Fredholm and Schatten Class Operators on Bergman Spaces with Exponential Weights

Xuedi Ma, Xiaofeng Wang ${ }^{(1) \text {, and Jin Xia }}$
School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
Correspondence should be addressed to Xiaofeng Wang; wxf@gzhu.edu.cn

Received 22 May 2023; Revised 16 September 2023; Accepted 21 September 2023; Published 11 October 2023
Academic Editor: Calogero Vetro
Copyright © 2023 Xuedi Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we give a characterization of Fredholmness of the Toeplitz operators on the Bergman spaces A_{φ}^{p} with exponential weights in \mathbb{D} when $0<p<\infty$. Also, we obtain the sufficient and necessary conditions which the Toeplitz and Hankel operators on A_{φ}^{2} belong to h-Schatten class, where h is a continuous increasing convex function.

1. Introduction

Let \mathbb{C} denote the complex plane, \mathbb{R} be the real line, and $\mathscr{H}(\mathbb{D})$ be the space of analytic functions in the unit disc $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$. For $0<p \leq \infty$ and a subharmonic function φ on \mathbb{D}, the weighted Lebesgue space L_{φ}^{p} consists of measurable functions f such that

$$
\begin{align*}
& \|f\|_{p, \varphi}=\left\{\int_{\mathbb{D}}\left|f(z) e^{-\varphi(z)}\right|^{p} d A(z)\right\}^{1 / p}<\infty, \tag{1}\\
& \|f\|_{\infty, \varphi}=\underset{z \in \mathbb{D}}{\operatorname{ess} \sup }|f(z)| e^{-\varphi(z)}<\infty,
\end{align*}
$$

where $d A=(1 / \pi) d x d y$ denotes the normalized Lebesgue area measure on \mathbb{D}. Then, the weighted Bergman space A_{φ}^{p} is defined as

$$
\begin{equation*}
A_{\varphi}^{p}=\mathscr{H}(\mathbb{D}) \cap L_{\varphi}^{p} \tag{2}
\end{equation*}
$$

Let \mathscr{C}_{0} be the space of all continuous functions ρ on \mathbb{D} satisfying $\lim _{|z| \longrightarrow 1} \rho(z)=0$. The class \mathscr{L} is set to be
$\mathscr{L}=\left\{\rho: \mathbb{D} \longrightarrow \mathbb{R} \left\lvert\,\|\rho\|_{\mathscr{L}}=\sup _{\substack{z, w \in \mathbb{D} \\ z \neq w}} \frac{|\rho(z)-\rho(w)|}{|z-w|}<\infty\right., \rho \in \mathscr{C}_{0}\right\}$.
\mathscr{L}_{0} is defined to be the family of those $\rho \in \mathscr{L}$ with a property that for each $\varepsilon>0$, there exists a compact set $E \subset \mathbb{D}$ such that

$$
\begin{equation*}
|\rho(z)-\rho(w)| \leq \varepsilon|z-w| \tag{4}
\end{equation*}
$$

where $z, w \in \mathbb{D} \backslash E$.
We say that φ belongs to the weight class \mathscr{W}_{0} if φ satisfies the following statement:
(a) $\varphi \in \mathscr{C}^{2}, \Delta \varphi>0$
(b) there exists $\rho \in \mathscr{L}_{0}$, such that $(\Delta \varphi)^{-(1 / 2)} \simeq \rho$
where Δ denotes the Laplacian operator and notation $a \simeq b$ indicates that there exists nonessential positive constant C such that $C^{-1} a \leq b \leq C a$.

In what follows, we are focused on A_{φ}^{p} with $\varphi \in \mathscr{W}_{0}$, and the collection \mathscr{W}_{0} contains nonradial weights, two classes of weights related closely to \mathscr{W}_{0}. One was introduced by Oleinik and Pavlov [1], denoted by $\mathcal{O P}$, and the other was
introduced by Borichev et al. [2], denoted by $\mathscr{B} \mathscr{D} \mathscr{K}$. As stated by Hu et al. [3], the weight \mathscr{W}_{0} covers $\mathscr{B} \mathscr{D} \mathscr{K}$, but there is no inclusion relationship between \mathscr{W}_{0} and $\mathscr{O P}$.

It is easy to know that A_{φ}^{p} is a Banach space with norm $\|\cdot\|_{p, \varphi}$ if $1 \leq p \leq \infty$, whereas A_{φ}^{p} is a Fréchet space with metric $d(f, g)=\|f-g\|_{p, \varphi}^{p}$ if $0<p<1$. In particular, A_{φ}^{2} is a Hilbert space. Let $K_{\varphi}(w, z)$ be the Bergman kernel of A_{φ}^{2} and $K_{z}(w)$ $=K(w, z)=K_{\varphi}(w, z)$ for short, and it is obvious that $\left.K_{z} \overline{(} w\right)$ $=K_{w}(z)$. For $0<p<\infty$ and $z \in \mathbb{D}$, set $k_{p, z}(w)=K_{z}(w) /$ $\left\|K_{z}\right\|_{p, \varphi}$ to be the normalized Bergman kernel for A_{φ}^{p}, and $k_{z}(w)=k_{2, z}(w)$ for short. The Bergman projection P can be represented as

$$
\begin{equation*}
\operatorname{Pf}(z)=\int_{\mathbb{D}} K_{w}(z) f(w) e^{-2 \varphi(w)} d A(w), z \in \mathbb{D} \tag{5}
\end{equation*}
$$

Moreover, P is bounded from $L_{\varphi}^{p} \longrightarrow A_{\varphi}^{p}$ and $P f=f$ for any $f \in A_{\varphi}^{p}$ when $0<p \leq \infty$. Let $\Gamma=\left\{\sum_{j=1}^{m} a_{j} K\left(\cdot, z_{j}\right) \mid m \in \mathbb{N}, z_{j}\right.$ $\in \mathbb{D}$ and $a_{j} \in \mathbb{C}$ for $\left.j=1,2, \cdots m\right\}$. For $\varphi \in \mathscr{W}_{0}$ and $0<p<\infty$, we know that Γ is dense in A_{φ}^{p} under the A_{φ}^{p}-norm $\|\cdot\|_{p, \varphi}$. Then, for $f \in L_{\varphi}^{p}$, we define densely the Toeplitz operator and Hankel operator, respectively, with symbol f as

$$
\begin{align*}
T_{f} g & =P(f g), g \in \Gamma \\
H_{f} g & =(I-P)(f g)=f g-P(f g), g \in \Gamma \tag{6}
\end{align*}
$$

where I is the identity operator.
In this paper, we will study the Fredholm properties of the Toeplitz operators on the Bergman spaces with exponential weights. Berger and Coburn [4] were the first to study the Fredholm Toeplitz operators on the Fock spaces F^{2}; recently, the Fredholm theory was extended to the doubling Fock spaces in Hu and Virtanen's study [5]. Hagger [6] studied the Fredholm properties of the Toeplitz operators acting on the weighted Bergman spaces $A_{v}^{p}\left(\mathbb{B}_{n}\right)$, Zorboska [7] determined the Fredholm Toeplitz operators with BMO^{1} symbols when the Berezin transforms of the operators are bounded and of vanishing oscillation. Taskinen and Virtanen [8] combined some of the best known results on the compactness of the Toeplitz and Hankel operators in order to generalize the results on the Fredholm properties of the Toeplitz operators. Our goals of the present paper is to characterize the Fredholm properties of the Toeplitz operators T_{f} with vanishing mean oscillation symbols on exponential Bergman spaces with $\varphi \in \mathscr{W}_{0}$. In addition, as we know, the Toeplitz operators T_{μ} belong to the Schatten p-class $S_{p}\left(A_{\varphi}^{2}\right)$ when $0<p<\infty$ was first considered by Luecking [9], and later, Arroussi et al. [10] considered the same problem and described the membership in Schatten p-class $S_{p}\left(A_{w}^{2}\right)$. Recently Zhang et al. [11] described Schatten p-class Toeplitz operators on A_{φ}^{2}. Also, Luecking [12] characterized the Schatten p-class of the Hankel operators H_{f} on the Bergman spaces, and Zhang et al. [11] characterized the

Schatten p-class Hankel operators with general symbols on the Bergman spaces with exponential weights when $0<p<\infty$. The definition of S_{h} was first introduced by EI-Falla et al. [13], and Arroussi et al. [14] characterized the h-Schatten class Toeplitz operators on large Fock spaces, where h is a continuous increasing convex function. At present, we will characterize h-Schatten class Toeplitz and Hankel operators on A_{φ}^{2}. It is worth mentioning that the result of h-Schatten class Hankel operators has not been studied before. And the details of our characterizations are shown in section 5 .

This paper is organized as follows. In section 2, we will give some useful results which contain mainly Bergman kernel estimates, etc. Section 3 provides the proofs of boundedness and compactness of the Topelitz and Hankel operators. In section 4, we characterize the Fredholm properties of the Topelitz operators on A_{φ}^{p}. Section 5 contains the characterization of h-Schatten class Toeplitz and Hankel operators on A_{φ}^{2}.

2. Preliminaries

Let $\varphi \in \mathscr{W}_{0}$, we define the distance $d_{\rho}(z, w)$ as

$$
\begin{equation*}
d_{\rho}(z, w)=\inf _{r} \int_{0}^{1}\left|\gamma^{\prime}(t)\right| \frac{d t}{\rho(\gamma(t))}, \tag{7}
\end{equation*}
$$

where the infimum is taken over all piecewise \mathscr{C}^{1} curves $\gamma:[0,1] \longrightarrow \mathbb{D}$ with $\gamma(0)=z$ and $\gamma(1)=w$. In fact, $d_{\rho}(\cdot, \cdot)$ is equivalent to the Bergman distance $\beta_{\varphi}(\cdot, \cdot)$ induced by the Bergman metric $1 / 2\left(\partial^{2} \log K_{z}(z) / \partial z \partial \bar{z}\right) d z \otimes d \bar{z}$.

For $z \in \mathbb{D}$ and $r>0$, define the disks $B_{\rho}(z, r)=\{w \in \mathbb{D} \mid$ $\left.d_{\rho}(w, z)<r\right\}, D(z, r)=\{w \in \mathbb{D}| | w-z \mid<r\}$, and $D^{r}(z)=D$ $(z, r \rho(z))$, and for more information, refer to [3].

Lemma 1. Let $\rho \in \mathscr{L}$ be positive. Then, there exists $\alpha>0$ with the following properties:
(a) There exists constants C_{1} and C_{2} such that

$$
\begin{equation*}
C_{1} \rho(w) \leq \rho(z) \leq C_{2} \rho(w) \tag{8}
\end{equation*}
$$

for $z \in \mathbb{D}$ and $w \in D^{\alpha}(z)$.
(b) There exists a constant $B>0$ such that

$$
\begin{equation*}
D^{r}(z) \subseteq D^{B r}(w), D^{r}(w) \subseteq D^{B r}(z) \tag{9}
\end{equation*}
$$

for $w \in D^{r}(z)$ and $0<r \leq \alpha$.
(c) There exist positive constants C_{1} and C_{2} such that

$$
\begin{equation*}
B_{\rho}\left(z, C_{1} r\right) \subseteq D^{r}(z) \subseteq B_{\rho}\left(z, C_{2} r\right) \tag{10}
\end{equation*}
$$

for $r \in \mathbb{D}$, and $0<r \leq \alpha$.

Proof. See Lemma 3.1 in Hu et al.'s study [3].
Lemma 2. If $\rho \in \mathscr{L}$ is positive, then there exist positive constants α and s, depending only on $\|\rho\|_{\mathscr{L}}$ such that for $0<r \leq \alpha$, there exist a sequence $\left\{w_{k}\right\} \subset \mathbb{D}$ satisfying
(a) $\mathbb{D}=\bigcup_{k} D^{r}\left(w_{k}\right)$
(b) $D^{s r}\left(w_{k}\right) \bigcap D^{s r}\left(w_{j}\right)=\varnothing$ for $k \neq j$
(c) $\left\{D^{2 \alpha}\left(w_{k}\right)\right\}_{k}$ is a covering of \mathbb{D} of finite multiplicity N

Proof. See Lemma 2.1 in Zhang et al.'s study [11].
A sequence $\left\{w_{k}\right\}$ satisfying $(A)-(C)$ of Lemma 2 will be called a (ρ, r)-lattice. The set of (ρ, r)-lattices will be denoted by $L(\rho, r)$. The statement (c) of Lemma 2 says that for $\left\{w_{k}\right\} \in \mathrm{L}(\rho, r)$, there exists an integer N such that

$$
\begin{equation*}
1 \leq \sum_{k=1}^{\infty} \chi_{D^{2 \alpha}\left(w_{k}\right)}(z) \leq N \text { for } z \in \mathbb{D} \tag{11}
\end{equation*}
$$

Lemma 3. Let $\varphi \in \mathscr{W}_{0}$. There are positive constants C_{1}, C_{2}, and σ such that

$$
\begin{align*}
& \left|K_{z}(w)\right| \leq C_{1} \frac{e^{\varphi(z)+\varphi(w)}}{\rho(z) \rho(w)} e^{-\sigma d_{\rho}(z, w)} \text { for } z, w \in \mathbb{D} \\
& \left|K_{z}(w)\right| \geq C_{2} \frac{e^{\varphi(z)+\varphi(w)}}{\rho(z) \rho(w)} \text { for } d_{\rho}(z, w) \leq \alpha \tag{12}
\end{align*}
$$

Proof. See Theorem 12 in Hu et al.'s study [3].
Lemma 4. Let $\varphi \in \mathscr{W}_{0}$. Then

$$
\begin{align*}
\left\|K_{z}\right\|_{p, \varphi} & \simeq e^{\varphi(z)} \rho^{(2 / p)-2}(z) \\
\left\|k_{z}\right\|_{p, \varphi} & \simeq \rho^{(2 / p)-1}(z) \tag{13}\\
\left\|(\cdot,-z) k_{z}\right\|_{p, \varphi} & \simeq \rho^{2 / p}(z) \text { for } z \in \mathbb{D}
\end{align*}
$$

Proof. See Corollary 3.2 in Hu et al.'s study [3].
Lemma 5. Suppose $\rho \in \mathscr{L}_{0}, k>-2, \sigma>0,-\infty<l<\infty$. Then

$$
\begin{equation*}
\int_{\mathbb{D}}|\xi-z|^{k} \rho^{l}(\xi) e^{-\sigma d_{\rho}(z, \xi)} d A(\xi) \leq C \rho^{k+l+2}(z) \text { for } z \in \mathbb{D} \tag{14}
\end{equation*}
$$

Proof. See Corollary 3.1 in Hu et al.'s study [3].
Lemma 6. Suppose $\rho \in \mathscr{L}_{0}, k, l \in \mathbb{R}, \sigma>0$. Then, there is a constant $C>0$ such that

$$
\begin{equation*}
\int_{\mathbb{D}}\left(d_{\rho}(z, \xi)+1\right)^{k} \rho^{l}(\xi) e^{-\sigma d_{\rho}(z, \xi)} d A(\xi) \leq C \rho^{l+2}(z) \tag{15}
\end{equation*}
$$

Proof. Since $d_{\rho}(z, \xi)+1 \geq 1$, it is obvious that for $z, \xi \in \mathbb{D}$, there is a constant $C_{1}>0$ such that

$$
\begin{equation*}
\left(d_{\rho}(z, \xi)+1\right)^{k} \leq C_{1} e^{(\sigma / 2) d_{\rho}(z, \xi)} \tag{16}
\end{equation*}
$$

for any $k \in \mathbb{R}$. Then, for $z \in \mathbb{D}$, we have

$$
\begin{align*}
\int_{\mathbb{D}} & \left(d_{\rho}(z, \xi)+1\right)^{k} \rho^{l}(\xi) e^{-\sigma d_{\rho}(z, \xi)} d A(\xi) \\
& \leq C_{1} \int_{\mathbb{D}} \rho^{l}(\xi) e^{-(\sigma / 2) d_{\rho}(z, \xi)} d A(\xi) \tag{17}\\
& \leq C_{1} C \rho^{l+2}(z)
\end{align*}
$$

Lemma 7. For $p>0$ and $l \in \mathbb{R}$, the following statements hold
(a) $\int_{\mathbb{D}}\left(d_{\rho}(z, w)+1\right)^{l}\left|K_{z}(w)\right|^{p} e^{-p \varphi(w)} d A(w) \lesssim C \rho^{2(1-p)}(z)$ $e^{p \varphi(z)}$ for $z \in \mathbb{D}$
(b) $\lim _{R \longrightarrow \infty} \sup _{z \in \mathbb{D}} \rho^{2(p-1)}(z) e^{-p \varphi(z)} \int_{\left(D^{R}(z)\right)^{c}}\left(d_{\rho}(z, w)+1\right)^{l}$ $\left|K_{z}(w)\right|^{p} e^{-p \varphi(w)} d A(w)=0$

Proof.
(a) Lemma 3 implies that

$$
\begin{align*}
& \int_{\mathbb{D}}\left(d_{\rho}(z, w)+1\right)^{l}\left|K_{z}(w)\right|^{p} e^{-p \varphi(w)} d A(w) \\
& \quad \leq e^{p \varphi(z)} C_{1} \int_{\mathbb{D}}\left(d_{\rho}(z, w)+1\right)^{l} \rho^{-p}(z) \rho^{-p}(w) e^{-\sigma p d_{\rho}(z, w)} d A(w) . \tag{18}
\end{align*}
$$

It follows from Lemma 6 that

$$
\begin{align*}
& e^{p \varphi(z)} \int_{\mathbb{D}}\left(d_{\rho}(z, w)+1\right)^{l} \rho^{-p}(z) \rho^{-p}(w) e^{-\sigma p d_{\rho}(z, w)} d A(w) \tag{19}\\
& \quad \leq c e^{p \varphi(z)} \rho^{2-2 p}(z) .
\end{align*}
$$

(b) Lemma 2.3 and Theorem 3.3 in Hu et al.'s study [3] show that

$$
\begin{align*}
& \rho^{2(p-1)}(z) e^{-p \varphi(z)} \int_{\left(D^{R}(z)\right)^{c}}\left(d_{\rho}(z, w)+1\right)^{l}\left|K_{z}(w)\right|^{p} e^{-p \varphi(w)} d A(w) \\
& \quad \leqslant \rho^{p-2}(z) \int_{\left(D^{R}(z)\right)^{c}}\left(d_{\rho}(z, w)+1\right)^{l} e^{-(\sigma / 2) p d_{\rho}(z, w)} \rho^{-p}(w) \frac{(\min \{\rho(z), \rho(w)\})^{p}}{|z-w|^{p}} d A(w) . \tag{20}
\end{align*}
$$

Note that $\lim _{|w| \longrightarrow 1} \rho(w)=0$, and then, for sufficient lager number $R>0$, we have

$$
\begin{align*}
& \rho^{\rho-2}(z) \int_{\left(D^{R}(z)\right)^{c}}\left(d_{\rho}(z, w)+1\right)^{l} e^{-(\sigma / 2) p d_{\rho}(z, w)} \rho^{-p}(w) \frac{(\min \{\rho(z), \rho(w)\})^{p}}{|z-w|^{p}} d A(w) \\
& \quad \leqslant \rho^{\rho-2}(z) \int_{\left(D^{R}(z)\right)^{c}}\left(d_{\rho}(z, w)+1\right)^{l} e^{-(\sigma \rho p / 2) d_{\rho}(z, w)}|z-w|^{-p} d A(w) . \tag{21}
\end{align*}
$$

Since $|z-w| \geq R \rho(z)$, we obtain that $|z-w|^{-p} \leq R^{-p}$ $\rho(z)^{-p}$. Then

$$
\begin{align*}
& \rho^{p-2}(z) \int_{\left(D^{R}(z)\right)^{c}}\left(d_{\rho}(z, w)+1\right)^{l} e^{-(\sigma p / 2) d_{\rho}(z, w)}|z-w|^{-p} d A(w) \\
& \quad \leq R^{-p} \rho^{-2}(z) \int_{\mathbb{D}}\left(d_{\rho}(w, z)+1\right)^{l} e^{-(\sigma p / 2) d_{\rho}(z, w)} d A(w) \tag{22}
\end{align*}
$$

Moreover, Lemma 6 implies that

$$
\begin{align*}
& R^{-p} \rho^{-2}(z) \int_{\mathbb{D}}\left(d_{\rho}(w, z)+1\right)^{l} e^{-(\sigma p / 2) d_{\rho}(z, w)} d A(w) \tag{23}\\
& \quad \leqslant R^{-p} \longrightarrow 0(R \longrightarrow+\infty) .
\end{align*}
$$

Thus
$\lim _{R \rightarrow+\infty} \sup _{z \in \mathbb{D}} \rho^{2(\rho-1)}(z) e^{-p \varphi(z)} \int_{\left(D^{\mathbb{R}}(z)\right)^{c}}\left(d_{\rho}(z, w)+1\right)^{l}\left|K_{z}(w)\right|^{p} e^{-p \varphi(w)} d A(w)=0$.

For $1 \leq p<\infty$, let $L_{\text {loc }}^{p}(\mathbb{D})$ be the set of all p-th locally Lebesgue integrable function on \mathbb{D}. For $f \in L_{\mathrm{loc}}^{1}(\mathbb{D})$ and $r>0$, the averaging function \widehat{f}_{r} is defined as

$$
\begin{equation*}
\widehat{f}_{r}(z)=\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)} f(w) d A(w) \tag{25}
\end{equation*}
$$

where $\left|D^{r}(z)\right|$ is the volume of $D^{r}(z)$. Suppose $f \in L_{\mathrm{loc}}^{p}(\mathbb{D})$ and $r>0$, the p-th mean oscillation of f given by

$$
\begin{equation*}
M O_{p, r}(f)(z)=\left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|f(w)-\widehat{f}_{r}(z)\right|^{p} d A(w)\right)^{1 / p}, z \in \mathbb{D} \tag{26}
\end{equation*}
$$

The space BMO_{r}^{p} consists of the functions $f \in L_{\mathrm{loc}}^{p}(\mathbb{D})$ such that $\|f\|_{\mathrm{BMO}_{r}^{p}}=\sup _{z \in \mathbb{D}} \mathrm{MO}_{p, r}^{p}(f)(z)<\infty$, where $1 \leq p<\infty$ and $r>0$. When $\underset{|z| \rightarrow 1}{\lim } \mathrm{MO}_{p, r}(f)(z)=0$, we say $f \in \mathrm{VMO}_{r}^{p}$.

For a continuous function f on \mathbb{D}, and $r>0$, let

$$
\begin{equation*}
\omega_{r}(f)(z)=\sup _{w \in D^{r}(z)}\{|f(z)-f(w)|\}, z \in \mathbb{D} \tag{27}
\end{equation*}
$$

be the oscillation of f.
For $r>0, \mathrm{BO}_{r}$ denote the space of all continuous functions f on \mathbb{D} such that $\|f\|_{\mathrm{BO}_{r}}=\sup _{z \in \mathbb{D}} \omega_{r}(f)(z)<\infty$. The space VO_{r} consists of functions f in BO_{r} satisfying $\lim _{|z| \longrightarrow 1} \omega_{r}(f)(z)=0$.

Suppose $1 \leq p<\infty$, and $r>0$, let $B A_{r}^{p}$ denote the space of all locally p-th integrable functions f on \mathbb{D} such that $\|f\|_{B A_{r}^{p}}=\sup _{z \in \mathbb{D}}\left[\left(\widehat{|f|^{p}}\right)_{r}(z)\right]^{1 / p}<\infty$. The space $V A_{r}^{p}$ consists of the functions $f \in B A_{r}^{p}$ for which $\lim _{|z| \longrightarrow 1}\left[\left(\widehat{|f|^{p}}\right)_{r}(z)\right]^{1 / p}=0$.

For $f \geq 0$ and $f\left|k_{z}\right|^{2} \in L_{\varphi}^{1}$ for any $z \in \mathbb{D}$, we define the Berezin transform \tilde{f} of f by

$$
\begin{equation*}
\tilde{f}(z)=\int_{\mathbb{D}} f(w)\left|k_{z}(w)\right|^{2} e^{-2 \varphi(w)} d A(w) \tag{28}
\end{equation*}
$$

for $f \in L_{\text {loc }}^{p}(\mathbb{D})$. When $d \mu=|f|^{p} d A$, it follows from Theorem 11 and Theorem 12 in Zhang et al.'s study [11] with $p=q$ that

$$
\begin{align*}
& \sup _{z \in \mathbb{D}}\left(\widehat{|f|^{p}}\right)_{r}(z) \simeq \sup _{z \in \mathbb{D}}\left(\widetilde{|f|^{p}}\right)(z), \\
& \lim _{|z| \rightarrow 1}\left(\widehat{|f|^{p}}\right)_{r}(z)=0 \Leftrightarrow \lim _{|z| \longrightarrow 1}\left(\widetilde{\left.f\right|^{p}}\right)(z)=0 . \tag{29}
\end{align*}
$$

Theorem 8. Let $0<r<\alpha, 1 \leq p<\infty$ and $0<t, l<\infty$. Then, the following statements are all equivalent:
(a) $f \in B M O_{r}^{p}$;
(b) f admits a decomposition $f=f_{1}+f_{2}$, where $f_{1} \in B O_{r}$ and $f_{2} \in B A_{r}^{p}$, moreover

$$
\begin{equation*}
\left\|f_{1}\right\|_{B O_{r}}+\left\|f_{2}\right\|_{B A_{r}^{p}} \simeq\|f\|_{B M O_{r}^{p}}, \tag{30}
\end{equation*}
$$

(c) The function $\int_{\mathbb{D}}\left|f(w)-\widetilde{f}_{t}(z)\right|^{p}\left|k_{l, z(w)}\right|^{l} e^{-l \varphi(w)} d A(w)$ is bounded, where $\widetilde{f}_{t}(z)=\int_{\mathbb{D}} f(w)\left|k_{t, z}(w)\right|^{t} e^{-t \varphi(w)}$ $d A(w)$ and $k_{t, z}(w)=K_{z}(w) /\left\|K_{z}\right\|_{t, \varphi}$

Proof. $(A) \Rightarrow(B)$. For $w \in D^{r / B}(z)$ with B as in Lemma $1(\mathrm{~B})$, we have $D^{r / B}(w) \subseteq D^{r}(z)$. Set $f_{1}=\widehat{f}_{r / B}$ and $f_{2}=f-f_{1}$. Suppose $f \in \mathrm{BMO}_{r}^{p}$ with $1 \leq p<\infty$, and $w \in D^{r / B}(z)$, by the triangle inequality and Hölder's inequality, one can get

$$
\begin{align*}
\left|f_{1}(w)-f_{1}(z)\right| \leq & \left|f_{1}(z)-\widehat{f}_{r}(z)\right|+\left|\widehat{f}_{r}(z)-f_{1}(w)\right| \\
\leq & \frac{1}{\left|D^{r / B}(z)\right|} \int_{D^{r / B}(z)}\left|f(u)-\widehat{f}_{r}(z)\right| d A(u) \\
& +\frac{1}{\left|D^{r / B}(w)\right|} \int_{D^{r / B}(w)}\left|f(u)-\widehat{f}_{r}(z)\right| d A(u) \\
& \left(\frac{1}{\left|D_{r / B}(z)\right|} \int_{D^{r}(z)}\left|f(u)-\widehat{f}_{r}(z)\right|^{p} d A(u)\right)^{1 / p} . \tag{31}
\end{align*}
$$

Thus $f_{1} \in \mathrm{BO}_{r / B}$, it is easy to know that $f_{1} \in B O_{r}$ and $\left\|f_{1}\right\|_{\mathrm{BO}_{r}} \leqslant\|f\|_{\mathrm{BMO}_{r}^{p}}$.

By the triangle inequality, we have

$$
\begin{align*}
\operatorname{MO}_{r / B}^{p}(f)(z) \leq & \left(\frac{1}{\left|D^{r / B}(z)\right|} \int_{D^{r / B}(z)}\left|f(u)-\widehat{f_{r}}(z)\right|^{p} d A(u)\right)^{1 / p} \\
& +\left|\widehat{f_{r}}(z)-\widehat{f_{r / B}}(z)\right| \tag{32}
\end{align*}
$$

If $1 \leq p<\infty$, the Hölder's inequality implies that

$$
\begin{align*}
\left|\widehat{f}_{r}(z)-\widehat{f_{r / B}}(z)\right| & =\left|\frac{1}{\left|D^{r / B}(z)\right|} \int_{D^{r / B}(z)} f(u)-\widehat{f_{r}}(z) d A(u)\right| \\
& \leq\left|\frac{1}{\left|D^{r / B}(z)\right|} \int_{D^{r / B}(z)}\right| f(u)-\left.\left.\widehat{f}_{r}(z)\right|^{p} d A(u)\right|^{1 / p} . \tag{33}
\end{align*}
$$

Then, for $z \in \mathbb{D}$, there holds

$$
\begin{align*}
&\left(\left(\mid \widehat{\left.f_{2}\right|^{p}}\right)_{r / B}(z)\right)^{1 / p}=\left(\frac{1}{\left|D^{r / B}(z)\right|} \int_{D^{r / B}(z)}\left|f(u)-f_{1}(u)\right|^{p} d A(u)\right)^{1 / p} \\
& \leq\left(\frac{1}{\left|D^{r / B}(z)\right|} \int_{D^{r / B}(z)}\left|f(u)-\widehat{f_{r / B}}(z)\right|^{p} d A(u)\right)^{1 / p} \\
&+\left(\frac{1}{\mid D^{r / B}(z)}\left|\int_{D^{r / B}}\right| z\right) \\
&\left.\left|f_{1}(u)-f_{1}(z)\right|^{p} d A(u)\right)^{1 / p} \\
& \leq \operatorname{MO}_{r \mid B}^{p}(f)(z)+\omega_{r / B}\left(f_{1}\right)(z) \tag{34}\\
& \leq \operatorname{MO}_{r}^{p}(f)(z)+\omega_{r}\left(f_{1}\right)(z) .
\end{align*}
$$

Thus, $f_{2} \in B A_{r / B}^{p}$ and $\left\|f_{2}\right\|_{B A_{r}^{p}} \lesssim\|f\|_{\mathrm{BMO}_{r}^{p}}$.
$(B) \Rightarrow(C)$. Suppose $f=f_{1}+f_{2}$ where $f_{1} \in \mathrm{BO}_{r}$ and $f_{2} \in \mathrm{BA}_{r}^{p}$, by the triangle inequality, there holds

$$
\begin{align*}
& \left(\int_{\mathbb{D}}\left|f_{1}(w)-\widetilde{\left(f_{1}\right)_{t}}(z)\right|^{p}\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} d A(w)\right)^{1 / p} \\
& \quad \leq\left(\int_{\mathbb{D}}\left|f_{1}(w)-f_{1}(z)\right|^{p}\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} d A(w)\right)^{1 / p} \\
& \quad+\left(\int_{\mathbb{D}}\left|f_{1}(z)-\widetilde{\left(f_{1}\right)_{t}}(z)\right|^{p}\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} d A(w)\right)^{1 / p} \\
& \quad=\left(\int_{\mathbb{D}}\left|f_{1}(w)-f_{1}(z)\right|^{p}\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} d A(w)\right)^{1 / p} \\
& \quad+\left|f_{1}(z)-\widetilde{\left(f_{1}\right)_{t}}(z)\right| . \tag{35}
\end{align*}
$$

Lemma 3 and Lemma 4 imply that

$$
\begin{equation*}
\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} \leqslant \rho^{l-2}(z) \rho^{-l}(w) e^{-\sigma l d_{\rho}(z, w)} \tag{36}
\end{equation*}
$$

Note that $\sup _{z, w \in \mathbb{D}}\left(d_{\rho}(z, w)+1\right)^{p} e^{-(l \sigma / 2) d_{\rho}(z, w)} \leq C$ for some constant $C>0$, and

$$
\begin{equation*}
\left|f_{1}(w)-f_{1}(z)\right| \lesssim\left(d_{\rho}(z, w)+1\right)\left\|f_{1}\right\|_{\mathrm{BO}_{r}} \tag{37}
\end{equation*}
$$

By Lemma 6, we have

$$
\begin{align*}
& \int_{\mathbb{D}}\left|f_{1}(w)-f_{1}(z)\right|^{p}\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} d A(w) \\
& \quad \leq\left\|f_{1}\right\|_{\mathrm{BO}_{r}}^{p} \int_{\mathbb{D}}\left(d_{\rho}(z, w)+1\right)^{p} \rho^{l-2}(z) \rho^{-l}(w) e^{-\sigma l d_{\rho}(z, w)} d A(w) \\
& \quad \leq\left\|f_{1}\right\|_{\mathrm{BO}_{r}}^{p} \tag{38}
\end{align*}
$$

For $1 \leq p<\infty$, by the same reason, we have

$$
\begin{align*}
\left|f_{1}(z)-\widetilde{\left(f_{1}\right)_{t}}(z)\right| & =\left.\left|\int_{\mathbb{D}}\left(f_{1}(z)-f_{1}(w)\right)\right| k_{t, z}(w)\right|^{t} e^{-t \varphi(w)} d A(w) \mid \\
& \leqslant\left(\int_{\mathbb{D}}\left|f_{1}(w)-f_{1}(z)\right|^{p}\left|k_{t, z}(w)\right|^{t} e^{-t \varphi(w)} d A(w)\right)^{1 / p} \\
& \leq\left\|f_{1}\right\|_{\mathrm{BO}_{r}} . \tag{39}
\end{align*}
$$

It is obvious that $\left|\widetilde{\left(f_{2}\right)_{t}}(z)\right| \lesssim\left[\left(\mid \widetilde{\left.f_{2}\right|^{p}}\right)_{t}(z)\right]^{1 / p}$ for $1 \leq p<\infty$. Next, we prove the part with respect to f_{2}. By triangle inequality, there holds

$$
\begin{aligned}
& \left(\int_{\mathbb{D}}\left|f_{2}(w)-\widetilde{\left(f_{2}\right)_{t}}(z)\right|^{p}\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} d A(w)\right)^{1 / p} \\
& \quad \leq\left(\int_{\mathbb{D}}\left|f_{2}(w)\right|^{p}\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} d A(w)\right)^{1 / p} \\
& \quad+\left(\int_{\mathbb{D}}\left|\widetilde{\left(f_{2}\right)_{t}}(z)\right|^{p}\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} d A(w)\right)^{1 / p} \\
& \quad=\left[\left(\mid \widetilde{\left.f_{2}\right|^{p}}\right)_{l}(z)\right]^{1 / p}+\left|\widetilde{\left(f_{2}\right)_{t}}(z)\right| \leq\left\|f_{2}\right\|_{\mathrm{BA}_{r}^{p} .}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left(\int_{\mathbb{D}}\left|f(w)-\widehat{f}_{t}(z)\right|^{p}\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} d A(w)\right)^{1 / p} \\
& \quad \leq\left\|f_{1}\right\|_{\mathrm{BO}_{r}}+\left\|f_{2}\right\|_{\mathrm{BA}_{r}^{p}}
\end{aligned}
$$

$(C) \Rightarrow(A)$. By Lemma 3, for $w \in D^{r}(z)$

$$
\begin{equation*}
\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} \simeq \frac{1}{\left|D^{r}(z)\right|} \simeq \rho^{-2}(z) \tag{42}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|f(w)-\widetilde{f}_{t}(z)\right|^{p} d A(w) \\
& \quad \simeq \int_{D^{r}(z)}\left|f(w)-\widetilde{f}_{t}(z)\right|^{p}\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} d A(w) \tag{43}\\
& \quad \leq \int_{\mathbb{D}}\left|f(w)-\widetilde{f}_{t}(z)\right|^{p}\left|k_{l, z}(w)\right|^{l} e^{-l \varphi(w)} d A(w)
\end{align*}
$$

Note that

$$
\begin{align*}
\mathrm{MO}_{r}^{p}(f)(z)= & \left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|f(w)-\widehat{f}_{r}(z)\right|^{p} d A(w)\right)^{1 / p} \\
\leq & \left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|f(w)-\widetilde{f}_{t}(z)\right|^{p} d A(w)\right)^{1 / p} \\
& +\left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|\widehat{f}_{r}(z)-\widetilde{f}_{t}(z)\right| d A(w)\right)^{1 / p} \\
= & \left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|f(w)-\widetilde{f}_{t}(z)\right|^{p} d A(w)\right)^{1 / p} \tag{44}\\
& +\left|\widehat{f}_{r}(z)-\widetilde{f}_{t}(z)\right| \\
\leq & \left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|f(w)-\widetilde{f}_{t}(z)\right|^{p} d A(w)\right)^{1 / p} \\
& +\left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|f(w)-\widetilde{f}_{t}(z)\right|^{p} d A(w)\right)^{1 / p} \\
\leq & 2\left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|f(w)-\widetilde{f}_{t}(z)\right|^{p} d A(w)\right)^{1 / p}
\end{align*}
$$

Thus, $f \in \mathrm{BMO}_{r}^{p}$.

3. Boundedness and Compactness of Operators

For $l \in \mathbb{R}$, we define an integral operator G_{l} by

$$
\begin{equation*}
G_{l} f(z)=\int_{\mathbb{D}} f(\xi)\left(d_{\rho}(z, \xi)+1\right)^{l}\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi) \tag{45}
\end{equation*}
$$

Lemma 9. Suppose $\varphi \in \mathscr{W}$ with $(\Delta \varphi)^{-1 / 2} \simeq \rho \in \mathscr{L}$. Let $0<p$ $<\infty$, and there exist positive constants α and C such that for $0<r \leq \alpha$ and $f \in \mathscr{H}(\mathbb{D})$, there holds
(a) $\left|f(z) e^{-\varphi(z)}\right|^{p} \leq C /\left|D^{r}(z)\right| \int_{D^{r}(z)}\left|f(w) e^{-\varphi(w)}\right|^{p} d A(w)$,
(b) $\left|f^{\prime}(z) e^{-\varphi(z)}\right|^{p} \leq C /\left|D^{r}(z)\right|^{1+(p / 2)} \int_{D^{r}(z)}\left|f(w) e^{-\varphi(w)}\right|^{p} d A$ (w).

Proof. See Lemma 13 in Hu et al.'s study [3].
It follows from Lemma 9 that $\rho^{2 / p}(z)\left|f(z) e^{-\varphi(z)}\right| \leq\|f\|_{p, \varphi}$ where $0<p<\infty, z \in \mathbb{D}$.

Lemma 10. The operator G_{l} is bounded on L_{φ}^{p} with $1 \leq p \leq \infty$; meanwhile, G_{l} is bounded from F_{φ}^{p} to L_{φ}^{p} with $0<p<1$.

Proof. First, we consider the case $1 \leq p \leq \infty$. Lemma 7 implies that

$$
\begin{align*}
\left\|G_{l} f\right\|_{1, \varphi} & \leq \int_{\mathbb{D}} e^{-\varphi(z)} d A(z) \int_{\mathbb{D}}|f(\xi)|(d(\xi, z)+1)^{l}\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi) \\
& =\int_{\mathbb{D}}|f(\xi)| e^{-2 \varphi(\xi)} d A(\xi) \int_{\mathbb{D}}(d(z, \xi)+1)^{l}\left|K_{z}(\xi)\right| e^{-\varphi(z)} d A(z) \\
& \leq C \int_{\mathbb{D}}|f(\xi)| e^{-\varphi(\xi)} d A(\xi) \leq C\|f\|_{1, \varphi} . \tag{46}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\left\|G_{l} f\right\|_{\infty, \varphi} & =\sup _{z \in \mathbb{D}} e^{-\varphi(z)} \int_{\mathbb{D}}|f(\xi)|(d(z, \xi)+1)^{l}\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi) \\
& \leq\|f\|_{\infty, \varphi} \sup _{z \in \mathbb{D}} e^{-\varphi(z)} \int_{\mathbb{D}}(d(\xi, z)+1)^{l}\left|K_{z}(\xi)\right| e^{-\varphi(\xi)} d A(\xi) \\
& \leq C\|f\|_{\infty, \varphi} . \tag{47}
\end{align*}
$$

By interpolation theorem, G_{l} is bounded on L_{φ}^{p} with $1 \leq p \leq \infty$.

Next, we consider the case $0<p<1$. We know that $d_{\rho}(\cdot, \cdot)$ is equivalent to the Bergman distance $\beta_{\varphi}(\cdot, \cdot)$, and then, by Lemma 1 in Hu and Virtanen's study [5], we have $d_{\rho}(w, \xi) \leq C$ for $\xi \in D(w)$. For $0<r \leq \alpha$, we choose an (ρ, r)-lattice $\left\{z_{j}\right\}_{j=1}^{\infty} \subset \mathbb{D}$ as in Lemma 2, and then by Lemma 2 and Lemma 9 for $f \in \mathscr{H}(\mathbb{D})$, we obtain

$$
\begin{align*}
\left|G_{l} f(z)\right|^{p} \leq & \left(\sum_{j=1}^{\infty} \int_{D^{r}\left(z_{j}\right)}|f(\xi)|\left(d_{\rho}(z, \xi)+1\right)^{l}\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi)\right)^{p} \\
\leq & \sum_{j=1}^{\infty}\left(\int_{D^{r}\left(z_{j}\right)}|f(\xi)|\left(d_{\rho}(z, \xi)+1\right)^{l}\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi)\right)^{p} \\
\leq & C \sum_{j=1}^{\infty} \sup _{\xi \in D^{r}\left(z_{j}\right)}\left(|f(\xi)|\left(d_{\rho}(z, \xi)+1\right)^{l}\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)}\right)^{p} \rho^{2 p}\left(z_{j}\right) \\
\leq & C \sum_{j=1}^{\infty} \sup _{\xi \in D^{r}\left(z_{j}\right)} \int_{D^{r}(\xi)} \\
& \cdot\left(|f(w)|\left(d_{\rho}(z, w)+1\right)^{l}\left|K_{z}(w)\right| e^{-2 \varphi(w)}\right)^{p} \rho^{2 p-2}(w) d A(w) \\
\leq & C \sum_{j=1}^{\infty} \int_{D^{B r}\left(z_{j}\right)}\left(|f(w)|\left(d_{\rho}(z, w)+1\right)^{l}\left|K_{z}(w)\right| e^{-2 \varphi(w)}\right)^{p} \rho^{2 p-2}(w) d A(w) \\
\leq & C N \int_{\mathbb{D}}\left(|f(w)|\left(d_{\rho}(z, w)+1\right)^{l}\left|K_{z}(w)\right| e^{-2 \varphi(w)}\right)^{p} \rho^{2 p-2}(w) d A(w) . \tag{48}
\end{align*}
$$

Then, Lemma 7 implies that

$$
\begin{align*}
&\left\|G_{l} f\right\|_{p, \varphi}^{p} \leq C \\
& \int_{\mathbb{D}} e^{-p \varphi(z)} d A(z) \int_{\mathbb{D}} \\
& \cdot\left(|f(w)|\left(d_{\rho}(z, w)+1\right)^{l}\left|K_{z}(w)\right| e^{-2 \varphi(w)}\right)^{p} \rho^{2 p-2}(w) d A(w) \\
& \leq C \int_{\mathbb{D}}\left(|f(w)|^{p} e^{-2 p \varphi(w)}\right) \rho^{2(p-1)}(w) d A(w) \int_{\mathbb{D}} \\
& \leq\left(d_{\rho}(z, w)+1\right)^{l}\left|K_{z}(w)\right|^{p} e^{-p \varphi(z)} d A(z) \tag{49}\\
& \leq C \int_{\mathbb{D}}|f(w)|^{p} e^{-p \varphi(w)} d A(w)=C\|f\|_{p, \varphi} .
\end{align*}
$$

The proof is completed.
Theorem 11. Let $0<p<\infty$. If $f \in L^{\infty}(\mathbb{D})$ has compact support, the Hankel operator H_{f} is compact from $A_{\varphi}^{p} \longrightarrow L_{\varphi}^{p}$.

Proof. For $1 \leq p<\infty$, refer to Theorem 4.3 in Hu and Pau [15]. Next, we prove the case $0<p<1$. Without loss of generality, we assume that the support of f is contained in some $D(0, R), 0<R<1$. Write $d \mu=|f| d A$; there is an $0<R_{1}<1$ so that $\widehat{\mu}(w)=1 /\left|D^{\alpha}(w)\right| \int_{D^{\alpha}(w)} d \mu=0$ when $|w| \geq R_{1}$.

Then, for any bounded sequence $\left\{g_{j}\right\}_{j=1}^{\infty}$ in A_{φ}^{p} converging to 0 uniformly on any compact subset of \mathbb{D}, we get

$$
\begin{align*}
\left|P\left(f g_{i}\right)\right| & \leq \int_{\mathbb{D}}\left|f(w) g_{j}(w) K_{z}(w)\right| e^{-2 \varphi(w)} d A(w) \\
& =\|f\|_{L^{\infty}(\mathbb{D})} \int_{\mathbb{D}}\left|g_{j}(w) K_{z}(w)\right| e^{-2 \varphi(w)} d \mu(w) \\
& \leq\|f\|_{L^{\infty}(\mathbb{D})} \int_{\mathbb{D}}\left|g_{j}(w) K_{z}(w)\right| e^{-2 \varphi(w)} \widehat{\mu}(w) d A(w) \\
& \leq\|f\|_{L^{\infty}(\mathbb{D})} \int_{D\left(0, R_{1}\right)}\left|g_{j}(w) K_{z}(w)\right| e^{-2 \varphi(w)} d A(w) . \tag{50}
\end{align*}
$$

Since $\rho(z) \longrightarrow 0$, when $|z| \longrightarrow 1$, for any $\varepsilon>0$, there exists $0<R<1$ such that $\rho(z)<\varepsilon$ when $|z| \geq R$. Consider the (ρ, r) -lattice $Z:\left\{z_{j}\right\} \in \mathbb{D}$ with $0<r \leq \alpha$. Since $\rho(w) \simeq \rho\left(z_{j}\right)$
whenever $w \in D^{r}\left(z_{j}\right)$, it follows from (B) in Lemma 1 that

$$
\begin{equation*}
D^{r}\left(z_{j}\right) \subset D^{B r}(w) \subset D^{B^{2} r}\left(z_{j}\right) \tag{51}
\end{equation*}
$$

And then, we have

$$
\begin{aligned}
& \left|\int_{D(0, R)}\right| g_{j}(w) K_{z}(w)\left|e^{-2 \varphi(w)} d A(w)\right|^{p} \\
& \quad \leq\left(\sum_{z_{j} \in Z} \int_{D(0, R) n D^{r}\left(z_{j}\right)}\left|g_{j}(w) K_{z}(w)\right| e^{-2 \varphi(w)} d A(w)\right)^{p} \\
& \quad \leq \sum_{z_{j} \in Z, d_{\rho}\left(z_{j}, D(0, R)\right)<r w \in D^{r}\left(z_{j}\right)} \sup _{j}\left|g_{j}(w) K_{z}(w)\right| e^{-2 \varphi(w)} \rho^{2 p}(w) \\
& \quad \leq \sum_{z_{j} \in Z, d_{\rho}\left(z_{j}, D(0, R)\right)<r} \int_{D^{B^{2 r} r}\left(z_{j}\right)}\left|g_{j}(w) K_{z}(w)\right| e^{-2 \varphi(w)} \rho^{2 p-2}(w) d A(w) \\
& \quad \leq \sum_{z_{j} \in Z \bigcap_{D(0, R+\varepsilon)}} \int_{D^{B^{2}}\left(z_{j}\right)}\left|g_{j}(w) K_{z}(w)\right| e^{-2 \varphi(w)} \rho^{2 p-2}(w) d A(w) \\
& \quad \leq N \int_{D(0, R+\varepsilon)}\left|g_{j}(w) K_{z}(w)\right| e^{-2 \varphi(w)} \rho^{2 p-2}(w) d A(w) .
\end{aligned}
$$

Thus,

$$
\begin{align*}
\left\|P\left(f g_{j}\right)\right\|_{p, \varphi}^{p} \leq & \|f\|_{L^{\infty}(\mathbb{D})}^{p} \int_{\mathbb{D}} e^{-p \varphi(z)} d A(z) \int_{D(0, R+\varepsilon \alpha)} \\
& \cdot\left|g_{j}(w) K_{z}(w)\right|^{p} e^{-2 p \varphi(w)} \rho^{2 p-2}(w) d A(w) \\
= & \|f\|_{L^{\infty}}^{p} \int_{D(0, R+\varepsilon \alpha)}\left|g_{j}(w)\right|^{p} e^{-2 p \varphi(w)} \rho^{2 p-2}(w) d A(w) \int_{\mathbb{D}} \\
& \cdot\left|K_{z}(w)\right|^{P} e^{-p \varphi(z)} d A(z) \\
\leq & \|f\|_{L^{\infty}}^{p} \int_{D(0, R+\varepsilon \alpha)}\left|g_{j}(w)\right|^{p} e^{-p \varphi(w)} d A(w) \longrightarrow 0, \tag{53}
\end{align*}
$$

when $j \longrightarrow \infty$. Therefore, H_{f} is compact.
Theorem 12. Suppose $0<p<\infty$, and $0<r<\alpha$, the following statements hold.
(a) Iff $\in \mathrm{BO}_{r}$. then $H_{f}: F_{\varphi}^{p} \longrightarrow L_{\varphi}^{p}$ is bounded, moreover $\left\|H_{f}\right\|_{F_{\varphi}^{p} \longrightarrow L_{\varphi}^{p}} \leq\|f\|_{B O_{r}}$
and
(b) If $f \in V O_{r}$ then $H_{f}: F_{\varphi}^{p} \longrightarrow L_{\varphi}^{p}$ is compact

Proof.
(a) Because of Theorem 4.2 in Hu and Pau [15], H_{f} bounded and $\left\|H_{f}\right\|_{F_{\varphi}^{p} \longrightarrow L_{\varphi}^{p}} \leq\|f\|_{\mathrm{BO}_{r}}$ when $1 \leq p<\infty$. Next, we prove the case $0<p<1$, and it is easy to know that

$$
\begin{align*}
|f(z)-f(w)| & \leq\|f\|_{B O_{r}}\left(d_{\rho}(z, w)+1\right), z, w \in \mathbb{D} \tag{54}\\
P(g) & =g, g \in A_{\varphi}^{p}
\end{align*}
$$

Then

$$
\begin{align*}
\left|H_{f}(g)(z)\right| & \leq \int_{\mathbb{D}}\left|f(w)-f(z)\|g(w)\| K_{z}(w)\right| e^{-2 \varphi(w)} d A(w) \\
& \leq\|f\|_{B O_{r}} \int_{\mathbb{D}}\left(d_{\rho}(z, w)+1\right)\left|g(w) \| K_{z}(w)\right| e^{-2 \varphi(w)} d A(w) . \tag{55}
\end{align*}
$$

Lemma 10 implies that result hold.
(b) Because of Theorem 4.3 in Hu and Pau [15], H_{f} is compact when $1 \leq p<\infty$. Suppose $0<p<1, f \in V O_{r}$, for $\varepsilon>0, \exists R_{0}>0$ such that $w_{r}(f)<\varepsilon$ when $d_{\rho}(w, 0)$ $\geq R_{0}$. Moreover, for $w \in \mathbb{D}$, and

$$
\begin{equation*}
d_{\rho}(w, 0)>R_{0} \tag{56}
\end{equation*}
$$

there exists $\xi(w) \in \mathbb{D}$ such that $d_{\rho}(\xi, 0)=R_{0}$, and $d_{\rho}(w, 0)$ $=d_{\rho}(w, \xi)+d_{\rho}(\xi, 0)$. Hence

$$
\begin{equation*}
|f(w)-f(0)| \leq\|f\|_{\mathrm{BO}_{r}}\left(d_{\rho}(\xi, 0)+1\right)+\varepsilon\left(d_{\rho}(w, \xi)+1\right) \tag{57}
\end{equation*}
$$

therefore, there is an $R / 2>R_{0}$ such that

$$
\begin{equation*}
\frac{|f(w)|}{d_{\rho}(w, 0)} \leq \frac{\|f\|_{\mathrm{BO}_{r}}\left(R_{0}+1\right)+|f(0)|}{d_{\rho}(w, 0)}+\varepsilon \frac{d_{\rho}(\xi, w)+1}{d_{\rho}(w, 0)}<2 \varepsilon \tag{58}
\end{equation*}
$$

with $d_{\rho}(w, 0)>R / 2$. Define a function

$$
h_{k}= \begin{cases}1, & d_{\rho}(z, 0)<R \tag{59}\\ 2-\frac{d_{\rho}(z, 0)}{R}, & R<d_{\rho}(z, 0)<2 R \\ 0, & 2 R \leq d_{\rho}(z, 0)\end{cases}
$$

Set $f_{k}=f h_{k}$; it is obvious that

$$
w_{r}\left(f-f_{k}\right)(z)= \begin{cases}0, & \mathrm{~d}_{\rho}(\mathrm{z}, 0)<\frac{\mathrm{R}}{2} \tag{60}\\ w_{r}(f)(z), & \mathrm{d}_{\rho}(\mathrm{z}, 0)>2 \mathrm{R}+\frac{\mathrm{R}}{2}\end{cases}
$$

when $R / 2 \leq d_{\rho}(z, 0) \leq 5 R / 2$ and $w \in D^{r}(z)$. Then

$$
\begin{align*}
& \left|\left(f(z)-f_{R}(w)\right)-\left(f(w)-f_{R}(w)\right)\right| \\
& \leq|f(w)|\left|h_{R}(z)-h_{R}(w)\right|+\left(1-h_{R}(z)\right)|f(w)-f(z)| \\
& \lesssim \frac{r}{R}|f(w)|+w_{r}(f)(z) \\
& \lesssim \frac{|f(w)|}{d_{\rho}(w, 0)} \frac{d_{\rho}(w, 0)}{R}+w_{r}(f)(z) \tag{61}\\
& \leqslant \frac{|f(w)|}{d_{\rho}(w, 0)} \frac{\left(d_{\rho}(w, z)+d_{\rho}(z, 0)\right)}{R}+w_{r}(f)(z) \leqq \varepsilon .
\end{align*}
$$

$\operatorname{By}(55),\left\|H_{f}-H_{f_{k}}\right\|_{F_{\varphi}^{p} \longrightarrow L_{\varphi}^{p}} \leq\left\|f-f_{k}\right\|_{\mathrm{BO}_{r}}$. The compactness of H_{f} follows from the compactness of $H_{f_{k}}$.

Lemma 13. If $f \in V O_{r}$ with $r \in(0, \alpha)$. Then, $\lim _{|z| \longrightarrow 1}(f-\tilde{f})$ $(z)=0$.

Proof. Lemma 6 and Lemma 7 imply that

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \int_{\left(D^{R}(z)\right)^{c}}\left(d_{\rho}(z, \xi)+1\right)\left|K_{z}(\xi)\right|^{2} e^{-2 \varphi(\xi)} d A(\xi) \longrightarrow 0 \tag{62}
\end{equation*}
$$

as $R \longrightarrow \infty$. Then, for any $\varepsilon>0$, there exists a positive number R such that for all $z \in \mathbb{D}$,

$$
\begin{equation*}
\int_{\left(D^{R}(z)\right)^{c}}\left(d_{\rho}(z, \xi)+1\right)\left|K_{z}(\xi)\right|^{2} e^{-2 \varphi(\xi)} d A(\xi)<\varepsilon \tag{63}
\end{equation*}
$$

Note that $f \in V O_{r}$, there is $0<k<1$ such that

$$
\begin{equation*}
\sup _{\xi \in D^{D}(z)}|f(\xi)-f(z)|<\varepsilon \tag{64}
\end{equation*}
$$

when $k<|z|<1$. Thus

$$
\begin{align*}
|f-\tilde{f}|(z) & \leq \int_{\mathbb{D}}|f(z)-f(\xi)|\left|K_{z}(\xi)\right|^{2} e^{-2 \varphi(\xi)} d A(\xi) \\
& \leq\left(\int_{D^{r}(z)}+\int_{\left(D^{r}(z)\right)^{c}}\right)|f(z)-f(\xi)|\left|K_{z}(\xi)\right|^{2} e^{-2 \varphi(\xi)} d A(\xi) \\
& \leq \varepsilon+\|f\|_{\mathrm{BO}_{r}} \int_{\left(D^{r}(z)\right)^{c}}\left(d_{\rho}(z, \xi)+1\right)\left|K_{z}(\xi)\right|^{2} e^{-2 \varphi(\xi)} d A(\xi) \\
& \leq \varepsilon . \tag{65}
\end{align*}
$$

Notation 14. We use P^{+}to represent the integral operator which is defined by

$$
\begin{equation*}
P^{+} f(z)=\int_{\mathbb{D}} f(\xi)\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi), z \in \mathbb{D} \tag{66}
\end{equation*}
$$

Lemma 10 implies that P^{+}is a bounded operator from
$L_{\varphi}^{p} \longrightarrow A_{\varphi}^{p}$ with $1 \leq p<\infty$, and from $A_{\varphi}^{p} \longrightarrow L_{\varphi}^{p}$ with $0<p$ <1.

Lemma 15. If $0<p<\infty, f \in V O_{r}$, and $r \in(0, \alpha]$, for $z_{j} \in \mathbb{D}$ satisfying $\lim _{z_{j} \longrightarrow \mathbb{D}} f\left(z_{j}\right)=0$, then

$$
\begin{equation*}
\lim _{j \longrightarrow \infty}\left\|T_{f}\left(k_{p, z_{j}}\right)\right\|_{p, \varphi}=0 \tag{67}
\end{equation*}
$$

Proof. When $0<p<1$, and $f \in V O_{r}$, by the same proof in Lemma 7, for $\varepsilon>0$, there exists $R>0$ such that

$$
\begin{align*}
& \int_{D^{R}(z)}\left(d_{\rho}(z, \xi)+1\right)^{p} \rho^{2(p-1)}(\xi)\left|k_{p, z}(\xi)\right|^{p} e^{-p \varphi(z)} d A(\xi) \\
& \quad \leq\left(\frac{\varepsilon}{2\|f\|_{B O_{r}}+1}\right)^{p} \tag{68}
\end{align*}
$$

for all $z \in \mathbb{D}$. Moreover, for the $\varepsilon>0$ and $R>0$, there exists if $0<k<1$ such that

$$
\begin{equation*}
\sup _{\xi \in D^{B R}(z)}|f(\xi)-f(z)|<\varepsilon \tag{69}
\end{equation*}
$$

when $k<|z|<1$. Thus, when $\left|z_{j}\right|>k$, by Lemma 1 and proof in Theorem 11, there hold

$$
\begin{align*}
&\left\{\left.\int_{\mathbb{D}}\left|f(\xi)-f\left(z_{j}\right)\right|\right|_{p, z_{j}}(\xi)| | K_{z}(\xi) \mid e^{-2 \varphi(\xi)} d A(\xi)\right\}^{p} \\
&=\left\{\left.\left(\int_{D^{\mathrm{BR}}\left(z_{j}\right)}+\int_{\left.\left(D^{\mathrm{BR}}\left(z_{j}\right)\right)\right)^{c}}\right)\left|f(\xi)-f\left(z_{j}\right)\right|\right|_{p, z_{j}}(\xi)| | K_{z}(\xi) \mid e^{-2 \varphi(\xi)} d A(\xi)\right\}^{p} \\
& \leq\left\{\varepsilon \int_{D^{\mathrm{BR}}\left(z_{j}\right)}\left|k_{p, z_{j}}(\xi)\right|\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi)\right\}^{p} \\
&+\left\{\|f\|_{\mathrm{BO}{ }^{r}} \int_{\left(D^{\mathrm{BR}}\left(z_{j}\right)\right)^{c}}\left(d_{\rho}\left(z_{j}, \xi\right)+1\right)\left|k_{p, z_{j}}(\xi)\right|\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi)\right\}^{p} \\
& \leq \varepsilon^{p} \int_{\mathbb{D}}\left|k_{p, z_{j}}(\xi)\right|^{p}\left|K_{z}(\xi)\right|^{p} e^{-2 p \varphi(\xi)} \rho^{2(p-1)}(\xi) d A(\xi) \\
&+\|f\|_{\mathrm{BO}}^{p} \int_{\left(D^{\mathrm{R}}\left(z_{j}\right)\right)^{\mathrm{c}}}\left(d_{\rho}\left(z_{j} ; \xi\right)+1\right)^{p} \\
& \quad \times\left|k_{p, z_{j}}(\xi)\right|^{p}\left|K_{z}(\xi)\right|^{p} e^{-2 p \varphi(\xi)} \rho^{2(p-1)}(\xi) d A(\xi) . \tag{70}
\end{align*}
$$

Therefore, for $\left|z_{j}\right|>k$, by Lemma 7 and Fubini's theorem, we obtain

$$
\begin{align*}
& \int_{\mathbb{D}}\left\{\left.\int_{\mathbb{D}}\left|f(\xi)-f\left(z_{j}\right)\right|\right|_{\left.k_{p, z_{j}}(\xi)| | K_{z}(\xi) \mid e^{-2 \varphi(\xi)} d A(\xi)\right\}^{p} e^{-p \varphi(z)} d A(z)} ^{\quad \leq \varepsilon^{p}\left\|k_{p, z_{j}}\right\|_{p, \varphi}^{p}+\|f\|_{\mathrm{BO}_{r}}^{p} \int_{\left(D^{R}\left(z_{j}\right)\right)^{c}}\left(d_{\rho}\left(z_{j}, \xi\right)+1\right)^{p}}\right. \\
& \quad \times\left|k_{p, z_{j}}(\xi)\right|^{p} e^{-p \varphi(\xi)} d A(\xi) \leqslant \varepsilon^{p} .
\end{align*}
$$

It is obvious that

$$
\begin{align*}
\left|T_{f}\left(k_{p, z_{j}}\right)(z)\right| \leq & \int_{\mathbb{D}}\left(\left|f(\xi)-f\left(z_{j}\right)\right|+\left|f\left(z_{j}\right)\right|\right) \tag{72}\\
& \cdot\left|k_{p, z_{j}}(\xi)\right|\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi) .
\end{align*}
$$

By Notation 14, we have

$$
\begin{align*}
& \lim _{z_{j} \longrightarrow \mathbb{D}} \sup \left\|T_{f}\left(k_{p, z_{j}}\right)\right\|_{p, \varphi}^{p} \lesssim \varepsilon^{p}+\lim _{z_{j} \longrightarrow \partial \mathbb{D}}\left|f\left(z_{j}\right)\right|^{p} \\
& \quad+\left\|P^{+}\left(\left|k_{p, z_{j}}\right|\right)\right\|_{p, \varphi}^{p} \lesssim \varepsilon^{p} . \tag{73}
\end{align*}
$$

When $1 \leq p<\infty$,

$$
\begin{align*}
& \int_{\mathbb{D}}\left|f(\xi)-f\left(z_{j}\right)\right|\left|k_{p, z_{j}}(\xi)\right|\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi) \\
&=\left\{\int_{D^{\mathrm{BR}}\left(z_{j}\right)}+\int_{\left.\left(D^{\mathrm{BR}}\left(z_{j}\right)\right)^{c}\right\}}\right\}\left|f(\xi)-f\left(z_{j}\right)\right| \\
& \times\left|k_{p, z_{j}}(\xi)\right|\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi) \\
& \leq \int_{\mathbb{D}}\left[\varepsilon+\|f\|_{\mathrm{BO}_{r}}\left(d_{\rho}\left(\xi, z_{j}\right)+1\right) \chi_{\left.\left(D^{\mathrm{BR}}\left(z_{j}\right)\right)^{c}\right]}\right. \\
& \quad \times\left|k_{p, z_{j}}(\xi)\right|\left|K_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi)=\varepsilon P^{+}\left(\left|k_{p, z_{j}}(\xi)\right|\right) \\
&+\|f\|_{\mathrm{BO}_{r}} P_{+}\left(d_{\rho}\left(\cdot, z_{j}\right)+1\right) \chi_{\left(D^{\mathrm{BR}}\left(z_{j}\right)\right)^{c}\left|k_{p, z_{j}}(\xi)\right|(z) .} . \tag{74}
\end{align*}
$$

By Lemma 10, we have

$$
\begin{align*}
& \int_{\mathbb{D}}\left\{\int_{\mathbb{D}}\left|f(\xi)-f\left(z_{j}\right)\right| k_{p, z_{j}}(\xi)| | K_{z}(\xi) \mid e^{-2 \varphi(\xi)} d A(\xi)\right\}^{p} e^{-p \varphi(z)} d A(z) \\
& \quad \leq \varepsilon+\|f\|_{\mathrm{BO}_{r}}\left\|P^{+}\right\|\left\|\left(d_{\rho}\left(\cdot, z_{j}\right)+1\right) \chi_{\left(D^{\mathrm{BR}}\left(z_{j}\right)\right)^{c} \mid}\left|k_{p, z_{j}}\right|\right\|_{p, \varphi} \tag{75}
\end{align*}
$$

Now, the results follow as in the case $0<p<1$.
Lemma 16. If $0<p<\infty$ and T_{f} is compact on A_{φ}^{p}, then $\lim _{|z| \longrightarrow 1} \widetilde{T_{f}}(z)=0$, where $\widetilde{T_{f}}=\left\langle T_{f} k_{z}, k_{z}\right\rangle_{\varphi}$ is called Berezin transform of Toeplitz operator T_{f} for $z \in \mathbb{D}$.

Proof. When $1 \leq p<\infty$, the results follow from the fact $k_{z} \longrightarrow^{w} 0$ when $|z| \longrightarrow 1$. Recall that $E \subset A_{\varphi}^{p}$ is relatively compact if and only if for every $\varepsilon>0$, there exists $0<R<1$ such that

$$
\begin{equation*}
\sup _{g \in E} \int_{R<|z|<1}\left|g(z) e^{-\varphi(z)}\right|^{p} d A(z)<\varepsilon \tag{76}
\end{equation*}
$$

If T_{f} is compact on A_{φ}^{p}, then
$\lim _{R \longrightarrow 1} \sup _{g \in A_{\varphi}^{p},\|g\|_{p, \varphi} \leq 1} \int_{R<|z| \leq 1}\left|T_{f} \mathcal{g}(z) e^{-\varphi(z)}\right|^{p} d A(z)=0$.
Note that
$\widetilde{T_{f}}(z)=\frac{\left\|K_{z}\right\|_{p, \varphi}}{K_{z}(z)}\left\langle T_{f}\left(k_{p, z}\right), K_{z}\right\rangle=\frac{\left\|K_{z}\right\|_{p, \varphi}}{K_{z}(z)} T_{f}\left(k_{p, z}\right)(z)$.

Thus

$$
\begin{align*}
& \left|\widetilde{T_{f}}(z)\right|^{p} \lesssim\left|\rho^{2 / p}(z) T_{f}\left(k_{p, z}\right)(z) e^{-\varphi(z)}\right|^{p} \\
& \quad \lesssim \int_{D^{1}(z)}\left|T_{f}\left(k_{p, z}\right)(z) e^{-\varphi(z)}\right|^{p} d A(\xi) \longrightarrow 0 \tag{79}
\end{align*}
$$

when $|z| \longrightarrow 1$.
Theorem 17. If $0<p<\infty, f \in V O_{r}$ and $0<r<\alpha$. Then
(a) $T_{f-\tilde{f}}$ is compact on A_{φ}^{p}
and
(b) T_{f} is compact on A_{φ}^{p} if and only if $\lim _{|z| \longrightarrow 1} \tilde{f}(z)=0$

Proof.
(a) Lemma 3 implies that for $w \in D^{1}(z)$, we have

$$
\begin{align*}
\left|f(\xi) k_{w}^{2}(\xi)\right| e^{-2 \varphi(\xi)} & \leq(|f(\xi)-f(z)|+|f(z)|) \rho^{-2}(w) e^{-2 \sigma d_{\rho}(\xi, w)} \\
& \leq\left(\|f\|_{\mathrm{BO}_{r}}+|f(z)|\right) \rho^{-2}(z) e^{-\sigma d_{\rho}(\xi, z)} \tag{80}
\end{align*}
$$

Then, Lebesgue's dominated convergence theorem shows that

$$
\begin{align*}
\lim _{w \longrightarrow z} \tilde{f}(w) & =\lim _{w \longrightarrow z} \int_{\mathbb{D}} f(\xi)\left|k_{w}(\xi)\right|^{2} e^{-2 \varphi(\xi)} d A(\xi) \\
& =\int_{\mathbb{D}} f(\xi)\left|k_{z}(\xi)\right|^{2} e^{-2 \varphi(\xi)} d A(\xi) \tag{81}\\
& =\tilde{f}(z)
\end{align*}
$$

It shows that \tilde{f} is continuous on \mathbb{D}. Hence, $f-\tilde{f} \in C(\mathbb{D})$, by Notation 14, we know that $f-\tilde{f} \in L^{\infty} \bigcap V O_{r}$. Theorem 4.2 Zorboska's study [7] implies that $T_{g \chi_{D(0, R)}}$ is compact on A_{φ}^{p} for $g \in L^{\infty}$. Note

$$
\begin{equation*}
\left\|T_{g}-T_{g \chi_{D(0, R)}}\right\| \lesssim\left\|g-g_{\chi_{B(0, R)}}\right\|_{L^{\infty}} \longrightarrow 0 \tag{82}
\end{equation*}
$$

when $R \longrightarrow 1$, then T_{g} is compact, and thus $T_{f-\tilde{f}}$ is compact.
(b) If T_{f} is compact on A_{φ}^{p}, Lemma 13 shows that $\lim _{|z| \longrightarrow 1} \widetilde{T_{f}}(z)=0$. If $f \in V O_{r} \subset B O_{r}$, it is easy to know that

$$
\begin{equation*}
\int_{\mathbb{D}}\left|k_{z}(\xi)\right| e^{-2 \varphi(\xi)} d A(\xi) \int_{\mathbb{D}}\left|f(w) k_{z}(w) K_{\xi}(w)\right| e^{-2 \varphi(w)} d A(w)<\infty \tag{83}
\end{equation*}
$$

since $\widetilde{T_{f}}(z)=\tilde{f}(z)$ and $T_{f}=T_{\tilde{f}}+T_{f-\tilde{f}}$, the conclusion holds.

4. Fredholm Theory

A linear mapping T on a topological vector space X is called to be Fredholm if

$$
\begin{equation*}
\text { dimker } T<\infty \text {,dimker } X / T(x)<\infty . \tag{84}
\end{equation*}
$$

When X is a Banach space, it is well known that T is Fredholm if and only if $T+K(X)$ is invertible in the Calkin algebra $B(X) / K(X)$, where $B(X)$ and $K(X)$ represent, respectively, the spaces of bounded and compact operators. It shows that an operator T on a Banach space is Fredholm if and only if there are bounded operators A and B on X, such that

$$
\begin{align*}
& A T=I+K_{1} \tag{85}\\
& T B=I+K_{2}
\end{align*}
$$

for some compact operators K_{1} and K_{2} on X.
A pair $(X,\|\cdot\|)$ is said to be a quasi-Banach space if $\|\cdot\|$ satisfies all the properties of a norm except for the triangle inequality and if there is a constant $C>0$ such that

$$
\begin{equation*}
\|x+y\| \leq C(\|x\|+\|y\|) \tag{86}
\end{equation*}
$$

Note that Bergman space $A_{\varphi}^{p}(0<p<1)$ are quasi-Banach spaces.

Theorem 18. Let $\varphi \in \mathscr{W}_{0}$, for $0<p \leq 1$,

$$
\begin{align*}
\left(A_{\varphi}^{p}\right)^{*} & =A_{2-2 / p, \varphi}^{\infty} \\
& =\left\{f \in \mathscr{H}(\mathbb{D})\left|\|f\|_{\infty, 2-2 / p, \varphi}=\sup _{z \in \mathbb{D}}\right| f(z) \mid \rho^{2-2 / p}(z) e^{-\varphi(z)}<\infty\right\} \tag{87}
\end{align*}
$$

under the pairing

$$
\begin{equation*}
\langle f, g\rangle=\int_{\mathbb{D}} f(z) g \overline{(z)} e^{-2 \varphi(z)} d A(z), \text { where } f \in A_{\varphi}^{p}, g \in A_{2-2 / p, \varphi}^{\infty} . \tag{88}
\end{equation*}
$$

Proof. Refer to Hu et al. [3].
Theorem 19. A bounded linear operator T on a dual rich quasi-Banach space X is Fredholm if and only if it has a regular; that is, there is a bounded linear operator S on X such that ST - I and TS - I are both compact on X.

Proof. See Section 3.5.1 in Runst and Sickel's study [16].
Theorem 20. Let $f \in V M O_{r}^{1}, 0<p<\infty$, and $0<r<\alpha$. Then, the Toeplitz operator T_{f} is Fredholm on A_{φ}^{p} if and only if

$$
\begin{equation*}
0<\lim _{|z| \longrightarrow 1} \inf |\tilde{f}(z)| \leq \lim _{|z| \longrightarrow 1} \sup |\tilde{f}(z)|<\infty . \tag{89}
\end{equation*}
$$

Proof. Because of the decomposition $\mathrm{VMO}_{r}^{1}=\mathrm{VO}_{r}+\mathrm{VA}_{r}^{1}$, there are functions $f_{1} \in \mathrm{VO}_{r}$ and $f_{2} \in \mathrm{VA}_{r}^{1}$ such that $f=$ $f_{1}+f_{2}$. Set $d \mu=\left|f_{2}\right| d A$. Then, we have

$$
\begin{equation*}
\lim _{|z| \rightarrow 1} \frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)} d \mu=0 \tag{90}
\end{equation*}
$$

which shows that μ is the vanishing Carleson measure. By Theorem 12 and Theorem 4.2 in Zhang et al.'s study [11], we have

$$
\begin{equation*}
\lim _{|z| \rightarrow 1}\left|\widetilde{f}_{2}(z)\right|=0 \tag{91}
\end{equation*}
$$

and $T_{f_{2}}$ is compact on A_{φ}^{p} for $0<p<\infty$. Therefore, T_{f} is Fredholm if and only if $T_{f_{1}}$ is Fredholm. (91) shows that

$$
\begin{align*}
& \lim _{|z| \longrightarrow 1} \inf |\tilde{f}(z)|=\lim _{|z| \longrightarrow 1} \inf \left|\tilde{f}_{1}(z)\right|, \tag{92}\\
& \lim _{|z| \longrightarrow 1} \sup |\tilde{f}(z)|=\lim _{|z| \longrightarrow 1} \sup \left|\tilde{f}_{1}(z)\right| .
\end{align*}
$$

Now, we just need to prove the conclusion for $f \in \mathrm{VO}_{r}$. If $f \in \mathrm{VO}_{r}$, and T_{f} is Fredholm on A_{φ}^{p}, then T_{f} is bounded on A_{φ}^{p}. Suppose that $0<p \leq 1$, note that

$$
\begin{align*}
& \left\|\rho^{2-2 / p}(\cdot)\left(\rho^{2 / p-1}(z) k_{z}(\cdot)\right)\right\|_{\infty, \varphi}<\infty, z \in \mathbb{D} \tag{93}\\
& \left|\left\langle T_{f} k_{z}, k_{z}\right\rangle\right| \simeq\left|\left\langle T_{f} k_{p, z}, \rho^{2 / p-1}(z) k_{z}\right\rangle\right|
\end{align*}
$$

then

$$
\begin{align*}
|\tilde{f}(z)| & \leq C\left\|T_{f} k_{p, z}\right\|_{p, \varphi}\left\|\rho^{2-(2 / p)}(\cdot)\left(\rho^{2 / p-1}(z) k_{z}(\cdot)\right)\right\|_{\infty, \varphi} \tag{94}\\
& \leq\left\|T_{f}\right\|_{A_{\varphi}^{p} \longrightarrow A_{\varphi}^{p}}
\end{align*}
$$

Hence, $\lim _{|z| \longrightarrow 1} \sup |\tilde{f}(z)|<\infty$. When $1<p<\infty, \widetilde{T_{f}}=\tilde{f}$ and Hölder's inequality show that $|\tilde{f}(z)| \leq\left\|T_{f}\right\|_{A_{\varphi}^{p} \longrightarrow A_{\varphi}^{p}}$. If $\lim _{|z| \longrightarrow 1} \inf \left|\widetilde{f}_{i}(z)\right|>0$ are false, there are some sequence $\left\{z_{k}\right\}$ $\subset \mathbb{D}$ such that $\lim _{z_{k} \longrightarrow व \mathbb{D}} \tilde{f}\left(z_{k}\right)=0$. By Lemma 15

$$
\begin{equation*}
\lim _{k \longrightarrow \infty}\left\|T_{\tilde{f}}\left(k_{p, z_{k}}\right)\right\|_{p, \varphi}=0 . \tag{95}
\end{equation*}
$$

Then, for any bounded operator S on A_{φ}^{p}, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left(S T_{\tilde{f}}\right)\left(k_{p, z_{k}}\right)\right\|_{p, \varphi}=0 \tag{96}
\end{equation*}
$$

Because that

$$
\begin{align*}
& \left|\widetilde{S T_{\tilde{f}}}\left(z_{k}\right)\right| \simeq\left|\left\langle\left(S T_{\tilde{f}}\right) k_{p, z_{k}}, \rho^{\left(\frac{2}{p}\right)-1}\left(z_{k}\right) k_{z_{k}}\right\rangle\right|, \text { if } 0<p \leq 1, \\
& \left|\widetilde{S T}_{\tilde{f}}\left(z_{k}\right)\right| \simeq\left|\left\langle\left(S T_{\tilde{f}}\right) k_{p, z_{k}}, k_{p^{\prime}, z_{k}}\right\rangle\right| \text {, if } 1 \leq p<\infty, \tag{97}
\end{align*}
$$

where p^{\prime} is the conjugate exponent of p. We have

$$
\begin{equation*}
\lim _{k \longrightarrow \infty}\left|\widetilde{S T_{\tilde{f}}}\left(z_{k}\right)\right|=0 \tag{98}
\end{equation*}
$$

It is obvious that $T_{f}=T_{\tilde{f}}+T_{f-\tilde{f}}$ is Fredholm on A_{φ}^{p}; thus, there is a bounded operator S such that

$$
\begin{equation*}
S T_{\tilde{f}}=I+K \tag{99}
\end{equation*}
$$

where I is identity and K is the compact operator on A_{φ}^{p}. Hence, $\lim _{k \rightarrow \infty}\left|\widetilde{S T}_{\tilde{f}}\left(z_{k}\right)\right| \geq 1-\lim _{k \rightarrow \infty}\left|\tilde{K}\left(z_{k}\right)\right|=1$ which contradicts (98).

Conversely, if $f \in \mathrm{VO}_{r}$ and \tilde{f} satisfies (89), then there are positive constants C, c, and R such that

$$
\begin{equation*}
c \leq|\tilde{f}(z)| \leq C, \text { for } 0<R \leq|z|<1 \tag{100}
\end{equation*}
$$

By Lemma 13 and $\tilde{f} \in V O_{r} \bigcap L^{\infty}(\mathbb{D})$. Set function g satisfying

$$
g(z)= \begin{cases}0, & |\mathrm{z}|<\mathrm{R} \tag{101}\\ \frac{1}{\tilde{f}(z)}, & \mathrm{R} \leq|\mathrm{z}|<1\end{cases}
$$

Then, $g \in L^{\infty}$, and $w_{r}(g)(z) \lesssim w_{r}(\tilde{f})(z) \longrightarrow 0$ when $|z| \longrightarrow 1$. Theorem 12 shows that H_{g} is compact operator from $A_{\varphi}^{p} \longrightarrow L_{\varphi}^{p}$. Note that

$$
\tilde{f}(z) g(z)= \begin{cases}0, & |\mathrm{z}|<\mathrm{R} \tag{102}\\ 1, & \mathrm{R} \leq|\mathrm{z}|<1\end{cases}
$$

Therefore, $T_{\tilde{f} g}=I-T_{\chi_{D(0, R)}}$ on A_{φ}^{p}. Thus

$$
\begin{align*}
T_{\tilde{f}} T_{g} & =P M_{\tilde{f}} P M_{g}=P M_{\tilde{f}}(I-(I-P)) M_{g} \\
& =T_{\tilde{f} g}-P M \tilde{f} H_{g}=I-T_{\chi_{D(0, R)}}-P M_{\tilde{f}} H_{g} \tag{103}
\end{align*}
$$

It is obvious that $T_{\chi_{\mathcal{D}(0, R)}}$ and $P M_{\tilde{f}} H_{g}$ are compact. Similarly, $T_{\tilde{f}} T_{g}=I+K_{2}$, where K_{2} is a compact operator on A_{φ}^{p}. Then, $T_{\tilde{f}}$ is Fredholm.

Corollary 21. Let $0<p<\infty, f \in V M O_{r}^{1}$ and $0<r<\alpha$. If Theorem 20 holds, then

$$
\begin{equation*}
\sigma_{e s s}\left(T_{f}\right)=\bigcap_{0<R<1} \tilde{f}(\mathbb{D} \backslash \bar{D}(0, R)) \tag{104}
\end{equation*}
$$

and essential spectrum $\sigma_{\text {ess }}\left(T_{f}\right)$ is connected.

5. Schatten Class Toeplitz and Hankel Operators

If T is a bounded linear operator $T: H_{1} \longrightarrow H_{2}$, where H_{1} and H_{2} are two Hilbert spaces, the singular values $s_{j}(T)$ of T are defined by

$$
\begin{equation*}
s_{j}(T)=\inf \left\{\|T-K\| \mid K: H_{1} \longrightarrow H_{2}, \operatorname{rank} K<j\right\} \tag{105}
\end{equation*}
$$

where rank K denotes the rank of operator $K . T$ is compact if and only if $s_{j}(T) \longrightarrow 0$ as $j \longrightarrow \infty$. For $0<p<\infty, T$ is in the Schatten class S_{p}, if

$$
\begin{equation*}
s_{j}(T) \in l^{p} \tag{106}
\end{equation*}
$$

$\|T\|_{S_{p}}^{p}=\sum_{j=1}^{\infty} s_{j}(T)^{p}$ is a norm when $1 \leq p<\infty$, and a quasinorm when $0<p<1$. In fact, we have

$$
\begin{align*}
& \|S+T\|_{S_{p}} \leq\|S\|_{S_{p}}+\|T\|_{S_{p}}, 1 \leq p<\infty \\
& \|S+T\|_{S_{p}}^{p} \leq\|S\|_{S_{p}}^{p}+\|T\|_{S_{p}}^{p}, 0<p<1 \tag{107}
\end{align*}
$$

In addition, $T \in S_{p}$ if and only if $T^{*} T \in S_{p / 2}$.
Definition 22. Let T be a compact operator from H_{1} to H_{2} and $h: R^{+} \longrightarrow R^{+}$is a continuous increasing convex function, we say that $T \in S_{h}$ if there is a positive constant $c>0$ such that

$$
\begin{equation*}
\sum_{j=1}^{\infty} h\left(c \cdot s_{j}(T)\right)<\infty \tag{108}
\end{equation*}
$$

Theorem 23. Let $h: R^{+} \longrightarrow R^{+}$are continuously increasing convex function. Let μ be a positive Borel measure on \mathbb{D} such that the Toeplitz operator $T_{\mu}: A_{\varphi}^{2} \longrightarrow A_{\varphi}^{2}$ is compact. Then, $T_{\mu} \in S_{h}$ if and only if there is a constant $c>0$ such that

$$
\begin{equation*}
\int_{\mathbb{D}} h(c \tilde{\mu}(z)) \rho^{-2}(z) d A(z)<\infty \tag{109}
\end{equation*}
$$

where $T_{\mu} f(z)=\int_{\mathbb{D}} f(w) K_{z}(w) d \mu(w)$.
Proof. Suppose that $T_{\mu} \in S_{h}$ that is

$$
\begin{equation*}
\sum_{j=1}^{\infty} h\left(c s_{j}(T)\right)<\infty \tag{110}
\end{equation*}
$$

for some constant $c>0$. Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ be an orthogonality basis of A_{φ}^{2}. Then

$$
\begin{equation*}
T_{\mu}=\sum_{k=1}^{\infty} s_{k}\left\langle\cdot, e_{k}\right\rangle e_{k} \tag{111}
\end{equation*}
$$

where s_{k} are also the eigenvalues of T_{μ}. It is obvious that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|\left\langle k_{z}, e_{k}\right\rangle_{\varphi}\right|^{2}=1 \tag{112}
\end{equation*}
$$

Then, it follows from the convexity of h, Jensen's inequality, and Lemma 4 that

$$
\begin{array}{rl}
\int_{\mathbb{D}} & h(c \tilde{\mu}(z)) \rho^{-2}(z) d A(z) \\
& =\int_{\mathbb{D}} h\left(c\left\langle T_{\mu} k_{z}, k_{z}\right\rangle_{\varphi}\right) \rho^{-2}(z) d A(z) \\
& =\int_{\mathbb{D}} h\left(\sum_{k=1}^{\infty} c s_{k}\left|\left\langle k_{z}, e_{k}\right\rangle_{\varphi}\right|^{2}\right) \rho^{-2}(z) d A(z) \\
& \leq \int_{\mathbb{D}} \sum_{k=1}^{\infty} h\left(c s_{k}\right)\left|\left\langle k_{z}, e_{k}\right\rangle_{\varphi}\right|^{2} \rho^{-2}(z) d A(z) \tag{113}\\
& =\int_{\mathbb{D}} \sum_{k=1}^{\infty} h\left(c s_{k}\right)\left\|K_{z}\right\|_{2, \varphi}^{2}\left|e_{k}(z)\right|^{2} \rho^{-2}(z) d A(z) \\
\quad & \sum_{k=1}^{\infty} h\left(c s_{k}\right) \int_{\mathbb{D}}\left|e_{k}(z)\right|^{2} e^{-2 \varphi(z)} d A(z) \\
= & \sum_{k=1}^{\infty} h\left(c s_{k}\right)<\infty .
\end{array}
$$

Conversely, assume that $\int_{\mathbb{D}} h(c \tilde{\mu}(z)) \rho^{-2}(z) d A(z)<\infty$ for some $c>0$. Then, by Lemma 4, we have
$\widehat{\mu_{r}}(z)=\int_{D^{r}(z)} \rho^{-2}(z) d \mu(w) \approx \int_{D^{r}(z)}\left|k_{z}(w)\right|^{2} e^{-2 \varphi(w)} d \mu(w) \leq \tilde{\mu}(z)$.

Note that

$$
\begin{align*}
\left\langle T_{\mu} e_{k}, e_{k}\right\rangle_{\varphi} & =\int_{\mathbb{D}}\left|e_{k}(z)\right|^{2} e^{-2 \varphi(z)} d \mu(z) \\
& \lesssim \int_{\mathbb{D}} \widehat{\mu_{r}}(z)\left|e_{k}(z)\right|^{2} e^{-2 \varphi(z)} d A(z) \tag{115}\\
& \leq \int_{\mathbb{D}} \tilde{\mu}(z)\left|e_{k}(z)\right|^{2} e^{-2 \varphi(z)} d A(z)
\end{align*}
$$

Jensen's formula shows that

$$
\begin{align*}
\sum_{k=1}^{\infty} h\left(c\left\langle T_{\mu} e_{k}, e_{k}\right\rangle_{\varphi}\right) & \leq \int_{\mathbb{D}} h(c \tilde{\mu}(z))\left(\sum_{k=1}^{\infty}\left|e_{k}(z)\right|^{2}\right) e^{-2 \varphi(z)} d A(z) \\
& =\int_{\mathbb{D}} h(c \tilde{\mu}(z))\left\|k_{z}\right\|_{2, \varphi}^{2} e^{-2 \varphi(z)} d A(z) \\
& =\int_{\mathbb{D}} h(c \tilde{\mu}(z)) \rho^{-2}(z) d A(z)<\infty \tag{116}
\end{align*}
$$

Therefore, $T_{\mu} \in S_{h}$.
Let

$$
\begin{equation*}
\Gamma=\left\{\sum_{j=1}^{N} a_{j} K\left(\cdot, z_{j}\right), N \in N^{+}, a_{j} \in \mathbb{C}, z_{j} \in \mathbb{D}, i \leq j \leq N\right\} \tag{117}
\end{equation*}
$$

and

$$
\begin{equation*}
S=\left\{f \text { is measurable on } \mathbb{D} \mid f g \in L_{\varphi}^{1} \text { for } g \in \Gamma\right\} \tag{118}
\end{equation*}
$$

It follows from Hu et al. [3] that Γ is dense in A_{φ}^{2}. Define

$$
\begin{equation*}
G_{r}(f)=\inf \left\{\left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}|f-h|^{2} d A(z)\right)^{1 / 2}, h \in \mathscr{H}\left(D^{r}(z)\right)\right\} \tag{119}
\end{equation*}
$$

where $\mathscr{H}\left(D^{r}(z)\right)$ is a set of all analytic functions on $D^{r}(z)$.
Theorem 24. Suppose that $\varphi \in \mathscr{W}_{0}, h(\sqrt{(\cdot)}): R^{+} \longrightarrow R^{+}$is a continuous increasing convex function, $0<r<\alpha, f \in S$, and $G_{r}(f) \in L^{\infty}$. Then, the following statements are equivalent:
(a) Hankel operator H_{f} belongs to S_{h}
(b) For some (any) r, there is a constant $c>0$ such that

$$
\begin{equation*}
\int_{\mathbb{D}} h\left(c G_{r}(f)(z)\right) \rho^{-2}(z) d A(z)<\infty \tag{120}
\end{equation*}
$$

Proof. $(\mathrm{A}) \Rightarrow(\mathrm{B})$. Let $\left\{e_{j}\right\}_{j=1}^{\infty}$ be orthogonality basis of A_{φ}^{2}. Define

$$
\begin{equation*}
T_{e_{j}}=\frac{\chi_{D^{r}\left(a_{j}\right)} H_{f}\left(k_{a_{j}}\right)}{\left(\int_{D^{r}\left(a_{j}\right)}\left|H_{f}\left(k_{a_{j}}\right)\right|^{2} e^{-2 \varphi} d A\right)^{1 / 2}}=t_{j} \chi_{D^{r}\left(a_{j}\right)} H_{f}\left(k_{a_{j}}\right) \tag{121}
\end{equation*}
$$

where $\left\{a_{j}\right\}$ is the $(\rho, r / B)$-lattice of A_{φ}^{2}. It is obvious that $\left\|T_{g}\right\|_{2, \varphi}^{2} \leq\|g\|_{2, \varphi}^{2}$, and then, T is bounded. The convexity of $h(\sqrt{(\cdot)})$ shows that $h(\cdot)$ is also a convex function. Set

$$
\begin{equation*}
A(g)=\sum_{j=1}^{\infty}\left\langle g, e_{j}\right\rangle k_{a_{j}} \tag{122}
\end{equation*}
$$

and then, we have

$$
\begin{align*}
& \int_{\mathbb{D}} h\left(c G_{r / B}(f)(z)\right) \rho^{-2}(z) d A(z) \\
& \quad \leq \sum_{j=1}^{\infty} \int_{D^{r}\left(a_{j}\right)} h\left(c G_{r / B}(f)(z)\right) \rho^{-2}(z) d A(z) \\
& \quad \leq \sum_{j=1}^{\infty} \sup _{z \in D^{r /}\left(a_{j}\right)} h\left(c G_{r}(f)(z)\right) \\
& \quad \leq \sum_{j=1}^{\infty} h\left(c_{1} G_{r}(f)\left(a_{j}\right)\right) \\
& \quad \leq \sum_{j=1}^{\infty} h\left(\left(\frac{c_{1}}{\left|D^{r}\left(a_{j}\right)\right|} \int_{D^{r}\left(a_{j}\right)}\left|f-\frac{1}{k_{a_{j}}} P\left(f k_{a_{j}}\right)\right|^{2} d A(z)\right)^{1 / 2}\right) \\
& \quad \simeq \sum_{j=1}^{\infty} h\left(\left(c_{2} \int_{D^{r}\left(a_{j}\right)}\left|f-\frac{1}{k_{a_{j}}} P\left(f k_{a_{j}}\right)\right|^{2}\left|k_{a_{j}}\right|^{2} e^{-2 \varphi(z)} d A(z)\right)^{1 / 2}\right) \\
& \quad=\sum_{j=1}^{\infty} h\left(\left(c_{2} \int_{D^{r}\left(a_{j}\right)}\left|H_{f}\left(k_{a_{j}}\right)\right|^{2} e^{-2 \varphi(z)} d A(z)\right)^{1 / 2}\right) \\
& \quad=\sum_{j=1}^{\infty} h\left(c_{2}\left|t_{j}\left\langle H_{f} k_{a_{j}}, \chi_{D^{r}}\left(a_{j}\right) H_{f} k_{a_{j}}\right\rangle\right|\right) \\
& \quad \leq \sum_{j=1}^{\infty} h\left(c_{2}\left|\left\langle T^{*} H_{f} A e_{j}, e_{j}\right\rangle\right|\right) \\
& \quad \leq \sum_{j=1}^{\infty} h\left(c_{3} s_{j}\left(T^{*} H_{f} A\right)\right) \\
& \quad \leq \sum_{j=1}^{\infty} h\left(c_{3} s_{j}\left(H_{f}\right)\right)<\infty, \tag{123}
\end{align*}
$$

where c, c_{1}, c_{2}, and c_{3} are positive constants.
$(\mathrm{B}) \Rightarrow(\mathrm{A})$. Suppose that $\int_{\mathbb{D}} h\left(c G_{r}(f)(z)\right) \rho^{-2}(z) d A(z)<\infty$, we define the square mean of $|f|$ over $D^{r}(z)$ by setting

$$
\begin{equation*}
M_{r}(f)(z)=\left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}|f|^{2} d A(z)\right)^{1 / 2} \tag{124}
\end{equation*}
$$

for $f \in L_{\mathrm{loc}}^{p}(\mathbb{D})$ and $r>0$, decomposing $f=f_{1}+f_{2}$ as

$$
\begin{equation*}
f_{1}=\sum_{j=1}^{\infty} h_{j} \psi_{j} \operatorname{and} f_{2}=f-f_{1}, \tag{125}
\end{equation*}
$$

where $\left\{\psi_{j}\right\}_{j=1}^{\infty}$ is a partition of unity subordinate to $\left\{D^{r / 2}\left(a_{j}\right)\right\}_{j=1}^{\infty}, h_{j} \in \mathscr{H}\left(D^{r}\left(a_{j}\right)\right)$ and given $f \in L_{\text {loc }}^{p}(\mathbb{D})$ for $j=1$, $2, \cdots$, such that

$$
\begin{equation*}
M^{r}\left(f-h_{j}\right)=G_{r}(f)\left(a_{j}\right) \tag{126}
\end{equation*}
$$

Then, $f_{1} \in C^{1}(\mathbb{D})$ and

$$
\begin{equation*}
\left|\rho(z) \bar{\partial} f_{1}(z)\right|+M_{r / 12}\left(\rho \bar{\partial} f_{1}\right)(z)+M_{r / 12}\left(f_{2}\right)(z) \leq c G_{r}(f)(z) \tag{127}
\end{equation*}
$$

Therefore,

$$
\begin{array}{rl}
\int_{\mathbb{D}} & h\left(M_{r}\left(\rho \bar{\partial} f_{1}\right)\right) \rho^{-2}(z) d A(z) \\
& <\int_{\mathbb{D}} h\left(c M_{r / 12}\left(\rho \bar{\partial} f_{1}\right)\right) \rho^{-2}(z) d A(z) \\
\quad \leq \int_{\mathbb{D}} h\left(c G_{r}(f)(z)\right) \rho^{-2}(z) d A(z)<\infty, \\
\int_{\mathbb{D}} & h\left(M_{r}\left(f_{2}\right) \rho^{-2}(z) d A(z)\right. \\
\quad & <\int_{\mathbb{D}} h\left(c M_{r / 12}\left(f_{2}\right) \rho^{-2}(z) d A(z)\right. \tag{128}\\
\quad \leq \int_{\mathbb{D}} h\left(c G_{r}(f)(z)\right) \rho^{-2}(z) d A(z)<\infty
\end{array}
$$

Let θ to $\operatorname{be} f_{2} \operatorname{or} \rho \bar{\partial} f_{1}$, considering the multiplication operators M_{θ}, and by the assumption $G_{r}(f)(z) \in L^{\infty}$ and Lemma 3.4 in Zeng et al.'s study [17], we have $M_{r}(\theta)(z) \in L^{\infty}$, and M_{θ} is bounded from $A_{\varphi}^{2} \operatorname{to} L_{\varphi}^{2}$. Since for any $g, h \in A_{\varphi}^{2}$, there holds

$$
\begin{equation*}
\left\langle M_{\theta}^{*} M_{\theta} g, h\right\rangle=\left\langle M_{\theta} g, M_{\theta} h\right\rangle=\left\langle T_{|\theta|^{2}} g, h\right\rangle . \tag{129}
\end{equation*}
$$

We know that $M_{\theta}^{*} M_{\theta}=T_{|\theta|^{2}}$ on A_{φ}^{2}. Thus, $M_{\theta} \in S_{h}$ if and only if $M_{\theta}^{*} M_{\theta}=T_{|\theta|^{2}} \in S_{h(\sqrt{(\cdot)})}$. According to Theorem 23 and the condition which $h(\sqrt{(\cdot)})$ is a convex function, $T_{|\theta|^{2}} \in S_{h(\sqrt{(\cdot)})}$ if and only if

$$
\begin{equation*}
\int_{\mathbb{D}} h\left(c\left(\widetilde{\left.\theta\right|^{2}}(z)\right)^{1 / 2}\right) \rho^{-2}(z) d A(z)<\infty \tag{130}
\end{equation*}
$$

In proof of Theorem 23, we get $\widehat{\mu_{r}}(z) \leq \tilde{\mu}(z)$. On the other side, we assert that

$$
\begin{equation*}
\int_{\mathbb{D}} h(\tilde{\mu}(z)) d A(z) \leq c \int_{\mathbb{D}} h\left(\widehat{\mu_{r}}(w)\right) d A(w) \tag{131}
\end{equation*}
$$

In fact, by proof in proposition 2.5 of Zeng et al. [17], we have $\tilde{\mu}(z) \leq \widetilde{\mu_{r}}(z)$, and together with Jensen's inequality, there holds

$$
\begin{align*}
\int_{\mathbb{D}} h(\tilde{\mu}(z)) d A(z) & \leq \int_{\mathbb{D}} h\left(\widetilde{\widetilde{\mu_{r}}}(z)\right) d A(z) \\
& \leq \int_{\mathbb{D}} h\left(c \int_{\mathbb{D}}\left|k_{z} e^{-\varphi(w)}\right|^{2} \widehat{\mu_{r}}(w) d A(w)\right) \\
& \leq \int_{\mathbb{D}}\left(\int_{\mathbb{D}} h\left(c \widehat{\mu_{r}}(w)\right)\left|k_{z} e^{-\varphi(w)}\right|^{2} d A(w)\right) d A(z) \\
& \leq \int_{\mathbb{D}} h\left(c \widehat{\mu_{r}}(w)\right) d A(w) \int_{\mathbb{D}}\left|k_{z} e^{-\varphi(w)}\right|^{2} d A(z) \\
& \leq \int_{\mathbb{D}} h\left(c \widehat{\mu_{r}}(w)\right) d A(w) . \tag{132}
\end{align*}
$$

Therefore, we conclude that

$$
\begin{equation*}
\int_{\mathbb{D}} h\left(c\left(\mid \widetilde{\left.\theta\right|^{2}}(z)\right)^{1 / 2}\right) \rho^{-2}(z) d A(z)<\infty \tag{133}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\int_{\mathbb{D}} h\left(c\left(\widehat{|\theta|^{2}}(z)\right)^{1 / 2}\right) \rho^{-2}(z) d A(z)<\infty \tag{134}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\int_{\mathbb{D}} h\left(c M_{r}(\theta)(z)\right) \rho^{-2}(z) d A(z)<\infty \tag{135}
\end{equation*}
$$

hence $M_{\theta} \in S_{h}$. Since $\left\|H_{f_{1}}(g)\right\|_{L_{\varphi}^{2}} \leqslant\left\|g \rho \bar{\partial} f_{1}\right\|_{L_{\varphi}^{2}}$ and $\left\|H_{f_{2}}(g)\right\|_{L_{\varphi}^{2}} \leq\left\|f_{2} g\right\|_{L_{\varphi}^{2}}$, both $H_{f_{1}}$ and $H_{f_{2}}$ belong to S_{h} which leads to $H_{f} \in S_{h}$. The proof is complete.

Data Availability

No data were used in this paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The paper was supported by the National Natural Science Foundation of China (Grant No. 11971125).

References

[1] V. Oleinik and B. Pavlov, "Embedding theorems for weighted classes of harmonic and analytic functions," Journal of Mathematical Sciences, vol. 2, pp. 228-243, 1974.
[2] A. Borichev, R. Dhuez, and K. Kellay, "Sampling and interpolation in large Bergman and Fock spaces," Journal of Functional Analysis, vol. 242, no. 2, pp. 563-606, 2007.
[3] Z. Hu, X. Lv, and A. Schuster, "Bergman spaces with exponential weights," Journal of Functional Analysis, vol. 276, no. 5, pp. 1402-1429, 2019.
[4] C. Berger and L. Coburn, "Toeplitz operators on the SegalBargmann space," Transactions of the American Mathematical Society, vol. 301, no. 2, pp. 813-829, 1987.
[5] Z. Hu and J. Virtanen, "Fredholm Toeplitz operators on doubling Fock spaces," Journal of Geometric Analysis, vol. 32, no. 4, pp. 1-29, 2022.
[6] R. Hagger, "The essential Spectrum of Toeplitz operators on the unit ball," Integral Equations and Operator Theory, vol. 89, no. 4, pp. 519-556, 2017.
[7] N. Zorboska, "Closed range type properties of Toeplitz operators on the Bergman space and the Berezin transform," Complex Analysis and Operator Theory, vol. 13, no. 8, pp. 4027-4044, 2019.
[8] J. Taskinen and J. Virtanen, "On Fredholm properties of Toeplitz operators in Bergman spaces," Mathematical Methods in the Applied Sciences, vol. 43, no. 16, pp. 9405-9415, 2020.
[9] D. Luecking, "Trace ideal criteria for Toeplitz operators," Journal of Functional Analysis, vol. 73, no. 2, pp. 345-368, 1987.
[10] H. Arroussi, I. Park, and J. Pau, "Schatten class Toeplitz operators acting on large weighted Bergman spaces," Studia Mathematica, vol. 229, pp. 203-221, 2015.
[11] Y. Zhang, X. Wang, and Z. Hu, "Toeplitz operators on Bergman spaces with exponential weights," Complex Variables and Elliptic Equations, vol. 68, no. 6, pp. 974-1007, 2023.
[12] D. Luecking, "Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk," Journal of Functional Analysis, vol. 110, no. 2, pp. 247-271, 1992.
[13] H. EI-Falla, H. Mahzouli, I. Marrhich, and H. Naqos, "Asymptotic behavior of eigenvalues of Toeplitz operators on the weighted analytic spaces," Journal of Functional Analysis, vol. 270, no. 12, pp. 4614-4630, 2016.
[14] H. Arroussi, H. He, J. Li, and C. Tong, "Toeplitz operators between large Fock spaces," Banach Journal of Mathematical Analysis, vol. 16, no. 32, pp. 1-32, 2022.
[15] Z. Hu and J. Pau, "Hankel operators on exponential Bergman spaces," Science China. Mathematics, vol. 65, no. 2, pp. 421442, 2022.
[16] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter, 1996.
[17] Z. Zeng, X. Wang, and Z. Hu, "Schatten class Hankel operators on exponential Bergman spaces," Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, vol. 117, no. 23, pp. 1-16, 2023.
[18] H. Cho and J. Seo, "Hankel operators on the weighted $L^{p}-$ Bergman spaces with exponential type weights," Abstract and Applied Analysis, vol. 2014, Article ID 304867, 6 pages, 2014.
[19] R. Fulsche and R. Hagger, "Fredholmness of Toeplitz operators on the Fock space," Complex Analysis and Operator Theory, vol. 13, no. 2, pp. 375-403, 2019.
[20] R. Hagger and J. Virtanen, "Compact Hankel operators with bounded symbols," Journal of Operator Theory, vol. 86, no. 2, pp. 317-329, 2021.
[21] Z. Hu and J. Virtanen, "Fredholm Toeplitz operators with VMO symbols and the duality of generalized Fock spaces with small exponents," Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 150, no. 6, pp. 3163-3186, 2020.
[22] Y. Liu and X. Wang, "Duality of large Fock spaces in several complex variables and compact localization operators," Journal of Function Spaces, vol. 2021, Article ID 6619459, 17 pages, 2021.
[23] A. Perälä and J. A. Virtanen, "A note on the Fredholm properties of Toeplitz operators on the weighted Bergman spaces with matrix-valued symbols," Operators and Matrices, vol. 5, no. 1, pp. 97-106, 2011.
[24] X. Wang and Z. Zeng, "Boundedness and compactness of Hankel operators on large Fock space," Journal of Function Spaces, vol. 2022, Article ID 7035925, 12 pages, 2022.

