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The conformable double Elzaki composition technique (CDET) and the Adomian decomposition technique are combined in this
work to provide a novel approach for dealing with nonlinear partial issues under certain specified conditions. The conformable
double Elzaki composition (CDEC) approach is the name we give to this novel technique. We also outline and discuss the
main traits and major conclusions connected to the recommended technique. The new technique provides an estimated
succession of answers that finally get close to the exact solution. This method has the advantage of generating findings rapidly
since it generates analytical series solutions for the target equations without the requirement for discretization, transformation,
or limited assumptions. We also present some numerical applications to back up our conclusions. The results demonstrate the
strength and potency of the recommended strategy in dealing with a variety of problems in the fields of engineering and
physics in symmetry with other strategies.

1. Introduction

Fractional calculus has been used to show that fractional dif-
ferential equations are the best way to describe physical and
technical processes. The failure of nonlinear mathematical
models of the standard integer-order derivative should be
obvious. Recently, fractional calculus has been more widely
used, particularly in the domains of control theory, signal
and image processing, mechanics, electricity, chemistry, biol-
ogy, and economics. Continuous-time randomwalk, vibration
and control, anomaly diffusion, nonlocal phenomena, histori-
cal processes—one of the topics covered is a fractional neutron
point kinetic model. Others include porous media, fractional
filters, biomedical engineering, power laws, the Riesz potential,
fractional derivatives and fractals, computational fractional
derivative equations, fractional Brownian motion, and Levy
statistics. All sorts of fractions include fractional trajectories,

fractional phase-locked loops, and fractional trajectories. He
is an expert on this subject [1–3].

The conformable fractional derivative offers two benefits
over traditional fractional derivatives: its definition is straight-
forward, and it meets most of the requirements for the classi-
cal integral derivative. It is also practical when used to model
physical issues, making it easier to numerically solve differen-
tial equations than with the Riemann-Liouville or Caputo
fractional derivatives. A large number of researchers have pre-
viously used conformable fractional derivatives in a variety of
domains. The classic derivative and CFD are pretty similar.
Because of its dependence on the basic limit notion and the
resulting simplicity, it makes a few classic calculus theorems
simpler to extend than the previous definitions of fractional
derivatives. The CFDs also satisfy a number of classical char-
acteristics, including the mean value theorem, product, quo-
tient, and chain rules. Abdeljawad published the fractional
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derivatives and integrals of higher-order concepts with left and
right conformability in a distinct study [4]. Due to the many
important applications it has in several scientific fields, the
conformable fractional derivative is gaining more and more
attention. Recently, Arqub et al. provided multiple vitaliza-
tions of the development of COVID-19 [5] using controller
principles based on the concept of conformable calculus. The
most important reason for this is that fractional-order models
have memory properties [6–8].

There have been applications of Burger’s equation, a
well-known partial differential equation, in several physical
circumstances, such as shock waves, acoustic waves, the
ISNA, CCA, Florida dynamic gas, and transmission lines.
The time-fractional Burgers’ problem with an Atangana-
Baleanu derivative is numerically solved using cubic B-
spline functions and a weighted technique [9]. Shafiq et al.
[10] created an iterative technique employing a Caputo-
Fabrizio fractional derivative to handle the damped Burger’s
problem (CFFD). Burgers-Korteweg-de Vries equations,
modified Burger’s equations, and nonlinear time-fractional
Burger’s equations are all modeled using the residual power
series method (RPSM) [11]. The spectral collocation approach
is studied using the Chebyshev polynomials, space reactional
Korteweg-de Vries equations, and space fractional Korteweg-
de Vries-Burgers equations based on the Caputo-Fabrizio
fractional derivative [12]. Furthermore, the conformable dou-
ble Laplace decomposition method has been looked at to find
solutions to the fractionally coupled Burgers’ one-dimensional
conformable regular and singular equation [13]. The authors
in [14, 15] solved the fractional differential equations using
the conformable Laplace transform approach. The authors
describe the conformable double Laplace transform method
in [16] and use it to solve fractional partial differential equa-
tions. The precise solutions of the time-fractional Burgers’
equations have been established using the first integral tech-
nique [17].

The main goal of this work is to extend the traditional
double Elzaki formula to the conformable fractional order,
or CDEDM, and to derive a number of fascinating conclu-
sions from this new fractional version, including an alluring
connection between CDET and the CFLT. The CDED and
ADM are also used to find the analytical solution of a gener-
alized conformable coupled Burger’s fractional differential
equation. A variety of significant nonlinear conformable
fractional differential equations (CFDE) issues are also
addressed using our ground-breaking method for space-

time Caputo fractional derivatives, including Eq. (12). As a
consequence, ξ and ζ satisfy 0 < ξ, ζ ≤ 1, and ϕ ≥ 0 and are
the parameters that characterize the order of the fractional
space-time derivatives. When at least one of the factors
changes, alternative reaction systems may be developed.
When it is ξ = ζ = 1 applied, the fractional equations are
reduced to the conventionally coupled Burger’s equation.
The results indicate that our innovative approach is a simple,
effective, and impactful technique that can be successfully
used to identify the general solutions to several distinct
CFDEs. The remainder of the essay is structured as follows:
Section 2 covers conformable fractional derivative (CFD)
definitions, characteristics, theorems, along with certain fun-
damental CFDEs. (DET) definitions, characteristics, and
theorem proofs. The conformable double Elzaki decomposi-
tion approach’s specifics and convergence are also covered.
Section 3 gives a description of the model and shows how
CDET is utilized to provide precise analytical answers to
the given conformable fractional Burgers’ equation. We pro-
vide two illustrative examples to show the dependability,
convergence, and effectiveness of the suggested technique
in Section 4. Section 5 concludes with some remarks.

2. Conformable Double Elzaki Transforms and
Some Properties

We will look at a few CDET definitions and characteristics
to see if they can help us find additional modified data
h ϕξ/ϕξ, φζ/ζ ,H ω, ϖ rather than having to consider the
following.

Definition 1. If h 0,∞ ⟶ℝ is true, the CFD (conform-
able fractional derivative) of h with order ζmay be expressed
as follows:

dξ

dϕξ
h

ϕξ

ξ
= lim

ε⟶0

h ϕξ/ξ + εϕ1−ξ

ε
, ϕ

ξ

ξ
> 0, 0 < ξ ≤ 1 1

See [13, 18].

Definition 2 (see [19]). Let h ϕξ/ξ, φζ/ζ : R × 0,∞ ⟶R.
Then, the conformable space fractional partial derivative of
order ζ and ζ a function h ϕξ/ξ, φζ/ζ is defined as

∂ξ

∂ϕξ
h

ϕξ

ξ
, φ

ζ

ζ
= lim

ε⟶0

h ϕξ/ξ + εϕ1−ξ, φζ/ζ − h ϕξ/ξ, φζ/ζ
ε

, ϕ
ξ

ξ
, φ

ζ

ζ
> 0, 0 < ξ, ζ ≤ 1,

∂ζ

∂φζ
h

ϕξ

ξ
, φ

ζ

ζ
= lim

υ⟶0

h ϕξ/ξ, φζ/ζ + υφ1−ζ − h ϕξ/ξ, φζ/ζ
υ

, ϕ
ξ

ξ
, φ

ζ

ζ
> 0, 0 < ξ, ζ ≤ 1

2
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Definition 3. Conformable Elzaki transform of a function
h 0,∞ ⟶ℝ is defined by

Sξϕ h
ϕξ

ξ
=H ω = ω

∞

0
e−ϕ

ξ/ωξh
ϕξ

ξ
dϕ, 3

when there is a conformable meaning to the integral with
regard to ω [20].

Definition 4. Let h ϕξ/ξ, φζ/ζ , f x, t be a piecewise contin-
uous function on the interval 0,∞ × 0,∞ of exponential

order. Consider for some a, b ∈R sup ϕξ/ξ , φζ/ζ > 0,
e h ϕξ/ξ , φζ/ζ /a ϕξ/ξ +b φζ/ζ . The conformable double Elzaki
transform is defined as follows under these presumptions:

Eξ
ϕE

ζ
φ h

ϕξ

ξ
, φ

ζ

ζ
=H ω, ϖ

= ωϖ
∞

0

∞

0
e−ϕ

ξ/ωξ−φζ/ϖζh
ϕξ

ξ
, φ

ζ

ζ
dφdϕ,

4

where ω, ϖ ∈ ⊄, 0 < ξ, ζ ≤ 1. In terms of conformability, the
fractional integrals are conformable fractional integrals ϕξ/
ξ and φξ/ξ, respectively.

Lemma 5. A function is transformed using the double frac-
tional Elzaki transform.

(1) Eξ
ϕE

ζ
φ ϕξ/ξ n

φζ/ζ m = n m ωn+2ϖm+2

(2) Eξ
ϕE

ζ
φ ea ϕξ/ξ +b φζ/ζ = ω/1 − aω ϖ/1 − bϖ

(3) Eξ
ϕE

ζ
φ sin a ϕξ/ξ sin b φζ/ζ = aω2/1 − aω 2

bϖ2/1 − bϖ 2

(4) The double fractional Elzaki transform of the function
h ϕξ/ξ, φζ/ζ is given by:

Eξ
ϕE

ζ
φ

ϕξ

ξ

n
φζ

ζ

m

= Γ n + 1 Γ m + 1 ωn+2ϖm+2, a, b ∈ℝ

5

Theorem 6. Let the conformable Elzaki transform of function
h ϕξ/ξ, φζ/ζ , where 0 < ξ, ζ ≤ 1, such that h ϕξ/ξ, φζ/ζ ∈ Cl

ℝ+ ×ℝ+ , ∂mξh/∂ϕmξ, and ∂nζh/∂φnζ denote m, n time func-
tion conformable fraction derivatives h, then

Eξ
ϕE

ζ
φ

∂mξh

∂ϕmξ
= H ω, ϖ

ωm
−
H 0, ϖ
ω−2+m − 〠

m−1

k=1
ω2−m+kEζ

φ

∂kξh
∂ϕkξ

0, φ
ζ

ζ
,

Eξ
ϕE

ζ
φ

∂nζh
∂φnζ

= H ω, ϖ
ϖn −

H ω, 0
ϖ−2+n − 〠

n−1

k=1
ϖ2−n+kEξ

ϕ

∂nζh
∂φnζ

ϕξ

ξ
, 0

6

Theorem 7. If Eξ
ϕE

ζ
φ h1 ϕξ/ξ, φζ/ζ =H1 ω, ϖ and Eξ

ϕE
ζ
φ

h2 ϕξ/ξ, φζ/ζ =H2 ω, ϖ exist, in which case the following
conformable fractional double Elzaki transform convolution
theorem applies:

Εε
φΕ

ε
ϕ h1

ϕε

ε
, φ

ε

ε
∗∗h2

ϕε

ε
, φ

ε

ε

= ωϖ
∞

0

∞

0
eϕ

ε/ωε−φε/ωε

h2
ϕε

ε
, φ

ε

ε
dϕdφ

7

Proof. Using the fractional partial derivatives’ formulation of
the double Elzaki transform

Εε
φΕ

ε
ϕ h1

ϕε

ε
, φ

ε

ε
∗∗h2

ϕε

ε
, φ

ε

ε

= ωϖ
∞

0

∞

0
eϕ

ε/ϖε−φε/ϖε

h2
ϕε

ε
, φ

ε

ε
dϕdφ

8

Using Lemma 5

ωϖ
∞

0

∞

0
eφ

ε/ϖ2−ϕε/ϖ2 φε/ε

0

ϕε/ε

0
h1

ϕε

ε
− δ, φ

ε

ε
− ξ h2 δ, ξ dδdξ dϕdφ

9

Using Heaviside’s unit step function

= ωϖ
∞

0

∞

0
eφ

ε/ω2−ϕε/ω2 φε/ε

0

ϕε/ε

0
h1

ϕε

ε
− δ, φ

ε

ε
− ξ ,H ϕε

ε
− δ, φ

ε

ε
− ξ h2 δ, ξ dδdξ dϕdφ,

=
∞

0

∞

0
h2 δ, ξ dδdξ ωϖ

∞

0

∞

0
eφ

ε/ω2−ϕε/ω2
h1

ϕε

ε
− δ, φ

ε

ε
− ξ H

ϕε

ε
− δ, φ

ε

ε
− ξ dϕdφ ,

H = 1, ϕε

ε
> δ > φε

ε
> ξ,

0, other
10
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Heaviside’s unit step

=
∞

0

∞

0
h2 δ, ξ dδdξ ωϖ

∞

0

∞

0
eφ

ε/ω2−ϕε/ϖ2
h1

ϕε

ε
− δ, φ

ε

ε
− ξ dϕdφ ,

= ωϖ
∞

0

∞

0
eφ

ε/ω2−ϕε/ϖ2
h2 δ, ξ H1 ω, ϖ dϕdφ = 1

ωϖ
H2 ω, ϖ H1 ω, ϖ

11

3. Burgers’ Equation in Fractionally Coupled
Burgers in One Dimension

This section describes methods for using conformable dou-
ble Elzaki decomposition (CDEDM) to solve the regular
and specific 1-D (CFBE). We note that the difficulties stated
in [21] can be attained if ξ and ζ in the following issues:

Conformable in one dimension coupled Burgers’ equa-
tion is as follows:

∂ζh
∂φζ

−
∂2ξh
∂ϕ2ξ

+ θh
∂ξh
∂ϕξ

+ ς
∂2ξ

∂ϕξ
hz = k

ϕξ

ξ
, φ

ζ

ζ
,

∂ζz
∂φζ

−
∂2ξz
∂ϕ2ξ

+ θz
∂ξz
∂ϕξ

+ δ
∂2ξ

∂ϕξ
hz = j

ϕξ

ξ
, φ

ζ

ζ

12

Subject to

h
ϕξ

ξ
, 0 = k1

ϕξ

ξ
,

z
ϕξ

ξ
, 0 = j1

ϕξ

ξ

13

For φ > 0, where k ϕξ/ξ, φξ/φ , k1 ϕξ/ξ , j ϕξ/ξ, φξ/φ
j1 ϕξ/ξ , and j1 ϕξ/ξ are the supplied functions, while θ,
ς and δ are the arbitrary constants based on system variables
such as the Peclet number, the particle-gravitational Stokes
velocity, and the Brownian diffusivity, see [22]. A conform-
able single Laplace transform is used to get Eq. (13), while a
conformable double Laplace transform is used to acquire
both sides of Equation (12).

H ω, ϖ = K1 ω

ϖ−2 + ϖζK ω, ϖ + ϖζEξ
ϕE

ζ
φ

∂2ξh
∂ϕ2ζ

− θh
∂ξh
∂ϕζ

− ς
∂2ξ

∂ϕζ
hz ,

14

Z ω, ϖ = j1 ω

ϖ−2 + ϖζ j ω, ϖ + ϖζEξ
ϕE

ζ
φ

∂2ξz
∂ϕ2ζ

− θz
∂ξz
∂ϕζ

− δ
∂2ξ

∂ϕζ
hz

15

The 1-D (CFBE) solution is described by the CDEDM as
h ϕξ/ξ, ϕξ/φ and z ϕξ/ξ, ϕξ/φ via the infinite series.

h
ϕξ

ξ
, φ

ξ

φ
= 〠

∞

ρ=0
hρ

ϕξ

ξ
, φ

ξ

φ
, 16

z ϕξ/ξ , φξ/φ =∑∞
ρ=0zρ ϕξ/ξ , φξ/φ

The Adomian polynomials Qρ,Mρ, and Dρ are expressed
as follows:

Qρ = 〠
∞

ρ

hρhϕρ,

Mρ = 〠
∞

ρ

zρzϕρ,

Dρ = 〠
∞

ρ

hρzϕρ

17

The formulas below can be used to determine the
Adomian polynomials for the nonlinear terms hhϕ, zzϕ,
and hzϕ.

Q0 = h0h0x,
Q1 = h0xh1 + h0h1x,
Q2 = h0xh2 + h1xh1 + h2xh0,
Q3 = h0xh3 + h1xh2 + h2xh1 + h3xh0,
⋮ ⋮ ⋮,

M0 = z0z0x,
M1 = z0xz1 + z0z1x,
M2 = z0xz2 + z1xz1 + z2xz0,
M3 = z0xz3 + z1xz2 + z2xz1 + z3xz0,
⋮ ⋮ ⋮,

D0 = h0z0,
D1 = h0z1 + h1z0,
D2 = h0z2 + h1z1 + h2z0,
D3 = h0z3 + h1z2 + h2z1 + h3z0,
⋮ ⋮ ⋮

18

Using Eq. (17), we can apply the inverse conformable
double Elzaki transform, which may be used on both sides
of Eqs. (14) and (15).
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〠
∞

ρ=0
hρ

ϕξ

ξ
, φ

ξ

φ
= k1

ϕξ

ξ
+ E−1

ϕ E−1
φ ωmH ω, ϖ

+ E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ

∂2ξh
∂ϕ2ζ

− E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ θQρ

− E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ ςDρ ,

19

〠
∞

ρ=0
zρ

ϕξ

ξ
, φ

ξ

φ
= j1

ϕξ

ξ
+ E−1

ϕ E−1
φ ωmZ ω, ϖ

+ E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ

∂2ξz
∂ϕ2ζ

− E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ θMρ

− E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ δDρ

20

When all sides of Eqs. (19) and (20) are compared,
we get

h0 = k1
ϕξ

ξ
+ E−1

ϕ E−1
φ ωmH ω, ϖ ,

z0 = j1
ϕξ

ξ
+ E−1

ϕ E−1
φ ωmZ ω, ϖ

21

The recursive relation is represented by the equations
below in general.

hρ+1 = E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ

∂2ξh
∂ϕ2ζ

− E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ θQρ

− E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ ςDρ ,

22

zρ+1 = E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ

∂2ξz
∂ϕ2ζ

− E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ θMρ

− E−1
ϕ E−1

φ ϖζEξ
ϕE

ζ
φ δDρ

23

The previous equations must include the double
inverse Elzaki transform with regard to ω and ϖ. The
following example for the 1-D (CFBE) illustrates this
method.

4. Illustrative Examples

Example 1. Consider the Burgers equation for a homoge-
neous, conformable fractionally coupled Burgers [23].

∂ζh
∂φζ

−
∂2ξh
∂ϕ2ζ

− 2h ∂
ξh

∂ϕζ
+ ς

∂2ξ

∂ϕζ
hz = 0,

∂ζz
∂φζ

−
∂2ξz
∂ϕ2ζ

− 2z ∂
ξz

∂ϕζ
+ δ

∂2ξ

∂ϕζ
hz = 0,

24

with I.C

h
ϕξ

ξ
, 0 = sin ϕξ

ξ
, z ϕξ

ξ
, 0 = sin ϕξ

ξ
25

By using Eqs. (21), (22), and (23), we have

h0 = sin ϕ

ξ

ξ

,

z0 = sin ϕ

ξ

ξ

,
26

h1 = E−1
ϕ E−1

φ ωEξ
ϕE

ζ
φ

∂2ξh0
∂ϕ2ζ

+ 2h0
∂ξh0
∂ϕζ

− ς
∂2ξh0z0
∂ϕζ

,

= E−1
ϕ E−1

φ ωEξ
ϕE

ζ
φ −sin ϕ

ξ

ξ

,

= E−1
ϕ E−1

φ ω2 ω2

1 − ω2

= −
φζ

ζ
sin ϕξ

ξ
,

z1 = E−1
ϕ E−1

φ ωEξ
ϕE

ζ
φ

∂2ξz0
∂ϕ2ζ

+ 2z0
∂ξz0
∂ϕζ

− ς
∂2ξh0z0
∂ϕζ

,

= E−1
ϕ E−1

φ ωEξ
ϕE

ζ
φ −sin ϕ

ξ

ξ

,

= E−1
ϕ E−1

φ ω2 ω2

1 − ω2

= −
φζ

ζ
sin ϕξ

ξ
,

27

h2 = E−1
ϕ E−1

φ ωEξ
ϕE

ζ
φ

∂2ξh1
∂ϕ2ζ

+ 2 h0
∂ξh1
∂ϕζ

+ h1
∂ξh0
∂ϕζ

− ς
∂ξ h0z1 + h1z0

∂ϕζ
, = E−1

ϕ E−1
φ ωEξ

ϕE
ζ
φ

φζ

ζ
sin ϕ

ξ

ξ

,

= E−1
ϕ E−1

φ ω3 ω2

1 − ω2 = φζ/ζ
2

2

sin ϕξ

ξ
,
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z2 = E−1
ϕ E−1

φ ωEξ
ϕE

ζ
φ

∂2ξz1
∂ϕ2ζ

+ 2 z0
∂ξz1
∂ϕζ

+ h1
∂ξz0
∂ϕζ

− ς
∂ξ h0z1 + h1z0

∂ϕζ
,

= E−1
ϕ E−1

φ ωEξ
ϕE

ζ
φ

φζ

ζ
sin ϕ

ξ

ξ

,

= E−1
ϕ E−1

φ ω3 ω2

1 − ω2 = φζ/ζ
2

2

sin ϕξ

ξ
,

28

h3 = E−1
ϕ E−1

φ ωEξ
ϕE

ζ
φ

∂2ξh2
∂ϕ2ζ

+ 2 h0
∂ξh2
∂ϕζ

+ h1
∂ξh1
∂ϕζ

+ h2
∂ξ

∂ϕζ
h0

− ς
∂ξ

∂ϕζ
h0z2 + h1z1 + h2z0

= −
φζ/ζ
6

3

sin ϕξ

ξ
,

z3 = E−1
ϕ E−1

φ ωEξ
ϕE

ζ
φ

∂2ξz2
∂ϕ2ζ

+ 2 z0
∂ξz2
∂ϕζ

+ z1
∂ξz1
∂ϕζ

+ z2
∂ξ

∂ϕζ
z0

− ς
∂ξ

∂ϕζ
h0z2 + h1z1 + h2z0

= −
φζ/ζ
6

3

sin ϕξ

ξ

29

And comparable to the other elements. Consequently, using
Eqs. (22) and (23), the series solution is given by

h
ϕ

ξ

ξ

, φ
ζ

ζ
= h0 + h1 + h2 + h3+⋯

= 1 − ϕ

ξ

ξ

+ φζ/ζ
2

2

−
φζ/ζ
3

3

+⋯ sin ϕξ

ξ
,

z
ϕ

ξ

ξ

, φ
ζ

ζ
= z0 + z1 + z2 + z3+⋯

= 1 − ϕ

ξ

ξ

+ φζ/ζ
2

2

−
φζ/ζ
3

3

+⋯ sin ϕξ

ξ

30

And hence, exact solutions become

h
ϕ

ξ

ξ

, φ
ζ

ζ
= e−φ

ζ/ζ sin ϕξ

ξ
,

z
ϕ

ξ

ξ

, φ
ζ

ζ
= e−φ

ζ/ζ sin ϕξ

ξ

31

By taking ξ = 1 and ζ = 1, the fractional solution become

h ϕ, φ = e−ζ sin ξ,

z ϕ, φ = e−ζ sin ξ
32

Example 2. The following coupled space-fractional Burgers’
equation is taken into consideration [23].

∂ζh
∂φζ

−
∂2ξh
∂ϕ2ζ

− 2h ∂
ξh

∂ϕζ
+ ς

∂2ξ

∂ϕζ
hz = 0,

∂ζz
∂φζ

−
∂2ξz
∂ϕ2ζ

− 2z ∂
ξz

∂ϕζ
+ δ

∂2ξ

∂ϕζ
hz = 0

33

With I.C

h
ϕξ

ξ
, 0 = ϕξ

ξ

2

,

z
ϕξ

ξ
, 0 = ϕξ

ξ

3
34

By using Eqs. (22), (23), and (24), we have

h0 =
ϕ

ξ

ξ 2

,

z0 =
ϕ
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ϕ E−1
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And comparable to the other elements. Consequently,
using Eqs. (22) and (23), the series solution is given
by

h
ϕ

ξ

ξ

, φ
ζ

ζ
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ξ 3
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Figure 1: Approximate solution of h ϕ, φ and z ϕ, φ in Example 1.
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Table 1: Solution for the first three approximations with an exact solution with mesh points φ = 0 01, 0 02 for Eq. (24).

φ ϕ ξ = ξ = 0 75 ξ = ξ = 0 85 ξ = ξ = 0 95 ξ = ξ = 1
0 0 0 0 0

0.25 0.473696 0.362654 0.282034 0.249890

0.01 0.5 0.743001 0.621749 0.525227 0.484244

0.75 0.917256 0.815280 0.727569 0.688489

1 1.01379 0.945184 0.880319 0.849928

0 0 0 0 0

0.25 0.487511 0.369550 0.285538 0.252402

0.02 0.5 0.764670 0.633572 0.531753 0.489111

0.75 0.944007 0.830784 0.736609 0.695409

1 1.043360 0.963158 0.891257 0.858470
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Figure 2: Approximate solution of Example 2 h ϕ, φ .
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Table 2: Solution for the first three approximations with an exact solution with mesh point φ = 0 01, 0 02 for Eq. (33) h ϕ, φ .

φ ϕ ξ = ξ = 0 75 ξ = ξ = 0 85 ξ = ξ = 0 95 ξ = ξ = 1
0 0.0843274 0.0469473 0.0265037 0.02

0.25 0.310203 0.180159 0.106949 0.0830627

0.01 0.5 0.700438 0.472716 0.324629 0.271127

0.75 1.17241 0.878232 0.663774 0.580623

1 1.669 1.36099 1.10707 1.0023

0 0.141821 0.0846226 0.0512018 0.04

0.25 0.368019 0.219678 0.132811 0.103892

0.02 0.5 0.721289 0.501505 0.347784 0.290756

0.75 1.10909 0.875062 0.674863 0.592884

1 1.43787 1.28108 1.08182 0.9892

Table 3: Solution for the first three approximations with an exact solution with mesh points φ = 0 01, 0 02 for Eq. (33) z ϕ, φ .

φ ϕ ξ = ξ = 0 75 ξ = ξ = 0 85 ξ = ξ = 0 95 ξ = ξ = 1
0 0 0 0 0

0.25 0.213391 0.0954739 0.044014 0.0301734

0.01 0.5 0.684713 0.363731 0.20247 0.153311

0.75 1.52299 0.912165 0.576333 0.465761

1 2.79768 1.83211 1.26733 1.0719

0 0 0 0 0

0.25 0.278178 0.130777 0.0630332 0.0440921

0.02 0.5 0.807105 0.429789 0.239092 0.180744

0.75 1.73171 1.02198 0.636329 0.510585

1 3.12774 2.01079 1.36744 1.1476
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Figure 3: Approximate solution of Example 2 z ϕ, φ .
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5. Model Formulation and
Numerical Calculation

In this section, we will use the numerical results of H φ, ϕ
and Z φ, ϕ in Eqs. (24) and (33) for the exact solution when
ξ = ζ = 1 , and approximate solutions when ξ and ζ have
different fractional values, to demonstrate the precision
and effectiveness of the conformable double Elzaki trans-
form method (CDET).

Figure 1 shows the plots of the truncated series solution
using different numbers of terms together with the corre-
sponding exact solution of Example 1 at φ = 0 01,0 02. It
shows that the truncated series solution of order ξ = ζ = 1
is very close to the exact solution, which shows the rapid
convergence of the proposed method.

Table 1 displays the differences in the precise and
approximative solutions for the various orders in Example
1 for various ξ and ζ values. It demonstrates the method’s
derived approximation’s quick convergence.

Figure 2 shows the plots of the truncated series solution
using different numbers of terms together with the corre-
sponding exact solution of Example 1 at φ = 0 01,0 02. It
shows that the truncated series solution of order ξ = ζ = 1
is very close to the exact solution, which shows the rapid
convergence of the proposed method.

Table 2 displays the differences in the precise and
approximative solutions for the various orders in Example
1 for various ξ and ζ values. It demonstrates the method’s
derived approximation’s quick convergence.

6. Conclusion

The CDEA concept is provided in this article, beginning
with an application to a few particular tasks. Theorems
and properties linked to CDEA were then presented and
illustrated. We demonstrated the applicability and effective-
ness of the suggested method by using the CDEA in con-
junction with the iterative strategy to get precise solutions
to a broad class of nonlinear conformable partial differen-
tial equations in the sense of conformable derivatives. To
assess the reliability of the findings, we derived the conclu-
sions and compared them to the exact solutions in the
integer case. Our research led us to the conclusion that the
suggested approach provides correct solutions to nonlinear
conformable partial differential equations and is effective,
appropriate, trustworthy, and adequate (Tables 1–3 and
Figures 1–3). Additionally, compared to other similar
approaches, the CDEA approach’s computations use less
computing resources.
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