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Classical sets, fuzzy sets, intuitionistic fuzzy sets, and other sets are all generalized into the neutrosophic sets. A neutrosophic set is
a mathematical approach that helps with challenges involving data that is inconsistent, indeterminate, or imprecise. The goal of
this manuscript is to present the notion of neutrosophic 2-metric spaces. In this situation, we prove various fixed point theorems.
The findings support previous methodologies in the literature and are backed up by various examples and an application.

1. Introduction and Preliminaries

There is a lot of imprecision and vagueness or fuzziness in
our daily lives when it comes to sharing knowledge and
information. Simple examples include comments like “Umar
is tall” and “Khaleel is smart.” Terms like “tall” and “smart”
in the examples above are vague in the sense that they can-
not be defined precisely. There was a need to compare terms
such as “tall” and “smart.” In 1965, Zadeh [1] coined the
“fuzzy notion” to depict imprecise terms (such as those in
the preceding examples) in stark contrast. In this continua-
tion, Kramosil and Michlek [2] established the approach of
tuzzy metric spaces (FMSs). George and Veeramani [3] ini-
tiated the approach of FMSs by utilizing continuous t-
norms (CTNs). Grabiec [4] gave the fuzzy interpretation of
the Banach contraction principle in FMSs. Sharma [5]
coined the term fuzzy 2-metric spaces (F2MSs). Cho [6]
established a common fixed point theorem for four map-
pings in FMSs, while Han [7] extended the results to
F2MSs. Priyanka and Malviya [8] also derived several com-
mon fixed point theorems in F2MSs for occasionally weekly
compatible mappings.

The concept of intuitionistic fuzzy 2-metric spaces
(IF2MSs) was presented by Mursaleen and Danishlohani
[9]. CTNs and continuous triangular conorms (CTCNs)
were used to define neutrosophic metric spaces (NMSs).
NMSs have been studied for their topological and structural
features. Kirigci and Simsek [10] expanded the notion of the
intuitionistic fuzzy metric space approach and proposed the
notion of NMSs. In the context of NMSs, Simsek and Kirigci
[11] and Sowndrarajan et al. [12] demonstrated various fixed
point results. Neutrosophic soft linear spaces were first
established by Bera and Mahapatra [13]. Bera and Mahapa-
tra [14] established neutrosophic soft normed linear spaces.
Ishtiaq et al. [15] introduced the concept of orthogonal neu-
trosophic metric spaces and proved several interesting fixed
point results in the context of orthogonal neutrosophic met-
ric spaces. Jeyaraman and Sowndrarajan [16] used contrac-
tion mappings to prove various common fixed point
results in the context of neutrosophic metric spaces. Sahin
et al. [17] introduced the notion of neutrosophic triple par-
tial metric spaces and proved some fixed point results. Zar-
arsiz and Riaz [18] introduced the notion of bipolar fuzzy
metric spaces and proved several fixed point results and
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provided an interesting application towards multiattribute
decision-making.

Fathollahi et al. [19] proved several fixed point results
for modified weak and rational a-y-contractions in
ordered 2-metric spaces. Ali et al. [20] solved nonlinear
differential equations in the context of neutrosophic metric
spaces. Al-Omeri et al. [21] worked on (P, ¥)-weak con-
tractions in the context of neutrosophic cone metric
spaces. Naeem et al. [22] worked on strong convergence
theorems for a finite family of enriched strictly pseudocon-
tractive mappings and @;-enriched Lipschitzian mappings
using a new modified mixed-type Ishikawa iteration
scheme with error. Al-Omeri et al. [23, 24] worked on
numerous interesting contraction mappings in the context
of neutrosophic cone metric spaces. Hussain et al. [25]
proved several fixed point results for contraction map-
pings. Salama and Alblowi [26] worked on neutrosophic
topological spaces.

In this manuscript, we replace the triangular inequalities
of neutrosophic metric spaces by tetrahedron inequalities
and introduce a notion of neutrosophic 2-metric spaces.
The main objectives of this manuscript are as follows:

(i) To introduce the notion of neutrosophic 2-metric
spaces (N2MSs)

(ii) To prove fixed point results in the context of
N2MSs

(iii) To enhance the literature of neutrosophic fixed
point theory

(iv) To prove the uniqueness of the solution of integral
equations

Now, we provide some definitions that are helpful for
readers to understand the main section.

Definition 1 (see [1]). If a binary relation * ({) on the inter-
val [0,1] fulfills the below criteria, then * () is known as
CTNs (CTCNs):

(al) * (0) is commutative and associative

(b1) * (¢) is continuous

(cl) Forall 1€[0,1],3 %« 1=1(300=12)

for all  3,g,u,me0,1],2%g=1ux*(10g<udm)
whenever 1< u and g <.

Definition 2 (see [5]). Let O# J. A function d: Ox DO
— R is said to be 2-metric if d fulfills the below criteria:

(a) To each pair of 3, g € O(1 # g), there is a point 1t € O
such that d(3,g,1) #0

(b) d(3, g, 1) =0, when at least two of J, g, 1t are equal
(c) d(3,g,u)=d(3,u,8) =d(g,11,]) forall 3,g, 11 € O

(d) d(3,g,u)=d(,g,w) +d(3,w, u) +d(w, g, u) for all
1,6 u,wed

Then, the pair (D, d) is called 2-metric space, and d is a
2-metric on O.
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Example 1 (see [5]). Let © ={0,1,1/2,1/3,---}. A mapping
d: O xOxD—[0,+00) defined by

1 1
1, 1, g, uaredistinctand {—, —} c{}g u},
n

d(])g,u): n+1

0, otherwise,

(1)
for all ne€ N and 3, g, 1 € O is a 2-metric on O.

Definition 3 (see [9]). Let O # & be a set, * be a CTN, { be a
CTCN, and w, N : O x O x O x [0,+00) —> [0, 1] be map-
pings. A five tuple (O, w, N,*,and ¢) is called an intuitionis-
tic fuzzy 2-metric space (IF2MS), if the following conditions
are satisfied:

(1) w(3, g1, 3) +N(Q,g1u,3) <1
(2) w(2,6,1,0)=0
(3) w(3,g,1u,3) =1 for all 3 >0 when at least two of

1,6, u are equal

(4) w(3,g,1,3) =w(},1,8,3) =w(g, 1,3, 3) =w(u, 2,
g 3)

(5) w(3, 81,3, +3,+33) 2(1, 8, v, 3;) * WL, v, 1,
32) *W(v, 8,1, 3;)

)
(6) m(3, g, u,.): [0,+00] — [0, 1] is left continuous
(7) N(3,6,1,0)=1

(8) M(3,6,1,0) =0 for all 3 >0 when at least two of 3,
g, u are equal

9) N(,gu,3) =N 1,6 3)=N(gu, 23 =N(u,2
18 3)

(10) M, g 11,3, + 3, +33) <N g v, 30N, v, 1, 3,
JON(v, 8,1, 35)

(11) MN(3, g, 1t,.): [0,400) —> [0, 1] is left continuous

for all 3,¢,u € O and 3, 3;, 3,5 35 > 0.

Definition 4 (see [10]). Suppose O # &, and assume a six
tuple (O, w, N, L,%,0), where = is a CTN, ¢ is a CTCN,
and w, N, and { are neutrosophic sets (NSs) on O x O x
(0,4+00). If (O, w, N, ,%,0) meets the below conditions
for all 3,g,ueO and 3,8>0:

(NS1) w(3,9,3) + (2, 0, 3) + (2, 8,3) <3

(NS2) 0<m(3,¢,3) <1

(NS3) w(3,¢,3)=1le=1=¢g

(NS4) w(3,8,3) =m(g, 1, 3)

(NS5) w(3, 1, (3 +8)) 2w(2, g, 3) * (g, u,8)

(NS6) m(3, g,2): [0,+00) —> [0, 1] is continuous

(NS7) ) liI£1 w(l,¢,3) =1

(NS8) 0<M(2,8,3) <1

(NS9) :(3,9,3) =0=1=g

(NS10) (3,8, 3) =9(g, 3, 3)

(NS11) (2, 1, b(3+8)) <N(3, g, 3)0N(g, u, 8)
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(NS12) M(2, g,*): [0,400) — [0, 1] is continuous
(NS13) lim 9N(3,¢,3)=0
3—+00

(NS14) 0<8(2,6,3) <1

(NS15) 2(3,¢,3)=0=1=g

(NS16) £(3,9,3) =2(g,2, 3)

(NS17) (3,1, (3+8)) <2(3, ¢, 3)0%(g, 11, 8)
(NS18) £(3, g,): [0,4+00) —> [0, 1] is continuous
(NS19) . lin+1 2(3,6,3)=0

(NS20) If <0, then w(3,¢,3)=0,9(3,¢,3) =1, 8(3,
$3)=1

Then, (D, w, N, 8) is a neutrosophic metric on O and
(O, m, N, ,%,0) be a NMS.

2. Neutrosophic 2-Metric Spaces

Definition 5. Let O # & be a set, * be a CTN, ¢ be a CTCN,
and w, N, 8 : O x O x O x[0,+00) — [0, 1] be mappings.
A six tuple (9,0, N, ,#,and ) is called a N2MS, if the fol-
lowing conditions are satisfied:

(NM1) w(3,g,1t,3) +N(3, ¢, 11,3) + (¢, 1,3) <3

(NM2) w(3,g,1,0)=0

(NM3) w(3,g,u,3) =1 for all 3 >0 when at least two of
], g, u are equal

(I\;M4) w(l, g, u,3)=mw(1, 1, 6,3) =w(g 1,1, 3) =w(u,
RN

(NM5) w(1, 1,3, +3, +33) 2w(, 6,1 3,) *w(, u,
1, 3,) ¥ w(u, g 1, 3)

(NM6) w(3, g, 1t,.): [0,400] — [0, 1] is left continuous

(NM7) N(3,¢,11,0)=1

(NMS8) 9(2, g, 11,0) =0 for all 3 >0 when at least two of
3,6, u are equal

(NI)\49) N(,gu,3) =N u,63) =N(g 1,23 =N(u
8,3

(NM10) (2 g 10,3, + 3, +33) <N a1, 3,)0N(, u,
1, 3,)0N (1, g, 1, 35)

(NM11) (3, g, 1t,.): [0,400) — [0, 1] is left continuous

(NM12) £(3,¢,11,0) =1

(NM13) £(3, g, 1,0) =0 for all 3 > 0 when at least two of
1,6, u are equal

(NM14) £(3,6,11,3) =82, 1,6,3) = 2(g, 1,1, 3) = L(u
)

(NM15) 80, 8,1, 3, +3,+33) <8, 61,3108, u, u
»32)0%(u, g 1, 33)

(NM16) 8(3, g, u,.): [0,400) — [0, 1] is left continuous

for all 3, g, u €O and 3, 31, 35, 35 > 0.

Remark 6. The inequalities (NM5), (NM10), and (NM15)
correspond to tetrahedron inequality in 2-metric space.
The function values of (3, g, 1, 3), (3, g, 1, 3), and (3,
g, 1t, 3) be interpreted as the probability that the area of tri-
angle is less than 3.

Remark 7.

(i) Every N2MS is nonnegative

(ii) We may assume that every N2MS contains at least
three distinct points

Example 2. Let (D, d) be a 2-metric space, a * b=ab and a
Ob=min {1,a+b}. Let m, N, & : O’ x [0,+00) — [0, 1] be
three mappings defined by

3

— >0,
w(3, g 1,3)= 3+d(1,g,1)
0, 3=0,
d j) >
&, 3 >0,
m(J) g) u, 5) = 5+d(3’ g’ u) (2)
0, 3=0,
d(a, g,u)’ S0,
L(g1,3)= 3
0, 3=0,

for all 1,g,u €. Then, (O,w, N, X,*,0) is known as
N2MS.

Definition 8. Assume {1, } be a sequence in N2MS. Then,

(1) 1, €O is known as convergent to 1€ O if lim w
n—+00

(Q,%u,3)=1, lim N(3,,3,u,3)=0,and lim
n—-+00

n—+00
2(3,,3,1u,3)=0forall u e O and 3> 0. It is denoted
by lim 1,=lorl,—1

n—+00

(2) 1, €O is known as the Cauchy sequence if lim

n,m—+00

w(,,),,,u,3)=1, lim NQ,],,u 3)=0and
n,Mm—+00
lim £(,,),,u,3)=0forallueOand >0

n,m—+00

(3) If each Cauchy sequence in N2MS (D, w, N, L,%,0)
is convergent, then N2MS is said to be complete

Note 9. From now, we will assume that (D, i, N, &,%,0) is a
N2MS with the condition

lim m(Jn, ], u, 5) =1,

3—+00

I R 3 1,8) =0, ©)

lim MN(3,,2,u,3)=0,

3—+00

for all 3, u, 3 € DO.

3. Main Results

We establish the basic properties of N2MSs and demonstrate
some fixed point findings in this section.

Lemma 10. If 1, is a sequence for all n € N in a given N2MS
(O, m, N, L,+,0), then the below inequalities hold for all u
€90,3>0and 0> 0:



)
w(1,,3,51,3) 20 (Jn’ Ane 1> Anvds m)

3
* m<jn’ RMEIR IR m)

ook ID (Jn+a—2’ Jn-v-a—l’ Jn+a’

20-1+1)
20-1+1)

# k1D (Jmaw Jnvos s

* m(:n, RIS |

__ s
Z(a - 1) +1
)
* 1D <3n+a-1’ Juspr m) s
)
m(]w 3n+a: u, 3) <N (Jw Jn+1> Jn+a’ m)

3
on (:ln’ JrH—Z’ Jn+a’ m)

3
00N (Jn+a—2> Jn-*—a—b Jn+6’ m)

3
(e 577)

)
00N (3n+a—1’ Jrar s m)

)
ON (Jn+a—1’ Jup 1t m) ’

F)
23,1, 1,3) < 53<3n, e nian m)

3
08 (171’ jn+2’ JnJrB’ m)

F)
__ s
2(0-1)+1
3
0---08 (Jmafp Jn+8’ 1, m)

08 (Jma—l’ Jn+a> u,

02 <3n’ jn+l’ u,

3
20-1)+ 1>'
(4)

Lemma 11. Let {1, }be a Cauchy sequence in N2MS (D, o,
N, &,%,0) such that 1, 1, whenever m,n € N with n# m.
Then, the sequence {1,,} converges to at most one limit point.

Lemma 12. Let (O, w, N, L,%,0) be a N2MS. If for some
0<ii<1 and for any 1,6€ 9,3 >0,

m(J’ g’ 11, 3) 2 m (]7 g) 11, é) >
u
N, g1,3) < ER(J, g, i) (5)
u
3
L2gu3)< 2<J, g, z>.
u

Then, 1=g.
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Proof. 1t is easy to show on the lines of Lemma 1 in [15]. [J

Definition 13. Let (D, 0, N, ,%,0) be a N2MS and { be a
self-mapping on (D, w, N, 8,%,0). If there is k € (0, 1) such
that

w({3,{g, 1, k3) >w(3, g, 11, 3),
N1 Le u, k3) <N g1, 3), (6)
2(¢3,{g,u,k3) < (3, 8,1, 3).
For all J,g,1€9D,3>0, then { is known as contractive
mapping.
Theorem 14. Let (O, w, N, ,%,0) be a complete N2MS with

0<{i< 1 and suppose that

lim I‘O(J, g, u, 5) = 1’

3—>+00

ot 13) =0, )
lim £(3,¢,u,3)=0,

3—+00

for all 3,8€ O and 3> 0. Let { : O —> O be a contractive
mapping in the above definition. Then, { has a unique fixed
point.

Proof. It is easy to show on the lines of Theorem 1 in [15]. O
Example 3. Let © =0, 1], a * b=ab, and adb = max {a, b}.

Let w, 9, 8 : O’ x[0,+00) — [0,1] be three mappings
defined by

é , 3>0,

w(), g u,3) =14 &+ max{|A—-gl||g—uf,[I-u|}

1, 3=0,

max {3-ghlg=ul[3-ul}

m(3,9,11>$): 3+maX{|J—g|,|g—u|,|]—u|}

0, 3=0,

max {3 -ghja-ul3-ul} o
2,91, 3) = 3

0, 3=0,

(8)

for all 1,¢,11€D. Then, (O,w,N, &,*,0) is a complete
N2MS.
Now, define a self-mapping ¢ : O — O by

¢(3)= ©)

]
6

Then, all the conditions of Theorem 14 are fulfilled, and 0 is
a unique fixed point.
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Example 4. Let O =10,1], a * b=ab, and a0b = max {a, b}.

Let w, M, : O’ x[0,+400) — [0, 1] be three mappings
defined by
é , 3>0,
w(),gu,3)=4 $+1-g-u
1, 3=0,
- 5 > 5> >
N, g u,3)= $+[A-g-u (10)
0, 3=0,
Y—a-—
M, 3 > 0)
L2, 0u,3)= 3
0, 3=0,

for all 1,g,1€ 9. Then, (O,w, N, &,*,0) is a complete
N2MS.
Now, define a self-mapping { : O — O by

¢(3)= (11)

N s

Then, all the conditions of Theorem 14 are fulfilled for k =
[1/2,1), and 0 is a unique fixed point.

Definition 15. Let (O, w, N, &,*,0) be a N2MS and { be a
self-mapping on (D, w, N, ,+,0). Then,

(I) ¢ is known as continuous at ), € O, if for all 1,
— J, implies {3, — (I,

(II) let ¢ >0 and 0 < A < 1.¢ is known as (¢, A) uniform
locally contractive if

w(,0,1,3)>1-9=>mw({, g, u,3)

npand)

N, 3) <9 =NEULG 1) <N(1gw D),

c2(ngn ),

L, g1, 3) <9 = 2((1,{g 1, 3)
(12)

forall 3, ¢, 11 € O, 3 > 0. Clearly, each (¢, A) uniform
locally contractive mapping ¢ is continuous.

Example 5. Suppose (O, w, N, ,*,0) be a N2MS and { be a
self-mapping on (O, w, N, &,*,0) given by {1=c for all 3
€ 9 (c is constant). Let ¢ > 0 and 0 < A < 1. Assume that
(2g1,3)>1-¢,N(,gu,3) <pand (3, g,1,3) <¢ for
all 3, g, 14 €O, 3>0. Therefore, we have that 1=mw({3,{g,
1, 3) 2w(3, g, 1, 3/1),0=N({I, g, 11, 3) <N(3, g, 11, 3/A),
and 0=2(0),{g,11,3) <8(3,g,1,3/A) for all 1,g,11€9D,
3>0. Hence, { is a (¢,A) uniform locally contractive
mapping.

Remark 16. In a N2MS (DO, w, N, ,%,0), a contractive map-
ping can be considered as a (¢, A) uniform locally contrac-
tive mapping.

Definition 17. A N2MS (O, w, N, &,%,0) is said to be metri-
cally convex if for each 1,g,u € O, there is a 1+ g, u, 3 for
which  w(3,g,u,3)=w(3,g,u,3,) *w(3, g u,3), N0 g
1,3) =N, 6,1, 30)09 (2, g, 1, 3,), and 8(3, g, 11, 3) = {(,
8 1, 30)08(3, g, 1, 3,), where 3 = 3, + 3, forall 34,3, >0.

Theorem 18. Let (O, w, N, X,%,0) be a metrically convex
N2MS. If a self-mapping { on (D, 0, N, &,%,0) is (¢, A) uni-
form locally contractive, then { is a contractive mapping with
the fuzzy contractive constant \.

Proof. Let 1, g, 1 € O. Since (O, w, N,*,0) is metrically con-
vex, there are points 1=1,,1;,15, -+, 1,_1,3, =g and 3, 3;,
-+, 3, > 0 such that

w(3,8,1,3) =mw(1p, 3,11, 30) * (1, 5,1, 3,)
*-xw(1, 5,1, 3,),

N1 8) =N 2 1 30) 0RO w0 81)
0"'092(3”_17 Jn) u, 57,))

(3,81, 3) =2(3, 2,11, 30)08(3;, 15, 1, 3y)
0"'02(31«,71) Jﬂ) u, sn)a

where  3=30+3 + - +3, 0 1,3) > 11—, N(

3 u,3) <@ and 8(1_,3,u,3)<¢ for i=1,2,--,n
Also,

w({3,{g, u,3) =mw({), {1y, 1, 39) * (¢}, 25,1, )
seew(0,_ 10 00010 3
N0, 03y 11, 30) 0N (G2}, {2018, 3y)
0001, 10, 3,)

R(€39,431, 1, 30)08(¢11, 03,1, 3y)
0---0R(01,1,03,,1,3,).

NI u,3) =

2¢3,0gu,3) =

(14)

As C is (¢, A) uniform locally contractive, we have

5i—1)
m J ’]') > Ty >
( -1 Ap 1 A

R 5) <R32 20w ), (1)

Q1 3,,) < Q(JH, 1, 5_;)

m(CJH, Cjia u, 51’71) >



fori=1,2,---,n. Hence, we have

m(Cl CQ; u) 5) = m(cj(p le) u) 50) * m(cjp CJZ) u) 51)
weeext(0Y, 1, 00,01 5,) 2 m(JO, 1, %0)
* m(Jl, 1, u, %1) *~~~*m(3n,1, 1,1, %”)

~ 3
—m(J,g,u, 7))
N(01,¢g 1, 3) = (T2, 2y, 1, 30)OM (31, §p, 1, 3 )
0"'092({3;1—1’ Cln’ u, z’n)
b0 31
< m(zo, L, 7)092(:1, L, 7)

<>~~~<>92(3,,_1,3n, W, %) - 92(:, o, %)

(03,8, 1, 3) = (02, ¢4, 11, 30)0L(¢11, 03,5, 1, 3)
0-+-08(¢3,-1, 3, 1, 3,)

< g(]o,jl, 1, %)OS(JPJP u, 573)

Q-+ 0% (J,H, 1,1, 3—{) = 53(], g u, S—i‘)

(16)
So { is a contractive mapping. O

Definition 19. Let (O, w, N, &,%,0) be a N2MS and ¢ > 0. A
finite sequence

1=35,3, 0,53, 1,1, =g (17)

n-1°>-n

is known as ¢-chain from 1 to g if

w(_,u,3)>1 -9,
m(Ji_]) Jia u) 5) < (P) (18)
A1, 3) <gforallu e, 3>0,

and i=1,2,---,n. A N2MS (D, w, N, &,%,0) is known as
@-chainable if for each 1,g€ DO, there is a ¢-chain from
1 to g.

Theorem 20. Let (O, M, N, &,%,0) be a complete and ¢
-chainable N2MS. If a self-mapping { on (O, w, N, L,%,0) is
a (@, A)-uniform locally contractive, then { has a unique fixed
point in .

Proof. Without loss of generality, let 1 € O and {1 # . Since
(D, w, N,*,0) is p-chainable, there is a ¢-chain 1=1,,1,,
15, -+, 3,1, 3, =1 from 1 to {J. From here, we have

w1, ,1,3)>1-9,
N, 3) <, (19)
(1 <@, 2,1, 3)forallue O, 3>0,
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and i=1,2, ---, n. Utilizing induction, we get

u, Am >

m(CmJi—p My, 31‘—1) < m<3i—l’ I, %) (20)

m m di-1
g J; > J‘; > Jj— S8(37 73‘7 > _>3
(C i-1 c i W 3 1) -1 Ap 1 /\m

w (M, M, 8,) 2 (Ji—l’ sy

forall 3>0,ueQO,meN,i=1,2,---,n. Now, we deduce
1> w((’”l ", 5i—1) = W(C’”Jo, ", 51‘—1))
0<M(C"L " s, 3,) =M(C", (M, 3),  (21)
0< g(cml ", u, 5i—1) g(('”]o, ¢" 51‘—1)’

for all 3>0,ueO,meN,i=1,2,---,n. Utilizing the
Lemma 10, we examine that {{"1} is a Cauchy sequence in
D. As (O, m,N, {,%,0) is complete, there is a point g € O
such that lim ("1=g. Since { is continuous, we have
n—-+0o
lim {"™'1={g. Hence, {g=g and g is a fixed point of {.
n—-+00

To show uniqueness, assume (R = & for some € O(L # g).
Since (O, w, N, ,%,0) is p-chainable, there is a ¢-chain g =
208,85, 8, ,8,=2 from g to & Now, for any m ¢
N, we have

12w(g, 2,1, 3) =w((™, M1, 3) =w({™M1, ™1, 1, 3),
1<MN(g &, 3) =N M1, 3) =N(TM2, (™, 1, 3)s

1<2(g, 21, 3) ="M, 1, 3) = (™, (™, 1, 3),

(22)
forall 3>0,ueO,meN,i=1,2,---,n. We have
w(g, L, 3)=1,9(g, & 1u,3)=0,
(6213)=1.0(g L 1.3 )
2(g,8,1,3)=0,
for all 3 >0, u € O. So, we obtain that g = R.1 O

Definition 21. Let (D, w, N, &,%,0) be a N2MS and A, B be
two self-mappings on (O, w, N, L,#,0). A pair (A, B) is said
to be weak compatible if A1 =B for some 1€ O implies A
Bi=BA2.

Theorem 22. Let (O, w, N, ,%,0) be a complete p-chainable
N2MS and the self-mapping A, B,S,{ on (O, m, N, L,*,0)
fulfilling the following criteria:

(1) AD <O and BO € SO

(2) There exist k € (0,1) such that (A3, Bg, u,k3) >w
(83,{g, 11, 3) * w(AJ, Sg, u, 3) * w(BI, {g, 11, 3) * o(
A (g1, 3), M(AI, Bg,u,k3) <N(S3,{g, 1, 3)0N(
A, Sg, 1, 3)OM(BI, {g, 11, 3)OM (A, {g, 1, 3), and R
(A3, Bg, u,k3) < 8(81,{g, u, 3)0L(A3, Sg, 1, 3)0R(B
1,81, 3)0N(AY, (g, u,3) for all 1,6, ueD and
3>0
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(3) The pairs (A,S) and (B, {) are weakly compatible

(4) A and S are continuous

Then, A, B, S, and { have a unique common fixed point in
Q.

Corollary 23. Let (D,w, N, R,%,0) be a complete ¢-chain-
able N2MS and the self-mapping A, B, S,{ on (O, w, N, ,*
,0) fulfilling the following criteria:

(C1) AD € {O and BO < SO

(C2) There exist ke (0,1) such that w(A2, Bg, 1, k3)
>w(83,{g, 1, 3),M(AI, Bg, u, k3) <N(S2,{g, 1, 3), and L(
A3, Bg, u,k3) < (81, {g,u,3) for all 3,g,ueO and 3>0

(C3) The pairs (A, S) and (B, {) are weakly compatible

(C4) A and S are continuous

Then, A, B, S, and { have a unique common fixed point in
9.

If assume S, { = I in the preceding corollary, we deduce the
below result.

Corollary 24. Let (O, w, N, &,%,0) be a complete ¢-chain-
able N2MS and the self-mapping A, B on (O, w, N, {,%,0)
fulfilling the following criteria.

There exist k € (0, 1) such that

w(AJ, Bg, u,k3) >w(, g, 11, 3),
MN(A, Bg, u,k3) <N(3, 6,1, 3), (24)
L(A3, Bg, u,k3) < L(2, 8,11, 3),

for all 1,¢,u € and 3>0 and A and B are continuous.
Then, A and B have a unique common fixed point in .

If we suppose A = B in the preceding corollary, then we get
the below result.

4. Application

Let O =C([o, 7], R) be the set of all continuous functions
with domain of real values and defined on [o, 7].

M(G3(m), Cg(m), u(m), bz)

ug
= Su = Su

Now, we let the neutrosophic integral equation:
A(m) =A(n) + J B(m, n)I(m)dnform,ne o, 7], (25)

where 2(n) be a neutrosophic function of n : n € g, 7] and
B € O. Define w, N, and ! by

w(3(m), g(m), u(m), 3)
S w 5
- me[(fr] 3+ [3(m) — g(m) — u(m)] (26)

foralll,ge Dand 3 >0,

N(A(m), g(m), u(m), 3)

=1- sup s (27)
mefo,r] § T ‘J(m) - g(m) - u(m)|
foralll,ge Oand 3 >0,
LA(m), g(m), u(m), 3)
o PO am )

foralll,ge Dand 3 >0,

with CTN and CTCN define by a * b=a.b and aQb = max
{a, b}. Then, (O, w, N, &,%,0) be a complete N2MS.
Assume that |B(m,n)I(m)—B(m, n)g(m) - (u(m)/
[ron)|[ < [3(m) - g(m) —u(m)| for 1, g€ D, {ie(0,1) and
for all m, n € [0, 7]. Also, consider [7dn <{i < 1. Then, neu-
trosophic integral Equation (25) has a unique solution.

Proof. Define { : (O,w, N, &,%,0) — (O, w, N, ,+,0) by
QA(m) =A(n) + J B(m, n)o(m)dnforallm, n € [o, 7].
(29)
Scrutinize that survival of a fixed of the operator ¢ has come

to the survival of solution of a neutrosophic integral equation.
Now for all ), g € O, we get

iz

mg[ff] {iz + [C3(m) — {g(m) — u(m)| - me[i] U3+ [U(n) + [TB(m, n)3(m)dn - U(n) - [TB(m, n)g(m)dn — u(m)|

i3

= Su

iz

sup

me[ff] U3+ | [7B(m, n)3(m)dn - [TB(m, n)g(m)dn - u(m)|

S 3

> w(3(m), g(m), 3)

melor) 63 + |B(m, m)3(m) — B(m, w)g(m) — (w(m)/[on)| (DR  mewr 5+ [3(m) — a(m) - u(m)



N({2(m), Ca(m), u(m), i)

=1- sup < °é
mefo,r] UG + KJ(m) - (g(m) - u(m)‘

=1- sup t
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melod] Ug + [U(n) + [TB(m, n)3(m)dn - U(n) - [*B(m, n)g(m)dn - u(m)|

=1- sup s

melo,d] U3+ | [TB(m, n)3(m)dn - [*B(m, n)g(m)dn — u(m)|

=1- sup e

- sup 8

= N(A(m), g(m), u(m), 3),
2(§3(m),{g(m

meio] U3+ |B(m, n)1(m) = B(m, m)g(m) — (w(m)/[Tdn)|([7dn) .

melo,r] & + |J(m) - g(m) - u(m)|

= sup a = sup .
me[o,7] ug me[o,7] ug

~ |[2B(m, n)3(m)dn — [TB/(m, n)g(m)dn — u(m)|
mseli[lfr] ﬁ5

~ ap ‘%(m,n)](m)—%(m,n)g{(m)— (u(m)/[Ton)|([Tdn) < sup |J(m)—g(r3n)—u(m)|
me[o,7] ug me[o,7]

< 2((m), a(m), u(m), ).

That is, the neutrosophic integral equation satisfied the
criteria of Theorem 14. Hence, the neutrosophic integral
equation has a unique solution. O

5. Conclusions

In this manuscript, we established the notion of neutro-
sophic 2-metric space by replacing the triangular inequalities
of neutrosophic metric spaces by tetrahedron inequalities
and introduce a notion of neutrosophic 2-metric spaces
and proved some interesting results in the context of neutro-
sophic 2-metric spaces. These results boost the approaches
of existing ones in the literature. Several examples and an
application to examine the uniqueness of the solution of
the integral equation are also imparted. This work can easily
be extended in various structures like neutrosophic-
controlled 2-metric spaces, neutrosophic triple partial 2-
metric spaces, and neutrosophic 3-metric spaces. In the
future, we will work on fixed point results for more than
two self-mappings and solve differential and integral equa-
tions by utilizing neutrosophic 2-metric spaces.
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