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This paper derives a computationally efficient and fast-running solver for the approximate solution of fractional differential
equations with impulsive effects. In this connection, for approximating the fractional-order integral operator, a B-spline
version of interpolation by corresponding equal mesh points is adopted. An illustrative example illustrates the accuracy of the
new solver results as compared with those of the previous study. The proposed solver’s performance is evaluated by the
fractional Rössler and susceptible-exposed-infectious impulsive systems. Moreover, the effect of impulsive behaviors is shown
for various values of impulsive.

1. Introduction

The impulsive differential equations (IDEs) are mostly
investigated systems together with short-time perturbations
[1–4]. Impulsive control systems have been studied in many
fields such as economics [5], chemostat [6], population ecol-
ogy [7, 8], engineering [9], and neural networks [10, 11].
Many theoretical and numerical researchers have investi-
gated IDEs in many studies. In [12–15], the existence and
uniqueness theorems on IDEs have been analyzed. In addi-
tion, analytical and numerical solutions of this kind of equa-
tion have been investigated in [16–21] and etc.

Nowadays, one of the most famous branches of mathe-
matical science is the fractional calculus with arbitrary frac-
tional order [22]. The fractional calculus is applied to the
model of many phenomena including control [23], mechan-
ics [24], physics [25–27], stock market [28], electronics [29],
biology [30], and epidemiology [31, 32]. Recently, fractional
impulsive differential equations (FIDEs) are considered in
simulations of many systems including chaotic and hyperch-
aotic systems [33–35], control [36], and neural networks
[37]. The existence of the solutions of FIDEs is studied in
[38] by using the fixed point method. The existence of solu-

tions for FIDEs with the integral jump and antiperiodic con-
ditions is investigated in [39]. Furthermore, the existence of
solutions of these equations is analyzed through a global
bifurcation approach in [40]. The existence and stability
results are presented in [41].

To the best of the author’s knowledge, developing a fast-
running solver requires FIDE up to date. This motivates our
interest to designate an accurate computational technique
for solving the following FIDE:

CD
β
0,tu tð Þ −Q t, u tð Þð Þ = 0, t ∈ϒ ′ ≔ϒ \T ,

Δu tð Þ = u t+nð Þ − u tnð Þ = Kn u tnð Þð Þ, n = 1, 2,⋯, i, i ∈ℕ
u 0+ð Þ = u0,

ð1Þ
where 0 < β < 1, Y ≔ ½0, T�, T ≔ ft1, t2,⋯, tig, where every
tn satisfies 0 = t0 < t1 <⋯ < ti < ti+1 = T , and plus Q : Y ×
= R⟶ = R is jointly continuous function. Moreover, Kn
≔ R⟶ = R, and i = ½T/τ�, where τ = ti+1 − ti denotes the
impulsive interval. Furthermore, uðt−nÞ = limε⟶0−uðtn + εÞ
and uðt+nÞ = limε⟶0+uðtn + εÞ indicate the left and right
limits of uðtÞ at t = tn, respectively.
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Throughout this paper, we do choose the Riemann-
Liouville fractional integral [42] and fractional derivative in
the Caputo sense [43, 44] which are formulated as

J
β
0,tu tð Þ = 1

Γ βð Þ
ðt
0
u ςð Þ t − ςð Þβ−1dς,

CD
β
0,tu tð Þ = 1

Γ p − βð Þ
ðt
0

u pð Þ ςð Þ
t − ςð Þβ+1−p

dς, p ∈ =N ,
ð2Þ

where t, β, ς ∈ = R+ and p − 1 < β ≤ p. In addition, the
unknown function, uðtÞ, is continuously differentiable
ðp − 1Þ − times.

The rest of the paper is arranged as follows. Section 2
suggests an implicit numerical technique, by using base
spline interpolation for discretizing the FIDE. Section 3
investigates the performance and accuracy of the new solver
by analysing the fractional impulsive Rössler and SEI sys-
tems. To sum up, Section 4 proffers the concluding remarks
and statements.

2. Theoretical Argument

The proposed benefits of this section are twofold:

(1) It gives a fractional order approximation of the inte-
gral nonlocal operators

(2) It provides an accurate and computationally efficient
technique for solving FIDE (1)

Thereafter, we consider that tm =mℏ, m = f0, 1,⋯, rg,
and ℏ = ½T/r� means the uniform step size, and r ∈ =N:

Proposition 1. Assume that uðtÞ ∈ C2ðYÞ be a function, β > 0
and kuð2ÞðtÞk∞ ≤M, where M > 0. The approximation of the

nonlocal integral, J β
0,tr ½uðtÞ�, using the B-spline interpolation

can be stated as follows:

J
β
0,tr u tð Þ½ � ≈ 〠

r

m=0
am,rum ≡ J

β
0,tr u tð Þ½ �

� �
approx

, ð3Þ

where

am,r =
ℏβ

Γ β + 2ð Þ

×

r − 1ð Þβ+1 − r − β − 1ð Þ rð Þβ, m = 0,

r −m + 1ð Þβ+1 + r −m − 1ð Þβ+1 − 2 r −mð Þβ+1, 1 ≤m ≤ r − 1,

1, m = r:

8>>><
>>>:

ð4Þ

In addition, the truncation error of (3) is

J
β
0,tr u tð Þ½ � − J

β
0,tr u tð Þ½ �

� �
approx











∞
≤

rβM
8Γ β + 1ð Þ ℏ

2+β: ð5Þ

Proof. The uðtÞ − approximation function, SmðtÞ, in ½tm,
tm+1� ⊆T ;m = 0, 1,⋯, r − 1, by considering the B-spline
interpolation is stated as

um tð Þ ≈ Sm tð Þ = t − tm
tm+1 − tm

� �
u tm+1ð Þ + t − tm+1

tm − tm+1

� �
u tmð Þ:

ð6Þ

Substituting (6) into (2), we obtain the time discretiza-
tion form of (2) as follows:

J
β
0,tr u tð Þ½ � ≈

ðtr
0+

1
Γ βð Þ Sm ζð Þ tr − ζð Þβ−1dζ

= 〠
r−1

m=0

ðtm+1

tm

tr − ζð Þβ−1
Γ βð Þ

ζ − tm+1
tm − tm+1

dζ
 !

u tmð Þ

+ 〠
r−1

m=0

ðtm+1

tm

tr − ζð Þβ−1
Γ βð Þ

ζ − tm
tm+1 − tm

dζ
 !

u tm+1ð Þ:

ð7Þ

After rearranging and simplifying the above equation, it
leads to (3) where the coefficients am,r are given by (4).

Subsequently, the B-spline interpolation polynomial Sm
ðtÞ satisfies

Em tð Þ≔ um tð Þ − Sm tð Þ = t − tmð Þ t − tm+1ð Þ u′′ ηmð Þ
2 , ð8Þ

where ηm ∈ ðtm, tm+1Þ and EmðtÞ denote error function.
Therefore, we have

J
β
0,tr u tð Þ½ � − J

β
0,tr u tð Þ½ �

� �
approx











∞

= 1
Γ βð Þ

ðtr
0

tr − ςð Þβ−1E ςð Þ









∞
dς

= 1
Γ βð Þ 〠

r−1

m=0

ðtm+1

tm

tr − ςð Þβ−1 u′′ ηmð Þ
2 t − tmð Þ t − tm+1ð Þ













∞

dς

≤
M

8Γ βð Þ ℏ
2 〠
r−1

m=0

ðtm+1

tm

tr − ςð Þβ−1dς = tβr M
8Γ β + 1ð Þ ℏ

2

= rβM
8Γ β + 1ð Þ ℏ

β+2:

ð9Þ

In the rest of this section, we designate a fast-running
technique for solving FIDE (1) by means of Proposition 1.
FIDE (1) is able to state the following two equivalent equa-
tions with the same solutions:

u tð Þ = u0 + 〠
n

j=1
Kj uj

À Á
+ J

β
0,tQ t, u tð Þð Þ, n = 1, 2,⋯, i

ð10Þ
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or

u tð Þ =

u0 +
1

Γ βð Þ
ðt
0
Q ς, u ςð Þð Þdς, t ∈ 0, t1½ �,

u0 + K1 u1ð Þ + 1
Γ βð Þ

ðt
0
Q ς, u ςð Þð Þdς, t ∈ t1, t2ð �,

⋮ ⋮

u0 + 〠
i

j=1
Kj uj

À Á
+ 1
Γ βð Þ

ðt
0
Q ς, u ςð Þð Þdς, t ∈ ti, Tð �:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð11Þ

By using the presented approximation in Proposition 1,
we get the following approximation:

J
β
0,trQ t, u tð Þð Þ ≈ 〠

r

m=0
am,rQ tm, umð Þ: ð12Þ

Therefore, by replacing (12) with (10) (or (11)), the fol-
lowing equation derives

ur = u0 + 〠
i

j=1
Kj uj

À Á
+ 〠

r

m=0
am,rQ tm, umð Þ, ð13Þ

where am,r is given by (4). Due to the nonlinear source term
Qðt, ·Þ, we have

upr = u0 +
ℏβ

Γ β + 1ð Þ 〠
r−1

m=0
bm,rQ tm, umð Þ, ð14Þ

where

bm,r = r −mð Þβ − r −m − 1ð Þβ, 0 ≤m ≤ r − 1: ð15Þ

Ultimately, replacing upr in the righthand side of (13)
yields

ur = u0 + 〠
i

j=1
K j uj

À Á
+Q tr , uprð Þ + 〠

r−1

m=0
am,rQ tm, umð Þ: ð16Þ

3. Numerical Application and Discussion

This section evaluates the accuracy and computational effi-
ciency of the proposed numerical technique. To evaluate
the computational impact of this solver, the mean absolute
error (EM),

EM = 1
M

〠
M

m=1
AEm, ð17Þ

where AEm = jJ β
0,tm ½uðtÞ� − ðJ β

0,tm ½uðtÞ�Þapproxj and M repre-

sents the number of interior mesh points, and the conver-
gence order (Ch,M)

Ch,M = logℏ EMð Þ ð18Þ

is considered evaluation criteria. All the computational
results are implemented with MATLAB R2019a on an
AMD Ryzen 7 5700U @ 1.80GHz machine. Furthermore,
a comparison is made with the IM algorithm that was for-
mulated and investigated in [45, 46].

Example 2. Let uðtÞ = πt sin ðπtÞ. Then, we get

J
β
0,t u tð Þ½ � = − β + 2ð Þ

π1/2+β ffiffi
t

p
Γ 3 + βð Þ

Á t2π2 + β
À Á

S3/2+β,1/2 πtð Þ + β2π2tS1/2+β,3/2 πtð Þ − πtð Þ5/2+β
� �

,

ð19Þ

where β > 0 and Sη,νðtÞ define the Lommel function as

Sδ,ϱ tð Þ = tδ+1 1F2 1½ � ; 1/2 δ − ϱ + 3ð Þ, 1/2 δ + ϱ + 3ð Þ½ � ; −1/4ð Þt4À Á
δ + 1ð Þ2 − ϱ2

,

ð20Þ

where  
s Fdðu1,⋯, us ; v1,⋯, vd ; tÞ defines the generalized

hypergeometric function.

The performance of the presented method is described

by J
β
0,t½πt sin ðπtÞ� in Example 2 which is shown in

Table 1. Table 1 shows the values of EM , Ch,M , and compu-
tational times of Equation (19) with ℏ = f0:01,0:005,0:002g
and β = f0:4,0:7,0:9g in the interval t ∈ ½0, 1�. The numerical
results display the improved accuracy of the presented
scheme compared to the IM scheme [45] in the viewpoint
of the EM , Ch,M , and computational times. Figure 1 depicts
the curves of Equation (19) for β = f0:1,0:2,⋯, 1g with step
size ℏ = 0:01. The outcomes in Figure 1 and Table 1 show
that the proposed scheme is more accurate and has less com-
putational time than the IM scheme [45].

3.1. Application of the Suggested Solver. In this section, the
performance of the suggested solver is investigated for
FIDEs.

Application 3. The fractional Rössler system is stated as

CD
β1
0,tx tð Þ = − y tð Þ + z tð Þð Þ,

CD
β2
0,ty tð Þ = x tð Þ + αy tð Þ,

CD
β3
0,tz tð Þ = x tð Þ − θð Þz tð Þ + χ,
x 0ð Þ = x0, y 0ð Þ = y0, z 0ð Þ = z0,

ð21Þ

where 2 ≤ θ ≤ 11 and 0 < β1, β2 and β3 ≤ 1.

In Figure 2, we plot the phase curves of the integer-order
and fractional Rössler chaotic system (21) by means of the
suggested scheme with initial conditions x0 = 0:25, y0 = 0:2,

3Journal of Function Spaces



and z0 = 0:2 for β3 = 0:8 and β1 = 0:96, β2 = 0:9, and θ = 8
with step size ℏ = 0:002 and T = 100.

We can rewrite system (21) into the following system:

CD
β
0,tu tð Þ = Au tð Þ +Ψ tð Þ,
u 0ð Þ = u0,

ð22Þ

where β = ðβ1, β2, β3Þ, uðtÞ = ½xðtÞ, yðtÞ, zðtÞ�T ,

A =
0 −1 −1
1 α 0
0 0 θ

2
664

3
775, ð23Þ

and ΨðtÞ = ½0, 0,−xðtÞzðtÞ + χ�T .

Hence, the fractional impulsive control of chaotic system
(22) is defined as

CD
β
0,tu tð Þ = Au tð Þ +Ψ tð Þ, t ∈ϒ ′ ≔ϒ \ t1, t2,⋯, tif g, ϒ ≔ 0, T½ �,
Δu tð Þ = u t+nð Þ − u tnð Þ = B u tnð Þð Þ, n = 1, 2,⋯, i,
u 0+ð Þ = u0,

ð24Þ

where B = diag ð−0:58,−0:68,−0:78Þ with initial conditions

x 0+ð Þ = 0:25, y 0+ð Þ = 0:2, z 0+ð Þ = 0:2: ð25Þ

System (24) with the nonfractional term, i.e., for
β = ð1, 1, 1Þ, and fractional term was studied in [47–49].

In Figure 3, we depict the numerical approximations of
system (24) by using the suggested method with the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.5

J𝛽
0,

t{u
(t)

}

1

1.5

2

𝛽

Figure 1: Comparison of the numerical results for Equation (19) applying the proposed scheme for β = f0:1,0:2,⋯, 1g with step size
ℏ = 0:01.

Table 1: Comparison of EM , Ch,M , and computational times (sec) of J β
0,t ½πt sin ðπtÞ�, for the IM [45] and proposed schemes, when β =

f0:4,0:7,0:9g and step sizes ℏ = f0:01,0:005,0:002g in t ∈ ½0, 1�.

β Step size
IM scheme Proposed solver

EM Ch,M CPU time EM Ch,M CPU time

0.4

0:01 2:49 × 10−3 1.30 1.375 7:86 × 10−5 2.05 0.610

0:005 9:50 × 10−4 1.31 4.843 2:00 × 10−5 2.04 1.906

0:002 3:62 × 10−4 1.32 19.468 5:18 × 10−6 2.03 7.203

0.7

0:01 2:57 × 10−4 1.79 1.297 5:16 × 10−5 2.14 0.641

0:005 8:17 × 10−5 1.78 4.937 1:29 × 10−5 2.13 1.922

0:002 2:58 × 10−5 1.76 19.109 3:32 × 10−6 2.11 7.359

0.9

0:01 3:17 × 10−5 2.25 1.344 3:67 × 10−5 2.22 0.609

0:005 9:09 × 10−6 2.19 4.703 9:10 × 10−6 2.19 1.859

0:002 2:59 × 10−6 2.14 19.641 2:27 × 10−6 2.17 7.234
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impulsive intervals τ = 0:01, in the interval t ∈ ½0, 10� and
step size ℏ = 0:002 for β1 = 0:96, β2 = 0:9, and β3 = 0:8. We
can view the effects of the impulsive behaviors on this sys-
tem for θ = 4 in these figures.

Application 4. Assume that the functions SðtÞ, EðtÞ, and IðtÞ
denote susceptible, exposed, and infectious pests densities at

time t, respectively. Furthermore, the η defines the death rate
of exposed and infectious pests. The fractional susceptible-
exposed-infectious (SEI) chaotic system is stated as

CD
β1
0,tS tð Þ = cS tð Þ 1 − S tð Þ

K

� �
−

lS tð ÞI tð Þ
1 + nS tð Þ ,

–4 –2 0 2 4 6

x (t)

–6
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–1
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3

y
 (t

)
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Figure 2: Phase curves of the integer-order (L : β1 = β2 = β3 = 1) and fractional (R : β1 = 0:96, β2 = 0:9, β3 = 0:8) Rössler chaotic systems for
α = 0:4, χ = 2, and θ = 8 with step size ℏ = 0:02 and T = 100.
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CD
β2
0,tE tð Þ = lS tð ÞI tð Þ

1 + nS tð Þ − ϕ + ηð ÞE tð Þ,
CD

β3
0,tI tð Þ = ϕE tð Þ − ηI tð Þ,
S 0ð Þ = S0, E 0ð Þ = E0, I 0ð Þ = I0, ð26Þ

where 0 < β1, β2 and β3 ≤ 1. Moreover, SðtÞ grows logisti-
cally with a carrying capacity K in the absence of IðtÞ and
with an intrinsic birth rate constant rc.

In Figure 4, we plot the phase curves of the integer-order and
fractional SEI system (26) by means of the suggested scheme
with initial conditions x0 = 0:1, y0 = 0:2, and z0 = 0:3, plus
c = 1, K = 4, d = 1:2, ϕ = 0:8, n = 0:2, and η = 0:2 for β1 = 1,
β2 = 0:9, and β3 = 0:9 with step size ℏ = 0:005 and T = 100.

We can rewrite system (26) into the following system:

CD
β
0,tu tð Þ = Au tð Þ +Ψ tð Þ,
u 0ð Þ = u0,

ð27Þ

0 1 2 3 4 5 6 7 8 9 10

Time

–1

0

1

x
 (t
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x
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Rossler functions x (t), y (t), z (t) of fractional rossler system
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0 1 2 3 4 5 6 7 8 9 10
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Figure 3: Numerical results of fractional Rössler system without and with, τ = 0:01, impulsive effects for α = 0:4, χ = 2, and θ = 4, based on
the presented scheme for β1 = 0:96, β2 = 0:92, and β3 = 0:80 with step size ℏ = 0:005 and T = 10.
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where β = ðβ1, β2, β3Þ, uðtÞ = ½xðtÞ, yðtÞ, zðtÞ�T ,

A =
c 0 0
0 − α + ηð Þ 0
0 α −η

2
664

3
775,

Ψ tð Þ =

−
c
K
S tð Þ − l

1 + nS tð Þ I tð Þ
� �

S tð Þ

l
1 + nS tð Þ I tð Þ
� �

S tð Þ

0

2
6666664

3
7777775
: ð28Þ
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Figure 4: Phase curves of the integer-order (L : β1 = β2 = β3 = 1) and fractional (R : β1 = 0:99, β2 = 0:90, β3 = 0:70) SEI chaotic systems with
step size ℏ = 0:005 and T = 100.
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Hence, the fractional impulsive control of chaotic system
(27) is defined as

CD
β
0,tu tð Þ = Au tð Þ +Ψ tð Þ, t ∈ϒ ′ ≔ϒ \ t1, t2,⋯, tif g,
Δu tð Þ = u t+nð Þ − u tnð Þ = B u tnð Þð Þ, n = 1, 2,⋯, i,
u 0+ð Þ = u0,

ð29Þ

where Y ≔ ½0, T�, B = diag ð−0:6,−0:6,−0:6Þ with initial
conditions

x 0+ð Þ = 0:25,
y 0+ð Þ = 0:2,
z 0+ð Þ = 0:2:

ð30Þ
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Figure 5: Numerical results of the fractional SEI system without and with, τ = 0:5, impulsive effects based on the presented scheme for
β1 = 0:99, β2 = 0:90, and β3 = 0:70, with step size ℏ = 0:005 and T = 10.
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System 24 with the nonfractional term, i.e., for β =
ð1, 1, 1Þ, was studied in [50].

In Figure 5, we depict the numerical approximations of
systems (26) and (29) by using the suggested method with
the impulsive intervals τ = 0:5, in the interval t ∈ ½0,100�
and step size ℏ = 0:005 for β1 = 0:99, β2 = 0:90, and β3 =
0:70. We can view the effects of the impulsive behaviors on
this system in these figures.

4. Conclusion

In the framework of this study, an implicit numerical algo-
rithm for computing the approximate solutions of fractional
impulsive differential equations was presented. This numer-
ical solver relies on the B-spline interpolation to reasonably
approximate the nonlocal integral operators. An illustrative
example showed the accuracy of the comparison of the
results obtained by the IM scheme and proposed numerical
technique. The results confirmed the superiority of the pre-
sented scheme. Then, the proposed algorithm for solving
the fractional chaotic dynamic Rössler and SEI systems was
applied, and the results were studied using phase figures.
To top it all off, the fractional impulsive systems were
approximated by the presented method, and the achieve-
ment results of the impulsive behavior were analyzed.
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