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In this paper, with classic Legendre polynomials, a method of particular solutions (MPS, for short) is proposed to solve a kind of
second-order differential equations with a variable coefficient on a unit interval. The particular solutions, satisfying the natural
Dirichlet boundary conditions, are constructed with orthogonal Legendre polynomials for the variable coefficient case.
Meanwhile, we investigate the a-priori error estimates of the MPS approximations. Two a-priori error estimations in H1- and
L∞-norms are shown to depict the convergence order of numerical approximations, respectively. Some numerical examples
and convergence rates are provided to validate the merits of our proposed meshless method.

1. Introduction

In the past decades, various numerical methods are designed
for solving kinds of differential equations, such as finite
element method [1–3], spectral method [4–6], shifted
Legendre approximation [7, 8], and differential transforma-
tion method [9, 10]. To avoid the constraints and workload
of region divisions, a new family of computational methods
has emerged. The so-called meshless or mesh-free methods
have been investigated and used by many researchers. The
advantage of meshless methods reads that the interpolation
accuracy is not significantly affected by the nodal distribu-
tion. And hence meshless methods attract great attentions
in various disciplines for treating a large variety of engineer-
ing problems. In fact, the MPS is originally proposed with
the radial basis functions for solving various kinds of differ-
ential equations. Recently, the MPS has been continuously
employed to solve various interesting models and proven
to be an effective method in numerical simulations. For
more details about this numerical scheme, please refer to
[11–13] and the references cited therein.

To the best of our current knowledge, the meshless
schemes, including Kansa method [14], method of fun-
damental solutions [15], method of particular solutions
[16, 17], element-free Galerkin method [18], local point

interpolation [19], and boundary knot method [20], are
widely used to approximate a large class of partial differential
equations in science and engineering fields. As reported in
the literatures, the MPS has been applied to solve the
Navier-Stokes problem [21], wave propagation problem
[22], and time-fractional diffusion problem [23]. Despite
the effectiveness of the MPS, there are some disadvan-
tages such as the ill-conditioned collocation matrix, the
uncertainty of the shape parameters, and difficulties in
deriving the closed-form particular solutions for general
differential operators, and for more details, please refer
to [12, 17, 24–26] and the references cited therein.

In order to overcome these disadvantages, lots of works
have been done on efficient numerical schemes for the
MPS. And many basis functions have been designed to dis-
cretize partial differential equations. Chebyshev polynomials
[11, 27], polynomials basis functions [16, 18, 28], and trigo-
nometric functions [29] were employed with their closed-
form particular solutions to approximate kinds of models.
However, few results about error estimates of the MPS are
illustrated in the current literatures.

In this paper, Legendre polynomials are used to design
the particular solutions for the MPS. Specially, boundary
conditions are naturally imposed, and the corresponding
discretized scheme is constructed in a collocation scheme.
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The closed-form particular solutions for given differential
operators with variable coefficients are derived via recursive
relationships of Legendre polynomials. Compared with the
radial basis functions for the MPS, our proposed scheme
provides a simple approach to effectively solve a kind of
differential equations with variable coefficients.

Meanwhile, with an orthogonal projector and the Aubin-
Nitsche duality argument, we provide rigorous studies on
two a-priori error estimates for this numerical method. For
sufficiently smooth solutions, the a-priori error estimations
show that asymptotic super-exponential convergence orders
of the MPS approximations are readily achieved in H1- and
L∞-norms.

The remainder of this paper is organized as follows.
Some preliminaries and a brief review of the MPS are pre-
sented in Section 2. The numerical procedures of the MPS
for solving differential equations with variable coefficients
are proposed in Section 3. In Section 4, two a-priori error
estimates are given in different norms with rigorous proofs.
And three numerical examples are provided with numerical
errors and convergence orders to demonstrate the effective-
ness of the proposed methods in Section 5. Furthermore,
some conclusions and discussions are listed in Section 6.
And in the last part, an appendix is given to sketch a rigor-
ous proof for the recalled lemma.

2. Preliminaries

Let us introduce some basic notations which will be used in
the sequel. Hereafter, we select a unit interval I = ð−1, 1Þ to
show the sketch of the MPS approximations and a-priori
error estimates and adopt the standard notation Wm,qðIÞ
for Sobolev space on I. Setting Wm,q

0 ðIÞ = fv ∈Wm,qðIÞ:
ðdkv/dxkÞð±1Þ = 0, 0 ≤ k ≤m − 1g, we denote Hm

0 ðIÞ =Wm,2
0

ðIÞ and k·km = k·km,2. Specially, k·k∞ and k·k denote the
norms in L∞ðIÞ and L2ðIÞ, respectively. We use C and c to
denote different constants in different formulae. For simplic-
ity, we omit subscripts if m = 0. Particularly, if m = 1, we set

H1
0 Ið Þ = v ∈W1,2 Ið Þ: v ±1ð Þ = 0

È É
: ð1Þ

Thereby, the scalar product in L2ðIÞ and bilinear form in
H1ðIÞ are defined as

v,wð Þ =
ð
I
v xð Þw xð Þdx,∀v,w ∈ L2 Ið Þ, ð2Þ

a v,wð Þ =
ð
I
ω xð Þv′ xð Þw′ xð Þdx,∀v,w ∈H1 Ið Þ: ð3Þ

We define the following polynomial sets:

~PN = pN xð Þ: the degree of pN xð Þ ≤Nf g,
PN = v ∈ ~PN : v ±1ð Þ = 0

È É
:

ð4Þ

2.1. Legendre Polynomials. We denote by LiðxÞ the i-th
degree Legendre polynomial with x ∈ I. Three-term recur-
rence relationship for Legendre polynomials reads

i + 1ð ÞLi+1 xð Þ = 2i + 1ð ÞxLi xð Þ − iLi−1 xð Þ, i ≥ 1, ð5Þ

and L0ðxÞ = 1, L1ðxÞ = x.
We recall that fLiðxÞgi≥1 satisfy

Li ±1ð Þ = ±1ð Þi, i ≥ 1, ð6Þ

and hence there holds

Li xð Þ − Li+2 xð Þ ∈ PN xð Þ, 0 ≤ i ≤N − 2: ð7Þ

Also, there is an orthogonality

Li xð Þ, Lj xð ÞÀ Á
=

0, i ≠ j,
2

2i + 1 , i = j:

8<
: ð8Þ

And for i ≤N , it is obvious that L′iðxÞ ∈ ~PN−1 and

2i + 1ð ÞLi xð Þ = Li+1′ xð Þ − Li−1′ xð Þ, i ≥ 1: ð9Þ

2.2. The Method of Particular Solutions. In this subsection,
we consider the second-order differential equation with
homogeneous Dirichlet boundary condition:

ω xð Þ u xð Þð Þ′
� �

′ = f xð Þ, x ∈ I,
u ±1ð Þ = 0,

8<
: ð10Þ

and the constraint on ωðxÞ will be stated in the sequel.
By (3), we obtain the equivalent weak formulation of

(10) reads: finding u ∈H1
0ðIÞ such that

a u, vð Þ = − f , vð Þ,∀v ∈H1
0 Ið Þ: ð11Þ

In view of (9), we design the corresponding particular
solutions for (10) as

ψi xð Þ = Li+1 xð Þ − Li−1 xð Þ
2i + 1 , i ≥ 1, ð12Þ

which guarantee ψið±1Þ = 0.
And then we define P N as

P N = span ψ1 xð Þ, ψ2 xð Þ,⋯, ψN−1 xð Þf g, ð13Þ

where ψiðxÞ satisfies the homogeneous Dirichlet boundary
conditions in (10). For more details about the completeness
of P N in (13), please refer to [30].
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According to (13), the MPS approximation of uðxÞ can
be stated as

uN xð Þ = 〠
N−1

j=1
cjψj xð Þ,∀x ∈ I, ð14Þ

where fcjgN−1
i=1 are the coefficients to be determined. For

the sake of convenience, we use fxkgMk=1 to denote the col-
locations in the interval. And then the corresponding
equivalent collocation scheme for (10) reads: finding uN ∈
P N such that

ω xkð Þ uN xkð Þð Þ′
� �

′, vk
� �

= f xkð Þ, vkð Þ, k = 1, 2,⋯,M,

ð15Þ

where vk = δðx − xkÞ denotes the Dirac delta distribution on
xk. For readers interested in the collocation approximations,
please refer to [31].

3. The Model Problem and Its
Approximation Scheme

3.1. The Model Problem with ωðxÞ = 1 − x2. In the following
parts, we focus on ωðxÞ = 1 − x2. Since there does not exist
any positive constant c satisfying ωðxÞ ≥ c in I, we miss the
sufficient conditions for the uniqueness of (10). And hence
we have to restate the uniqueness of the solution for (11)
with some novel techniques.

Theorem 1. For ωðxÞ = 1 − x2, there exists a unique weak
solution u ∈H1

0ðIÞ of (11).

Proof. For any v,w ∈H1ðIÞ, there holds

a v,wð Þj j ≤ vk k1 wk k1, ð16Þ

where we used ωðxÞj j ≤ 1. One directly states the continu-
ation of the bilinear form and also the existence of
solutions.

Now we are at the point to investigate the uniqueness
of the solution for (10). Obviously, the bilinear form is not
elliptic. We have to prove the uniqueness with new tech-
niques. Assuming there exist two solutions u1 and u2 sat-
isfying (10), one readily gets that for all x ∈ I, there almost
holds

ω xð Þu1′ xð Þ
� �

′ = ω xð Þu2′ xð Þ
� �

′, ð17Þ

which means

1 − x2
À Á

U′ xð Þ
� �

′ = 0, x ∈ I,

U ±1ð Þ = 0,

8<
: ð18Þ

where UðxÞ = u1ðxÞ − u2ðxÞ.

Now, we turn to prove that the solution of boundary
value problem (18) is zero. And hence we employ integra-
tions by parts to get the unique solution

U xð Þ = c1
2 ln 1 + x

1 − x
+ c2, a:e:x ∈ I: ð19Þ

Considering the boundary conditions and properties of
function ln ðxÞ at x = ±1, we easily declare that c1 = 0 and
c2 = 0, which means UðxÞ = 0, a:e:x ∈ I. Then, we readily
depict that u1ðxÞ = u2ðxÞ, a:e:x ∈ I, which directly verifies
the uniqueness of solution of (11).

3.2. The MPS with Legendre Polynomials. Noticing that, one
of the challenges of the MPS is how to derive closed-
form particular solutions for given differential operators.
Although the particular solutions are not unique, it is
always a complicated task to find appropriate particular
solutions for given differential operators. In general, find-
ing or designing closed-form particular solutions are non-
trivial (for more details on this topic, please refer to [32]
and the references therein).

It is well-known that the size of globally dense matrices
in the MPS grows with the increase of collocation points
and will cause bigger condition numbers of resultant matri-
ces. Hence, the crucial task of the MPS is to choose pertinent
~PN such that the basis functions are as simple as possible.
According to the recursive relationships of Legendre polyno-
mials, we derive efficient basis functions for corresponding
particular solutions bit by bit.

With (9), it is direct to state that

Li+1 xð Þ − Li−1 xð Þ
2i + 1

� �
′ = Li xð Þ, i ≥ 1: ð20Þ

And then we have

1 − x2
À Á Li+1 xð Þ − Li−1 xð Þ

2i + 1

� �
′

� �
′ = 1 − x2

À Á
Li xð ÞÀ Á′: ð21Þ

Hence, the basis functions for the approximations of the
right hand term can be set as

ϕi xð Þ = 1 − x2
À Á

Li xð ÞÀ Á′
= 1 − x2
À Á

Li′ xð Þ − 2xLi xð Þ, 1 ≤ i ≤N − 1,
ð22Þ

which satisfy the following identity

1 − x2
À Á

ψi xð Þð Þ′
� �

′ = ϕi xð Þ, 1 ≤ i ≤N − 1: ð23Þ

One readily gets that the discretized formulation of (11)
reads: finding uN ∈P N such that

a uN , vNð Þ = − f , vNð Þ,∀vN ∈P N : ð24Þ

The details about the equivalent weak formulation can
be found in [31]. Meanwhile, the existence and uniqueness
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of the numerical solution in P N of (24) can be readily
proved by the same techniques given in Theorem 1.

4. The A-Priori Error Estimates

In this section, we study a-priori error estimates of the MPS
approximations by an orthogonal projector. For any w ∈
H1

0ðIÞ, there holds

w xð Þ = 〠
∞

i=1
ŵiψi xð Þ: ð25Þ

In view of orthogonal properties of Legendre polyno-
mials and (20), we get the following identities:

ψi
′ xð Þ = Li xð Þ, i ≥ 1: ð26Þ

We recall the first derivative orthogonal projector
1ΠN

0 : H1
0ðIÞ↦P N such that

w − 1ΠN
0 w

À Á′, v′N� �
= 0, vN ∈P N : ð27Þ

Here, an error estimate for this first derivative orthogonal
projector is shown in the following lemma.

Lemma 2 (see [4, 33]). For all v ∈H1
0ðIÞ ∩HmðIÞðm ≥ 1Þ,

there holds

v − 1ΠN
0 v



 


l
≤ cNl−m vk km, l = 0, 1: ð28Þ

4.1. The A-Priori Error Estimate in H1-Norm. The Aubin-
Nitsche duality argument is employed to investigate error
estimates of the MPS approximations in H1-norm.

Lemma 3 (See [34, 35]). For bounded interval I and F ∈
H−1ðIÞ, we set yF as the unique solution of the following
homogeneous boundary value problem

yF′ , v′
� �

= F, vh i, ð29Þ

where h·, · i stands for the dual product on H−1ðIÞ ×H1
0ðIÞ.

Then, yF ∈H
1ðIÞ, and there holds

yFk k1 ≤ c Fk k−1: ð30Þ

By the above results, we derive the following a-priori error
estimate.

Theorem 4. Let u and uN be the solutions of (11) and (15),
respectively. Then for all u ∈H1

0ðIÞ ∩HmðIÞ, it holds that

u − uNk k1 ≤ CN1−m uk km: ð31Þ

Proof. It follows that

u − uNk k1 == sup
F∈H−1 Ið Þ

F, u − uNh ij j
Fk k−1

=4:3ð Þ sup
F∈H−1 Ið Þ

u − uNð Þ′, y′F
� �

Fk k−1

= sup
F∈H−1 Ið Þ

u − uNð Þ′, yF − 1ΠN
0 yF

À Á′� �
Fk k−1

= sup
F∈H−1 Ið Þ

u − 1ΠN−1
0 u

À Á′, yF − 1ΠN
0 yF

À Á′� �
Fk k−1

≤ u − 1ΠN
0 u

À Á′

 

 · sup
F∈H−1 Ið Þ

yF − 1ΠN
0 yF



 


1

Fk k−1
≤

4:2ð Þ 4:4ð Þ
c u − 1ΠN

0 u
À Á′

 



≤
4:2ð Þ

CN1−m uk km:
ð32Þ

Then, the a-priori error estimation in (31) is yielded.

4.2. The A-Priori Error Estimate in L∞-Norm. In this subsec-
tion, we give the corresponding error estimate in L∞-norm
with a rigorous relationship during L∞ðIÞ and H1ðIÞ.

Lemma 5. For all v ∈H1ðIÞ, there holds the following
estimate

vk k2∞ ≤ vk k2 + 4 v′


 

2: ð33Þ

Proof. Since the interval is bounded, one gets that Wm,2ðIÞ
⊂Wm,1ðIÞ. By the embedding theorems (refer to Chapter
12 in [36]), we know that W1,1ðIÞ is embedded in L∞ðIÞ.
Furthermore, H1ðIÞ is a subset of W1,1ðIÞ due to the
bounded interval I. Hence, H1ðIÞ is embedded in L∞ðIÞ.
About the constants within the above estimate, please refer
to the Theorem 1.9 in [37] for further details. And a theoret-
ical proof is listed in the appendix, which improves the proof
given in [38].

Theorem 6. Let u and uN be the solutions of (11) and (15),
respectively. Then, for all u ∈H1

0ðIÞ ∩HmðIÞ, there holds

u − uNk k∞ ≤ CN1−m uk km: ð34Þ

Proof. It is clear that u − uN ∈H1ðIÞ. Then,

u − uNk k2∞ ≤
4:6ð Þ

u − uNk k2 + 4 u − uNð Þ′

 

2
≤ C2

I + 4
À Á

u − uNð Þ′

 

2
≤
4:5ð Þ

cN2 1−mð Þ uk k2m,

ð35Þ
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where CI denotes the constant within the Poincaré inequal-
ity. One readily gets that the desired result listed in (34)
holds.

The above two a-priori error estimations, which are
given in H1- and L∞- norms, show that an asymptotic
super-exponential convergence order for the MPS approxi-
mations can be achieved for any sufficiently smooth
solution.

5. Numerical Results

In the following different kinds of numerical examples, we
show the approximation data in tables and figures, which
illustrate the efficiency of the MPS for (10). For simplicity,
we evenly select distributed nodes as the collocation points.

Example 7. Setting the boundary value problem (10) with

f xð Þ = 4x4 − 10x2 + 2
À Á

e1−x
2 , ð36Þ

we get the analytic solution

u xð Þ = 1 − e1−x
2
: ð37Þ

Obviously, this analytic solution is sufficient smooth
on I. The numerical data listed in Table 1 show error esti-

mates of numerical approximations and the first deriva-
tives of numerical solutions versus N , respectively. And
two a-priori error estimations with L∞- and L2-norms
verify our theoretical analyses. Hence, by the numerical
data in the first five columns, we obtain the high accuracy
property of the MPS approximations.

Table 1: Errors of u − uN and orders of convergence for Example 7.

N u − uNk k∞ u − uNð Þ′

 


∞

u − uNk k u − uNð Þ′

 

 Order

2 2.6781e-01 1.6331e-00 1.3512e-00 4.3813e-00 /

4 2.6248e-02 3.6964e-01 1.3282e-01 7.1212e-01 2.6620

8 9.9027e-05 3.9703e-03 4.8942e-04 5.9872e-03 6.9139

16 1.1428e-10 2.0526e-08 5.5757e-10 2.9599e-08 17.6304

32 9.9920e-16 7.9936e-15 3.5289e-15 1.4668e-14 20.9041

64 6.6613e-16 5.5511e-15 2.2505e-15 6.9826e-15 1.0401
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Figure 1: Pointwise curve of u and uN at two different N .

N

100

10–4

10–8

10–12

10–16

ǁ (
u 

− 
u N

)′ 
ǁ

4 8 12 16 20 24 28 32

Figure 2: Errors of kðu − uNÞ′k versus N in the semi-logarithmic
scale.
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The last column depicts the convergent orders, which
will validate the high efficiency of the MPS. Since the errors
arrive at the machine accuracy, the convergence order,
1.0401 in the last column, has no essential significance. Here,
the convergence order is calculated by

logNi+1/Ni

errori
errori+1

, ð38Þ

where the subscripts denote corresponding i-th and ði + 1Þ-
th information. It is obvious that for any sufficiently smooth
analytic solution, the convergence orders of the MPS can be
sharply enhanced by the increased N .

For the given right-hand side function f in (36), the ana-
lytic solutions and the MPS approximations of N = 2 and
N = 4 are pointwise delineated in Figure 1.

And numerical results of kðu − uNÞ′k are shown by the
semi-logarithmic scale in Figure 2. By the Poincaré inequal-
ity, we know that the approximation errors in H1-norm are
naturally consistent with our proposed a-priori error esti-
mates. These figures show the efficiency of the MPS approx-
imations for this example.

Following the above numerical data shown in Table 1
and Figures 1 and 2, it is clear that the numerical errors
decrease exponentially with increased N . And hence, the
convergence and high accuracy of our proposed numerical
scheme are demonstrated.

Example 8. We consider the boundary value problem (10)
with

f xð Þ = −2πx cos πxð Þ − π2 1 − x2
À Á

sin πxð Þ, ð39Þ

and the corresponding analytic solution reads

u xð Þ = sin πxð Þ: ð40Þ

By our proposed MPS schemes, corresponding numeri-
cal errors are listed in Table 2. Also convergence orders are
given, which depict the finite algebraic convergence proper-
ties. Since numerical data of N = 32 and N = 64 approach the
machine accuracy, which lead to that the last convergence
order 0:9125 is unworthy of consideration. And the curves
of numerical solution and analytic solution are shown in
Figure 3.

Considering the above results and figures, we readily
know the sharply approximation properties of the MPS.

Example 9. In this example, we consider the boundary value
problem (10) with

f xð Þ = 5 6x2 − 1
À Á

1 − x2
À Á3/2, ð41Þ

Solutions
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(a) N = 2
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–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

1.5

0.5

–0.5

–1

–1.5

0

1

Approximation solution
Analytical solution

(b) N = 4

Figure 3: u and uN at two different N .

Table 2: Errors of u − uN and orders of convergence for Example 8.

N u − uNk k∞ u − uNð Þ′

 


∞

u − uNk k u − uNð Þ′

 

 Order

2 2.2879e-01 2.5276e+00 8.6146e-01 5.7626e+00 /

4 1.7595e-02 3.8416e-01 5.6339e-02 6.8030e-01 3.0934

8 1.5157e-05 8.6969e-04 3.3639e-05 1.3211e-03 9.0126

16 4.1144e-13 2.4593e-11 1.7072e-12 3.8911e-11 25.0161

32 4.4408e-16 1.7763e-15 1.3686e-15 4.3076e-15 13.0729

64 1.1102e-15 4.4408e-15 4.8534e-15 6.9881e-15 0. 9125
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and the corresponding analytic solution

u xð Þ = 1 − x2
À Á5/2

: ð42Þ

Since the third derivative of this solution is singular at
the boundary points x = ±1, the convergence order is not
exponential. By the MPS schemes, numerical errors of our
proposed approximations are listed in Table 3. And the
convergence orders are shown in the last column, which
depict the finite algebraic convergence properties.

Furthermore, considering accumulations of round-off
errors and convergence orders, we show that the MPS
approximations perform well for this kind of second-order
differential equations.

Here, we present Figure 4 to show the errors of numeri-
cal solutions against various N by semi-logarithmic scale.
The error curve of kðu − uNÞ′k is around the reference line,
whose slope reads k = −1:5. This indicates that our error
estimates uniformly predict the numerical errors of the
MPS, which is consistent with the regularity of the given
solution.

In the light of kinds of classical solutions with different
smoothness, we demonstrate that our a-priori error estimates
uniformly predict the errors of the MPS approximations.
Furthermore, considering accumulations of round-off errors,
the current section verifies our theoretical results for the
model problems with the proposed MPS approximations.

6. Conclusions

The highlight of this work is that we skillfully employed
Legendre polynomials to solve second-order differential
equations by the MPS. To investigate the efficiency and
accuracy of proposed numerical schemes, we study the
errors of corresponding numerical approximations. By
orthogonal projector and Aubin-Nitsche duality argument,
we obtain the a-priori error estimate in H1-norm with
rigorous analyses. Meanwhile, with the help of relation-
ships between L∞- and H1-norms on any bounded inter-
val, we readily get corresponding a-priori error estimate
in L∞-norm. In the numerical examples, three analytic
solutions with different regularity are selected: One is with
finite smoothness and others are with infinite regularity.
Furthermore, convergence orders and numerical errors
are listed to confirm our theoretical results, which also val-
idate the efficiency and high accuracy of the MPS.

The success of dealing with this typical model problem
by the MPS will pave the way for solving other more chal-
lenging models in science and engineering applications. In
our ongoing researches, corresponding further discussions
have been listed for the MPS in high dimensional domains,
such as how to design the basis functions and corresponding
particular solutions based on orthogonal polynomials and
how to select collocation points for singular domains.
Fortunately, the tensor product of orthogonal polyno-
mials will help us to reformulate the particular solutions
and corresponding discretizations. We believe that this
method will be applicable for a large amount of partial
differential equations and is an efficient numerical scheme
in applications.

Appendix

A. The Proof of Lemma 4.3

This appendix follows the proof of both Theorem 7.10 in
[39] and (3.9) in [38] and gives a rigorous proof for Lemma
5 on any bounded interval ða, bÞ.

Firstly, we proceed from ∀v ∈ C∞½a, b�. By the first mean
value theorem of integrals, we know that there exists a σ ∈
ða, bÞ satisfying

vk k2 =
ðb
a
v xð Þj j2dx = v σð Þj j2 b − að Þ: ðA:1Þ

Table 3: Errors of u − uN and orders of convergence for Example 9.

N u − uNk k∞ u − uNð Þ′

 


∞

u − uNk k u − uNð Þ′

 

 Order

2 4.0971e-01 2.2952e-00 2.0526e-00 6.5743e-00 /

4 4.7082e-02 7.9970e-01 2.4208e-01 1.4037e-00 2.2734

8 9.9885e-04 5.8015e-02 4.9670e-03 8.3329e-02 4.0929

16 1.8621e-05 7.0230e-03 7.9775e-05 9.9683e-03 3.0659

32 2.2089e-06 7.4329e-04 1.3539e-05 1.0517e-03 3.2444

64 3.7025e-07 3.2285e-05 2.3867e-06 4.5686e-05 4.5230

k = –1.5

100

10–6

10–4

10–2

ǁ (
u 

− 
u N

)′ 
ǁ

8 12 16 20 24 28 32 36 40 44 48
N

Figure 4: Errors of kðu − uNÞ′k versus N in semi-logarithmic scale
and reference convergence line.
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Meanwhile, by the Newton-Leibniz integration formula,
we have

v xð Þ = v σð Þ +
ðx
σ

v′ tð Þdt: ðA:2Þ

One readily gets

v xð Þj j2 = v σð Þ +
ðx
σ

v′ tð Þdt
����

����
2
≤ 2 v σð Þj j2 +

ðx
σ

v′ tð Þdt
����

����
2

" #

≤ 2 v σð Þj j2 +
ðx
σ
v′ tð Þ
�� ��2dt� �1/2 ðx

σ

dt
� �1/2����

����
2" #

= 2 v σð Þj j2 + x − σj j
ðx
σ
v′ tð Þ
�� ��2dt� �

≤
A:1ð Þ 2

b − a
vk k2 + 2 b − aj j v′



 

2:
ðA:3Þ

Hence, in view of C∞½a, b� is dense in H1ða, bÞ, then for
any v ∈H1ða, bÞ, there exists fvkðxÞg ∈ C∞½a, b� satisfying

v − vkk k1 ⟶ 0, k⟶∞: ðA:4Þ

Now it is obvious that

vk − vl ∈ C
∞ a, b½ �,∀k, l: ðA:5Þ

By (A.3), one arrives at

vk xð Þ − vl xð Þj j2 ≤ 2
b − a

vk − vlk k2 + 2 b − aj j · vk − vlð Þ′

 

2:
ðA:6Þ

Then for ∀x ∈ ½a, b� and k, l⟶∞, there holds

max
x∈ a,b½ �

vk xð Þ − vl xð Þj j2

≤
A:4ð Þ 2

b − a
vk − vlk k2 + 2 b − aj j · vk − vlð Þ′

 

2 ⟶A:3ð Þ 0,

ðA:7Þ

which means that fvkðxÞg is a Cauchy sequence in C½a, b�.
Meanwhile, in the light of the completeness of C½a, b�, we

know that there exists ~v ∈ C½a, b� such that

vk ⟶
C a,b½ �

~v, k⟶∞, ðA:8Þ

i.e.,

max
x∈ a,b½ �

vk xð Þ − ~v xð Þj j⟶ 0, k⟶∞: ðA:9Þ

Secondly, we identify the relationship between v and ~v.
By Minkowski’s inequality and Lebesgue integration, we
have

ð
a,bð Þ

v − ~vj j2
 !1/2

≤
ð

a,bð Þ
v − vkj j2

 !1/2

+
ð

a,bð Þ
vk − ~vj j2

 !1/2

,
ðA:10Þ

then for k⟶∞, there holds

ð
a,bð Þ

v − ~vj j2
 !1/2

≤ lim
k⟶∞

max
x∈ a,b½ �

~v xð Þ − vk xð Þj j b − að Þ1/2

+ lim
k⟶∞

vk − ~vk k1
= 0,

ðA:11Þ

i.e.,

ð
a,bð Þ

v − ~vj j2 = 0: ðA:12Þ

Therefore,

v xð Þ = ~v xð Þ, a:e:x ∈ a, b½ �: ðA:13Þ

Finally, by (A.3), we know that for all vk, there holds

vk xð Þj j2 ≤ 2
b − a

vkk k2 + 2 b − aj j · v′k


 

2: ðA:14Þ

Then,

~v xð Þj j2 =A:5ð Þ lim
k⟶∞

vk xð Þj j2

≤
2

b − a
lim

k⟶∞
vkk k2 + 2 b − aj j · lim

k⟶∞
v′k


 

2

=A:3ð Þ 2
b − a

vk k2 + 2 b − aj j · v′


 

2:

ðA:15Þ

With the help of (A.13), we directly get

v xð Þj j2 ≤ 2
b − a

vk k2 + 2 b − aj j · v′


 

2, a:e:x ∈ a, bð Þ,

ðA:16Þ

which means

vk k2∞ ≤
2

b − a
vk k2 + 2 b − aj j · v′



 

2: ðA:17Þ

This is the desired result in Lemma 5.
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