ
1 − γð Þ α + β − pð Þ fk kp/1+γγ∗ + gk kp/1+γγ∗

� �1+γ/p ffiffiffiffiffiffiffi
Sα,β
S

p

r !1−γ" # α+βð Þ α+β−pð Þ/1−γ−p

·

α + β − 1 + γ

p − 1 + γð ÞSα,β

" # α+βð Þ α+β−1+γð Þ/1−γ−p
,

ð60Þ

we have

ð
Ω

�uα�vβdx <
p − 1 + γð ÞSα,β

λ α + β − 1 + γð Þ
� �α+β/α+β−p

, ð61Þ

which is a contradiction. This completes the proof of Lemma
6.

3. The Proof of Theorem 1

Our proof is divided into the following three steps.

Step 1. Problem (1) has a weak solution ðu2, v2Þ in E.

Let m− = inf
ðu,vÞ∈N −

λ

Iλðu, vÞ > −∞. In terms of Lemma 4, we

know that Iλ is coercive in N λ; hence, m− is well defined.
Ekeland’s variational principle guarantees to extract a mini-
mizing sequence fð~un, ~vnÞg ⊂N −

λ with

Iλ ~un, ~vnð Þ <m− +
1
n
, Iλ ~un, ~vnð Þ ≤ Iλ u, vð Þ

+ 1
n

u − ~un, v − ~vnk k,∀  u, vð Þ ∈N −
λ:

ð62Þ

We assume that ~un, ~vn ≥ 0 in Ω and ð~un, ~vnÞ (up to sub-
sequence if necessary) converges to a nonnegative function,
denoted by ðu2, v2Þ satisfying

~un, ~vnð Þ⇀ u2, v2ð Þweakly in E,
~un, ~vnð Þ⟶ u2, v2ð Þ a:e:inΩ:

ð63Þ

Fix ðϕ1, ϕ2Þ ∈ E with ϕ1, ϕ2 ≥ 0, by using Lemma 5, there
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exists a sequence of functions f k : ½0,+∞Þ⟶ ð0,+∞Þ such
that f kð0Þ = 1 and f kðtÞð~uk + tϕ1, ~vk + tϕ2Þ ∈N −

λ for all ð~uk,
~vkÞ ∈N −

λ and t small enough. It follows from the definition
of N λ that

f pk tð Þ ~uk + tϕ1, ~vk + tϕ2k kp − λf α+βk tð Þ
ð
Ω

~uk + tϕ1ð Þα ~vk + tϕ2ð Þβdx

− f 1−γk tð Þ
ð
Ω

f xð Þ ~uk + tϕ1ð Þ1−γ + g xð Þ ~vk + tϕ2ð Þ1−γÂ Ã
dx = 0,

ð64Þ

~uk, ~vkk kp − λ
ð
Ω

~uαk~v
β
k dx −

ð
Ω

f xð Þ~u1−γk + g xð Þ~v1−γk

h i
dx = 0,

ð65Þ

so

1
k

f k tð Þ − 1j j ~uk, ~vkk k + t f k tð Þ ϕ1, ϕ2k k½ � ≥ 1
k

f k tð Þ ~uk + tϕ1, ~vk + tϕ2ð Þk
− ~uk, ~vkð Þk ≥ I ~uk, ~vkð Þ − I f k tð Þ ~uk + tϕ1, ~vk + tϕ2ð Þ½ �

= 1 − f pk tð Þ
p

~uk, ~vkk kp + λ
f α+βk tð Þ − 1

α + β

ð
Ω

~uk + tϕ1ð Þα ~vk + tϕ2ð Þβdx

+ f 1−γk tð Þ − 1
1 − γ

ð
Ω

f xð Þ ~uk + tϕ1ð Þ1−γ + g xð Þ ~vk + tϕ2ð Þ1−γÂ Ã
dx

+ f pk tð Þ
p

~uk, ~vkk kp − ~uk + tϕ1, ~vk + tϕ2k kpÀ Á
+ λ

α + β

ð
Ω

~uk + tϕ1ð Þα ~vk + tϕ2ð Þβdx −
ð
Ω

~uαk~v
β
k dx

� �
+ 1
1 − γ

ð
Ω

f xð Þ ~uk + tϕ1ð Þ1−γ − ~u1−γk

h i
dx

+ 1
1 − γ

ð
Ω

g xð Þ ~vk + tϕ2ð Þ1−γ − ~v1−γk

h i
dx ;

ð66Þ

thus,

1
k

f k′ 0ð Þ ~uk, ~vkk k + ϕ1, ϕ2k k
h i

≥ −f k′ 0ð Þ ~uk, ~vkk kp

+ λf k′ 0ð Þ
ð
Ω

~uαk~v
β
k dx + f k′ 0ð Þ

ð
Ω

f xð Þ~u1−γk + g xð Þ~v1−γk

h i
dx

−
ð
Q

1
x − yj jN+ps ~uk xð Þ − ~uk yð Þj jp−2 ~uk xð Þ − ~uk yð Þð Þ ϕ1 xð ÞðÂ

− ϕ1 yð ÞÞ+ ~vk xð Þ − ~vk yð Þj jp−2 ~vk xð Þ − ~vk yð Þð Þ ϕ2 xð Þð
− ϕ2 yð ÞÞ�dxdy + λα

α + β

ð
Ω

~uα−1k ~vβkϕ1dx +
λβ

α + β

ð
Ω

~uαk~v
β−1
k ϕ2dx

+
ð
Ω

f xð Þ~u−γk ϕ1 + g xð Þ~v−γk ϕ2
Â Ã

dx = −f k′ 0ð Þ ~uk, ~vkk kp − λ
ð
Ω

~uαk~v
β
k dx

�
−
ð
Ω

f xð Þ~u1−γk + g xð Þ~v1−γk

h i
dx
�
−
ð
Q

1
x − yj jN+ps ~uk xð Þ − ~uk yð Þj jp−2 ~uk xð ÞðÂ

− ~uk yð ÞÞ ϕ1 xð Þ − ϕ1 yð Þð Þ+ ~vk xð Þ − ~vk yð Þj jp−2 ~vk xð Þ − ~vk yð Þð Þ ϕ2 xð Þ − ϕ2 yð Þð ÞÃdxdy
+ λα

α + β

ð
Ω

~uα−1k ~vβkϕ1dx +
λβ

α + β

ð
Ω

~uαk~v
β−1
k ϕ2dx +

ð
Ω

f xð Þ~u−γk ϕ1 + g xð Þ~v−γk ϕ2
Â Ã

dx:

ð67Þ

We derive that

ð
Ω

f xð Þ~u−γk ϕ1 + g xð Þ~v−γk ϕ2
Â Ã

dx ≤
1
k

f k′ 0ð Þ ~uk, ~vkk k + ϕ1, ϕ2k k
h i

+
ð
Q

1
x − yj jN+ps ~uk xð Þ − ~uk yð Þj jp−2 ~uk xð Þ − ~uk yð Þð Þ ϕ1 xð ÞðÂ

− ϕ1 yð ÞÞ+ ~vk xð Þ − ~vk yð Þj jp−2 ~vk xð Þ − ~vk yð Þð Þ ϕ2 xð Þ − ϕ2 yð Þð ÞÃdxdy
−

λα

α + β

ð
Ω

~uα−1k ~vβkϕ1dx −
λβ

α + β

ð
Ω

~uαk~v
β−1
k ϕ2dx:

ð68Þ

Furthermore, there exists a constant C2 > 0 such that j
f k′ð0Þj ≤ C2. Taking k⟶∞, we deduce from Fatou’s
lemma that

ð
Ω

f xð Þu−γ2 ϕ1 + g xð Þv−γ2 ϕ2
Â Ã

dx ≤ liminf
k⟶∞

ð
Ω

f xð Þ~u−γk ϕ1
Â

+ g xð Þ~v−γk ϕ2
Ã
dx ≤

ð
Q

1
x − yj jN+ps u2 xð Þ − u2 yð Þj jp−2 u2 xð ÞðÂ

− u2 yð ÞÞ ϕ1 xð Þ − ϕ1 yð Þð Þ+ v2 xð Þ − v2 yð Þj jp−2 v2 xð Þ − v2 yð Þð Þ ϕ2 xð Þð
− ϕ2 yð ÞÞ�dxdy − λα

α + β

ð
Ω

uα−12 vβ2ϕ1dx −
λβ

α + β

ð
Ω

uα2v
β−1
2 ϕ2dx:

ð69Þ

Consequently,

ð
Q

1
x − yj jN+ps u2 xð Þ − u2 yð Þj jp−2 u2 xð Þ − u2 yð Þð Þ ϕ1 xð Þ − ϕ1 yð Þð ÞÂ
+ v2 xð Þ − v2 yð Þj jp−2 v2 xð Þ − v2 yð Þð Þ ϕ2 xð Þ − ϕ2 yð Þð ÞÃdxdy
−

λα

α + β

ð
Ω

uα−12 vβ2ϕ1dx −
λβ

α + β

ð
Ω

uα2v
β−1
2 ϕ2dx −

ð
Ω

f xð Þu−γ2 ϕ1
Â

+ g xð Þv−γ2 ϕ2
Ã
dx ≥ 0,∀ ϕ1, ϕ2ð Þ ∈ CE:

ð70Þ

Since ðϕ1, ϕ2Þ is arbitrary, this inequality also holds for
−ðϕ1, ϕ2Þ; thus,ð
Q

1
x − yj jN+ps u2 xð Þ − u2 yð Þj jp−2 u2 xð Þ − u2 yð Þð Þ ϕ1 xð ÞðÂ
− ϕ1 yð ÞÞ+ v2 xð Þ − v2 yð Þj jp−2 v2 xð Þ − v2 yð Þð Þ ϕ2 xð Þð
− ϕ2 yð ÞÞ�dxdy − λα

α + β

ð
Ω

uα−12 vβ2ϕ1dx −
λβ

α + β

ð
Ω

uα2v
β−1
2 ϕ2dx

−
ð
Ω

f xð Þu−γ2 ϕ1 + g xð Þv−γ2 ϕ2
Â Ã

dx = 0,∀  ϕ1, ϕ2ð Þ ∈ CE ,

ð71Þ

which implies that ðu2, v2Þ is a weak solution of the problem
(1).

Step 2. There exists a constant λ5 > 0 such that ðu2, v2Þ ∈N −
λ

when 0 < λ < λ5.
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For each ðu, vÞ ∈N −
λ , we have

Iλ u, υð Þ = 1
p

u, υð Þk kp − λ

α + β

ð
Ω

uαυβdx

−
1

1 − γ
u, υð Þk kp − λ

ð
Ω

uαυβdx
� �

= 1
p
−

1
1 − γ

� �
u, υð Þk kp

− λ
1

α + β
−

1
1 − γ

� �ð
Ω

uαυβdx

< λ α + β − 1 + γð Þ
p p − 1 + γð Þ

ð
Ω

uαυβdx

− λ
1

α + β
−

1
1 − γ

� �ð
Ω

uαυβdx

= λ
α + β − 1 + γ

p p − 1 + γð Þ −
1

α + β
+ 1
1 − γ

� �ð
Ω

uαυβdx:

ð72Þ

We only need to prove that m− = inf
ðu,vÞ∈N −

λ

Iλðu, vÞ < 1/N

SN/sp, when λ < ~λ5 with

~λ5
α + β − 1 + γ

p p − 1 + γð Þ −
1

α + β
+ 1
1 − γ

� �ð
Ω

uαvβdx < 1
N
SN/sp:

ð73Þ

Repeating the arguments as in Step 1, we have

ð
Q

~uk xð Þ − ~uk yð Þj jp
x − yj jN+ps dxdy +

ð
Q

~vk xð Þ − ~vk yð Þj jp
x − yj jN+ps dxdy

− λ
ð
Ω

~uαk~v
β
kdx −

ð
Ω

f xð Þ~u1−γk + g xð Þ~v1−γk

h i
dx = o 1ð Þ:

ð74Þ

In the following, we show that ðu2, v2Þ ∈N −
λ . Note that

N −
λ is closed and ð~uk, ~vkÞ⇀ ðu2, v2Þ in E, it suffices to prove

that k~uk, ~vkk⟶ ku2, v2k. We suppose that ð~uk, ~vkÞ and ðu2,
v2Þ satisfy the same properties as in (20) and (21). Let xj ∈Ω
in the support of ν and μ. Define φε ∈ C

∞
c ðB2εðxjÞÞ with

φε ≥ 0, φεjBε
= 1, φεj j∞ ≤ 1, ∇φεj j∞ ≤

C3
ε
: ð75Þ

Applying (74), we derive that

ð
Q

~uk xð Þ − ~uk yð Þj jp−2 ~uk xð Þ − ~uk yð Þð Þ ϕ1 xð Þ − ϕ1 yð Þð Þ
x − yj jN+ps dxdy

+
ð
Q

~vk xð Þ − ~vk yð Þj jp−2 ~vk xð Þ − ~vk yð Þð Þ ϕ2 xð Þ − ϕ2 yð Þð Þ
x − yj jN+ps dxdy

−
λα

α + β

ð
Ω

~uα−1k ~vβkϕ1dx −
λβ

α + β

ð
Ω

~uαk~v
β−1
k ϕ2dx

−
ð
Ω

f xð Þ~u−γk ϕ1 + g xð Þ~v−γk ϕ2
Â Ã

dx = o 1ð Þ k⟶∞ð Þ,

ð76Þ

for every ðϕ1, ϕ2Þ ∈ E. Since ðφε~uk, φε~vkÞ ∈ E, repeating the
arguments as in Lemma 3, we derive that

ð
Q

~uk xð Þ − ~uk yð Þj jp−2 ~uk xð Þ − ~uk yð Þð Þ φε~uk xð Þ − φε~uk yð Þð Þ
x − yj jN+ps dxdy

+
ð
Q

~vk xð Þ − ~vk yð Þj jp−2 ~vk xð Þ − ~vk yð Þð Þ φε~vk xð Þ − φε~vk yð Þð Þ
x − yj jN+ps dxdy

−
λα

α + β

ð
Ω

~uα−1k ~vβkφε~ukdx −
λβ

α + β

ð
Ω

~uαk~v
β−1
k φε~vkdx

−
ð
Ω

f xð Þ~u−γk φε~uk + g xð Þ~v−γk φε~vk
Â Ã

dx = o 1ð Þ,

ð77Þ

k⟶∞. Moreover,

ð
Q
φεdμ − λ

ð
Ω

φεdν −
ð
Ω

f xð Þu1−γ2 φε + g xð Þv1−γ2 φε

h i
dx

= −
ð
Q

~uk xð Þ − ~uk yð Þj jp−2 ~uk xð Þ − ~uk yð Þð Þ φε xð Þ − φε yð Þð Þ~uk yð Þ
x − yj jN+ps dxdy

−
ð
Q

~vk xð Þ − ~vk yð Þj jp−2 ~vk xð Þ − ~vk yð Þð Þ φε xð Þ − φε yð Þð Þ~vk yð Þ
x − yj jN+ps dxdy

+ o 1ð Þ  k⟶∞ð Þ:
ð78Þ

Thus,

0 = lim
ε⟶0

ð
Q
φεdμ − λ

ð
Ω

φεdν −
ð
Ω

f xð Þu1−γ2 φε + g xð Þv1−γ2 φε

h i
dx

� �
= μi − λνj,

ð79Þ

by μ j ≥ Sνp/p
∗
s

j , namely, λνj ≥ Sνp/p
∗
s

j , we get νj = 0 or νj ≥
ðS/λÞN/sp.

Next, we prove that νj ≥ ðS/λÞcN/sp does not hold. Other-

wise, there exists j0 such that νj0
≥ ðS/λÞN/sp, then

m− = lim
k⟶∞

1
p

~uk, ~vkk kp − λ

α + β

ð
Ω

~uαk~v
β
kdx −

1
1 − γ

ð
Ω

�
f xð Þ~u1−γk + g xð Þ~v1−γk

� �
dx
�
≥ λ

1
1 − γ

−
1

α + β

�
+ 1

p
−

1
1 − γ

� �
α + β − 1 + γ

p − 1 + γ

�ð
Ω

~uαk~v
β
kdx

≥ λ
1

1 − γ
−

1
α + β

−
1

1 − γ
−
1
p

� �
α + β − 1 + γ

p − 1 + γ

� �
ð
Ω

uα2v
β
2dx +〠

j∈J
νj

 !
≥

1
1 − γ

−
1

α + β
−

1
1 − γ

−
1
p

� ��
α + β − 1 + γ

p − 1 + γ

�
λ1−N/spSN/sp ≥

1
N
SN/sp,

ð80Þ
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where λ < �λ5 with �λ5 < fN½1/1 − γ − 1/α + β − ð1/1 − γ − 1/pÞ
α + β − 1 + γ/p − 1 + γ�gsp/N−sp; this contradicts the fact m− <
1/NSN/ps. Choosing λ5 = min f~λ5, �λ5g, we have ~uαk~vβk ⇀ uα2v

β
2

and ðu2, v2Þ ∈N −
λ when 0 < λ < λ5.

Step 3. ðu1, v1Þ is a nontrivial solution to problem (1).

Let λ∗ =min fλig, i = 1, 2, 3, 4, 5, then Lemmas 2–9 and
Steps 1 and 2 hold for all 0 < λ < λ∗. Using Lemma 3, we
have

min
t∈ℝ

Iλ u1 + tϕ1, v1 + tϕ2ð Þ = Iλ u1 + tϕ1, v1 + tϕ2ð Þjt = 0

= Iλ u1, v1ð Þ, ∀ ϕ1, ϕ2ð Þ ∈ E:
ð81Þ

Hence, ðu1, v1Þ is a weak solution of (1). Since

0 ≤ Iλ u1 + tϕ1, v1 + tϕ2ð Þ − Iλ u1, v1ð Þ = 1
p

u1 + tϕ1, v1 + tϕ2k kp

−
λ

α + β

ð
Ω

u1 + tϕ1ð Þα v1 + tϕ2ð Þβdx − 1
1 − γ

ð
Ω

f xð Þ u1 + tϕ1ð Þ1−γÂ
+ g xð Þ v1 + tϕ2ð Þ1−γÃdx − 1

p
u1, v1k kp + λ

α + β

ð
Ω

uα1v
β
1dx

+ 1
1 − γ

ð
Ω

f xð Þu1−γ1 + g xð Þv1−γ1
h i

dx ≤
1
p

u1 + tϕ1, v1 + tϕ2k kp

−
1
p

u1, v1k kp, ϕ1 ≥ 0, ϕ2 ≥ 0:

ð82Þ

Dividing by t > 0 and passing to the limit as t⟶ 0, we
obtain

ð
Q

u1 xð Þ − u1 yð Þj jp−2 u1 xð Þ − u1 yð Þð Þ ϕ1 xð Þ − ϕ1 yð Þð Þ
x − yj jN+ps dxdy

+
ð
Q

v1 xð Þ − v1 yð Þj jp−2 v1 xð Þ − v1 yð Þð Þ ϕ2 xð Þ − ϕ2 yð Þð Þ
x − yj jN+ps dxdy ≥ 0:

ð83Þ

Hence, ðu1, v1Þ is a nontrivial solution of (1). This com-
pletes the proof of Theorem 1.
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