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In this paper, we propose the concept of (€, € V(j, q;))-fuzzy p-ideals in “BCI-algebras.” We show that “(¢, € vq))-fuzzy p-ideals”
and “(eV(j*, q;), € V(j*, q;))-fuzzy p-ideals” are “(¢, € V(j*, q;))-fuzzy p-ideals.” However, the converse is not true, then presented

examples. For a BCl-algebra Y, it has been shown that every (¢, € V(j*, g,))-fuzzy p-ideal of Y is an (€, € V(j*, g.))-fuzzy ideals of
p g Ty q; Yy P q; y

Ybut not conversely, and then, an example is given. Furthermore in Y, a connection between (e, €V(j*,q;))-fuzzy p-ideals

and p-ideals is established.

1. Introduction

The concepts of BCK and BCI-algebras were first introduced
by Imai and Ise’ki in 1966 [1, 2]. The algebraic formulations
of the BCK and BCI systems are BCK and BClI-algebras in
combinatory logic. Eventually, the theory of these algebras
has been developed rapidly and successfully with a specific
focus on the ideal theory, for instance, Liu et al. [3] studied
q(a)-ideals while fuzzy h-ideals are given in [4], and hybrid
ideals are considered by Muhiuddin et al. [5, 6] in BCK/
BCl-algebras. Recent research focused on several kinds of
related ideals are studied in [7-10].

The theory of fuzzy set is given in [11] as a new disci-
pline. Jun [12] initiated the study of fuzzy p-ideals in BCI-
algebras and studied their various characteristics. Touqeer
and Cagman [13] have given the notion of intuitionistic
fuzzy p-ideals of BCI-algebras. Muhiuddin [14] investigated
p-ideals of BCl-algebras related with neutrosophic N-
structures.

In order to develop various kinds of fuzzy subgroups,
the idea of “quasi-coincidence” of a fuzzy point with a

fuzzy set is established in [15]. The same concepts were
introduced and investigated by Jun [16, 17] in BCK/BCI-
algebras. Zhan et al. [18] gave the idea of (e, €Vvq)-fuzzy
ideal of BCl-algebra and explored their interesting results.
Also, Zhang et al. [18] applied the idea of a quasicoincidence
of a fuzzy point with a fuzzy set and introduced the concepts
of (€, e vq)-fuzzy p(q and a)-ideals in BCI-algebras, while
Ma et al. [19] present the ideas of various kinds of fuzzy ideals
based on (€, € vq)-interval-valued fuzzy structures.

Al-Masarwah and Ahmad [20] developed the ideas of
m-polar (a, 8)-fuzzy ideals. Takallo et al. defined and pre-
sented m-polar (€, €)-fuzzy p-ideals in [21]. Numerous
algebraic systems have been exposed to these structures,
with a variety of outcomes [22-25].

The concept of generalized notion is natural to introduce.
To do so, we introduced the concept of (€, € V(j*, q;))-fuzzy
p-ideals. Furthermore, we presented the relationship between
(€, €vq))-fuzzy p-ideals and (eV(j*,q;), € V(j*, q;))-fuzzy
p-ideals. Besides, we investigated the correspondence among
these notions.
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2. Preliminaries
An algebra “Y = (Y ; %,0)” is a BCI-algebra if Vb, ®,3 € Y,

(1) (B @) (0x3)) * 3+ @) =0,

4 P+@=0and @ *0=0=—Db = Q.

A partially ordered “<” on Y is defined as < @ & b
*@=0.

From now we mean Y as a BCI-algebra. By a fuzzy sub-
set (in brief, FS), we mean a function 8 : ¥ — [0,1].

Definition I (see [26]). Let Z € Y and ¢ € [0, 1]. The “ordered
fuzzy point” (in brief, OFP) Z; of Y is given as:

It is obvious that Z; is an FS of Y. In the sequel, we
indicate Z; B as Z; € B for any FS B. In other words,
Z. B = B(Z)=q.

Definition 2 (see [26]). A FS B of Y is called an (e,ev
(j*»4q;))-fuzzy subalgebra (in brief, (¢, € V(j*, g;))-FSA) of
Y if 3. € B and b; € B implies (3 * b),,; € V(j*, q,)BY, T €
[0,1] and 3, D €Y.

Definition 3 (see [26]). A FS B of Y is said to be an (€, €V
(j*»q;))-FI (briefly, fuzzy ideal) of Y if
(1) 3; € B imply 0; € V(j*, 9;)B, and
(2) (3 #1b).€B and b; € B imply 3.,; € V(j*, qj)ﬂi,
V3,9 €Y and G,i€(0,1].

Lemma 4 (see [26]). Let B be a FS of Y. Then, 3: € B implies
0: € V(j*, ;)8 & V3 € Y, B(0) = BN — jiI2.

Lemma 5 (see [26]). Let B be an (€, € V(j*, qj))—FI in Y such
that 3 <v. Then, B(3) > B(D)Aj* —j/2.

Lemma 6 (see [26]. Let B be an (€, €V(j*, q;))-FI of Y.
Then, V3,9, @€Y, 3+b<d = B(3)>B(0)AB(0)A*
—jl2.
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3. (¢, € V(j", q;))-Fuzzy p-Ideals

Definition 7. Let 3; be in OFP of Y and j* € (0, 1]. Then, 3 is

called (j*, q)-quasicoincident with a FS 8B of Y, denoted as
3&0*) 9)B, if

B(3)+¢>j" (2)
Suppose that 0 < j < j* < 1. For OFP 3;, we define
(M 30" q)B, if B(3) +5+j>j°

(2) 3:€V(j"q,)B, if 3 € B or 3:(j", 9;)B

(3) 3:¥B, if 3:y®B does not hold for ye{(j*.q;), eV
(G q;)}-

Definition 8. A FS 8B of Y is called an (¢, € V(j*, q;))-fuzzy
p-ideal (in brief, (€, € V(j", g;))-FPI) of Y if

(1) 3; € B imply 0; € V(j*, q;)B

) ((3*D)* (@ * B))E €W and a; €B imply 3., €V
(j*,qj)§8

V3,0, @€Y and i, 7€ (0,1].

Example 9. Consider a BCl-algebra Y = {0,%, ¢, @}, defined
by Table 1.
Define a FS 8 on Y as

f
B(5)={ 05 ifp=i : (3)
f

It is easy to evaluate that B is an (¢, € V(j*, q;))-FPI for
j*=0.85and j=0.15 of Y.

Definition 10. A FS B of Y is called an (€, € Vq)-FPI (briefly,
fuzzy p-ideal) of Y if

(1) 3; € B imply 0; € vgB

(2) (3*®)* (@ b)), B and @, €B imply 3, €V
98

V3,9, @ €Y and G, i€ (0,1].

Theorem 11. In Y, every (€, € Vq)-FPI is an (€, € V(j*, q;))-
FPI, but converse may not be true in general.

Proof. Assume that B is an (€, € vq)-FPI of Y. Take 3. € B
for 3 € Y and ¢ € (0, 1]. So by hypothesis, 0, € vg$B. It implies
that B(0) >¢ or B(0) +u>1, and so, B(0) > or B(0) +
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TaBLE 1: Cayley table of the binary operation . TaBLE 2: Cayley table of the binary operation * in Y.
* 0 7 7 @ * 0 1 7 3 a)
0 0 i 1 @ 0 0 0 0 3 3
i i 0 @ T i i 0 i @ 3
i i ) 0 it ¢ ¢ 0 3 3
) ) i i o 3 3 3 3 0 0
@ @ z @ i 0
j+¢=j". Thus, 0;€V(j", q]) Further, take any
((3+D) = ((D % b)) €8 and (D € 8. So, z;; € VqB implies TasBLE 3: Cayley table of the binary operation .
B(3) > CAI or !B( )+q/\1>1 Therefore, B(3)=¢ni or B = = > =
~ * 0 i I 3 0]
(3) +j+cni>j". Thus, z; € V(j*, q;)B, as required. 0
0 0 0 0 0 0
Example 12. Consider a BCl-algebra ¥ = {0,7, ¢, 3, @} which IA i 8 i S i
is defined by Table 2. 4 e 4 0 e 0
We define a FS 3 5 3 3 0 :
@ @ @ ? @ 0
0.6, ifb=0
~ 0.1, ifbe{ia} Define B: Y — [0, 1] by
B(v) = o (4)
0.3, ifb=¢ 0.4, ifb=0
0.2, ifvp=z B (5) = 0.6, ifve{i3} (5)

It is easy to evaluate that B is an (€, € V(j*, q;))-FPI of Y
but not an (€, €vq)-FPI as ((€ * @) * (0 * @)),4 € B and
0.4 € B but ¢,,€VgB, where j=0.81 and j* = 0.41.

Definition 13. A FS 8B of Y is said to be an (ev(j*.q;), €
V(j*,q;))-FPI of Y if

(1) 3:€V(", qj)% imply 0; € V(j", q]‘)%

(2) ((3#9) * (@ *9)). € V(" q)B and @;€V(j",q;)
B imply g&/\l € V(j*’ q]‘)m

V3,0, @€Y and g, 7€ (0,1].

Lemma 14. In Y, every (eV(j*, q;),€V(j*,q;))-FPLis (€, €V
(7', a,))-FPL

Proof. Let B be any (€V(j*, ¢;), € V(j*, q;))-FPI of Y. Take
any 3;€B for zeY and ¢€(0,1]. Then, 3. € V(" q;)B
Therefore, by hypothesis, 0;€V(j*,q;)®B. Assume that
(3*P)*(@+b)). B and @;€B for any 3,b,0 €Y.
Then, ((3 % D) * (@ # b)), Vv(j*,q;)®B and @ € v(j*,q,)8
S0, 3en € V(j*> q;)B; as required. O

Example 15. Consider a BCI-algebra Y = {0,7, ¢,3, @} which
is defined by Table 3:

0.1, ifd= {’é, a}

B is an (€, € V(j*, ¢;))-FPL of ¥ with j = 0.5 and j* = 0.7,
although it is not an “(ev(j*, q;), € V(j", q;))-FPT" of Y as
o5 = (¢ 1) % (0 "ib)a:o.gs eVv(j", ‘L‘)’B and 0,_ 5 € V(j",
q;)B but L o5€V(j" q;)B

Lemma 16. Let B be a FS of Y. Then, V3,0, D€y,
(3*9)*(@*9)).€B, and @,€B imply 3 ev(j*.q))
B B(3)>B((3+D) (@ * 1)) AB(D)A* —j/2.

Proof. (=>) Contrary assume that for some 3,D€Y,
B(3) <B((3+0) * (@ * D))AB(D)Aj* — j/2. Take <€ (0,
j* = jl2)st. B(3) << B((3 * B) * (@ * B))AB(@)Af* - ji2.
Then, ((3 % ) (@ %)), € B and @ € B, but 3€V(j*, q;)
8B, which is impossible. Hence, B(3) = B((3 * b) * (@ * D))
AB(D)A* ~ jiI2.

(=) Let ((3#9)*(a *b)).€B and @, €8, Vc,
eh(O, 1. Then, B((3#9)* (@ *b))>¢ and B(d)=>
Thus,

B(3)>B((3+5) = (@)@ 2ol
(6)

Now, if GAI < j* — j/2, then B(3) = ¢AI implies 3;,; € B. If
CAI > j* —j/2, then B(3) > j* - j/2. So, we have



J_J+J —J
2 2

B(3) + i > = - (7)

It follows that 3..(j", q;)B. Therefore, 3.,; € V(j*, q;)B,
as needed. O
On combining Lemmas 4 and 16, we get the following result.
Theorem 17. A FS B of Y is an (€, € V(j*, q;))-FPI of Y=

(1) B(0) = BN - j/2

(2) B(3) > B((3 * D) * (@ = 0))AB()Af* - ji2,

V3,0, 0.
Theorem 18. Every (€, €V(j",q;))-FPI of Y is an (e, eV
()1 of 7.
Proof. Assume that B is an (€, € V(j*, q;))-FPI of Y. Then,
V3,5, @ € Y; we have

B(3)>B((3+0) * (@ = 8))/\8(6)/\¥. (8)

Substitute b by 0 in above inequality, so

B(3)>B((3%0)* (@ *o))/\%(a)/\? o)
=B(3* 6)/\23(6)/\?.
Hence, B is an (€, € V(j*, q;))-FL. O

Example 19. Take a BCI-algebra of Example 12 defined by
Table 2. We define a FS

04, ifv=0
B(b)=¢ 0.1,

02, ifp=20

It is easy to calculate that B is an (€, € V(j*, q;))-FI of Y
for j* =0.9 and j = 0; however, it is not an (€, € V(j", q;))-

FPI as 0.3=B(£) £ B((€ % @) * (0% @))AB(0)Aj* —j/2=
B(0) =0.6.

Theorem 20. If B is an (€, € V(j", q;))-FPL then
(1) B(3) 2 B0+ (0% 3)A7" - ji2 VG e T
(2) B(3) = B0+ (0% 3)AF" - ji2 VG e T
Proof.

(1) Assume that B is an (€, € V(j*, g;))-FPI of Y. So,
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B(3)2B((3+5) + (6+9)AB@)NL35.5e7.

(11)
Substitute 3 for b and 0 for @, so
B(3) > B((3+3) * (0«3)ABON
=8B(0 + (0+3)AB(0)n (12)

=B(0* (0= g))/\]*T_]

(2) Since 0 * (0 * 3) <z for any z € Y. So, by Theorem
18 and Lemma 5, we have

+k

B0+ (0%3)) > B(3)n. z_j. (13)

From (a), B(3) 2 B(0 * (0 + 3))Aj" — j/2. Thus,

B(3)=B(0+ 0+ 3)AL . (14)

A condition for (€, € V(j", q;))-FI to be (€, € V(j", q;))-
FPI is given in the following two results.

Theorem 21. Let B be an (€, € V(j*, q;))-FI of Y satisfying
(V3,0, @€ ?)%(3 * @) >B((3+0)* (5 *D)).  (15)
Then, B is an “(€, € V(. q;))-FPI” of Y.

Proof. Suppose that B is an (¢, € V(j*, q;))-FI satisfying (15).
Then, V3,9, @ € Y, following hold

B(3)>B (3 0)AB(d). !
’ . (9
>8B((3+5) » (@ +5))aB(2)n1

Hence, B is an (€, € V(j*, q;))-FPI of Y. O

Theorem 22. Let B be an (€, € V(j*, q;))-FI of Y satisfying

%

(V3€Y)B(3)>B(0* (0+3))A’ 2_j. (17)

Then, B is an (€, € V(j", q;))-FPI of Y.
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Proof. Let 3, @,b €Y. Then, by ((17)) and Theorem 20

(18)

Hence from Theorem 21, B isan (¢, € V(j*, q;))-FPT of Y.
O

Theorem 23. A FS B is an “ (¢, € V(j*, q;))-FPI" in Y & ;
the set B.(+ D) is a p-ideal of Y, ¥ € (0, (j* - j/2)].

Proof. (=) Take ¢ € (0, - j/2] such that B; # &. From
Theorem 17, we have

-k

B(0) > B(3)n. z'j, (19)

with 3 € B.. Thus, B(0) > Aj* - j/2 =¢. Therefore, 0 € B-.

Next, assume that (3 +9) * (@ *b) € B, and @ €B..
Then, B((3 %) * (@ *9))>¢ and B(@)=¢. Again, by
Theorem 17, we have

(@ 8)nB(@)n . zenenl L =¢

(20)

B(3)=2B((3+Db) *

So, z € B.. Consequently, B, is p-ideal of Y.

(=) Suppose that B is a p-ideal of Y, V¢ € (0, j* — k/2].
If for some 3 € Y, B(0) < B(3)Aj* — j/2. Then I € (0, j* -
k/2] “such that” B(0) < <B(3)Aj* —j/2. It implies that
3 € B but 0B, a contradiction. So, B(0) = B(3)Aj* - j/2.
Also, if for some 3,5, @ € Y, B(3) <B((3 D) * (@ * b))A
B(d)Aj* - j/2. Then 3¢ € (0, (j* - k/2)] stt.

S S L (B -

B(3)<i<B((3+b)* (@ b))AB((D)/\T. (21)

It implies that (3 * D) *
¢ B;, another contradiction. Hence, B(3) =
* D))AB(@)Aj* - jiI2, as required.

((D*D)GB and@eﬂ} but 3
3((5*”) * (@
O

Definition 24. Let B be a FS of Y. The set

8], = {ge Y13 ev(j*,qj)%},wheref; €(0,1, (22)

is said to be an (€V(j", q;))-level subset of B.

Theorem 25. A FS B of Y is an (€, € V(j*, q;))-FPI of Y &=

the (eV(j*,q;))-level subset [ lc of B is a p-ideal of Y,
V¢ e (0,1].

Proof. (=) Assume that B is an (¢, € V(j*, q;))-FPI of Y.

Take any 3 € [8] Then, 3; € V(j", q;)B. So, B(3) 25 or B
(3) +¢>j* —j. By Theorem 17, B(0) > B(3)Aj* — j/2. Thus
B(0) > Aj* - j/2 when B(3) =3. If u>j* - j/2, then B(0)
> —jl2 yields 0¢ @]J Also, ifE<j* — j/2, then B(0) >
implies 0 € [8] Similary 0 € [.‘8] when ?B( )+C>j -]

Next, take any ((3 % B) * (@ * ) € [B]. and @ € [8]..
Then, ((39) * (@ %9)) € V(j*,q;)B and @ €V(j",q;)B,
ie. either B((3# D) * (@ * D))= or B((3* D) * (@ * b))
+¢>j* —j and either B(@)>< or B(D)+<>j* —j. By
assumption, B(3) = B((3 * D) * (@ = B))AB(@)Aj* — ji/2.
We have cases:

Case (i). Let B((3 # D) * (@
u>j* —j/2, then

#))>¢ and B(d) <. If

S S\ s (545 P A P M) B M|
B(3)2B((3+b) * (@+b))AB() 5 2N 5
(23)
and so, 3; € (j*, q;)B. If ¢ < j* - j/2, then
B(3)=B((3+5) + (3 +9))AB@)N T 2en] I ¢
- 2 2
(24)

So 3; € B. Hence, z € V(j", q,)B

Case (ii). Let B((3 % 1) * (@ * b)) >¢ and B(d) +¢>
7 —j. Ifu>j* —j/2, then

5))AB(a)n]

B(3)28((3+5)+ (3 2

-

J =i
2

26N —j =GN =j"-j-5
ie, B(3) +¢>j" —jand, thus, 3:(j", q;)B. If < j* — j/2.
then

B(3)=B((3+ ) « (3 +5))AB(d)n L
ZE/\K* _j_f:/\J__] =g
2
and so 3; € B. Hence, 3. € V(j", q;)B
Likewise, in the other two cases, i.e., when !8((3 * D) *
(@%9))+¢> )"~ j, B(@) 2 and B((3 D) * (@ D)) +
$>j"—j, B(@)+¢>j"—j implying that 3 €V(j", q,)B.
Hence, in each case, 3; € V(j*, ¢;)B, and thus z € [!B]C



(&=) Let [B]. be “p-ideal” for all € (0,1]. Contrary
suppose that

B(0) < %(g)/\?, (27)

with 3 € B.. Then, 3¢ € (0,1] “such that” B(0) <¢<B(3)

Aj* = jI2. Tt yields that 3 € [B];, but 0 ¢ [B]., which contra-
dicts itself. Therefore

B(0)> BN (28)

Also, if B(3)<B((3*D)* (@ *0))AB(D)A* - jI2
for some 3,d, @ € Y. Then, 3 € (0, 1] such that

B(3)<c<B((3+5) + (3+5)nB(@)n L (9)

Henceforth, ((3#9)* (@ * b)) € [!BA]/c and @ € [28/\]:
but 3e [%]/g, another contradiction. Therefore, B(3) >3
O

(3% D) * (@ * ))AB(@)Aj* - j/2, as required.
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