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The existence of factor and fractional factor in network graph in various settings has raised much attention from both
mathematicians and computer scientists. It implies the availability of data transmission and network segmentation in certain
special settings. In our paper, we consider P≥2-factor and P≥3-factor which are two special cases of general H -factor.
Specifically, we study the existence of these two kinds of path factor when some subgraphs are forbidden, and several
conclusions on the factor-deleted graph, factor critical-covered graph, and factor uniform graph are given with regards to
network parameters. Furthermore, we show that these bounds are best in some sense.

1. Introduction

All graphs considered in this work are finite simple graphs. Let
G = ðVðGÞ, EðGÞÞ be a graph, NGðvÞ be the neighborhood of
vertex v, and dGðvÞ = jNGðvÞj. LetωðGÞ be the number of con-
nected components in G and iðGÞ = jfv ∈ VðGÞ: dGðvÞ = 0gj.
For the commonly used notations and terminologies, please
refer to book [1] by Bondy and Mutry.

Let n ≥ 2 and P≥n be a path with at least n vertices. A P≥n
-factor is a spanning subgraph of G such that each component
is isomorphic to P≥n. A graph G is a ðP≥n,mÞ-factor-deleted
graph if removing any m edges from G, the resting subgraph
still admits P≥n-factor. For P≥2-factor, Akiyama et al. [2] dem-
onstrated the following characteristic for its existence.

Lemma 1. A graph G permits a P≥2 -factor if and only if 2j
Xj ≥ iðG − XÞ established for arbitrary vertex subset X of G.

More recent results on graph factors in various settings
can be referred to Gao et al. [3, 4], Wang and Zhang and
Zhou et al. [5–10], and Zhu et al. [11, 12].

A graph R is factor-critical if deleting any vertex v, the
resulting subgraph has a perfect matching. A graph G is
called a sun if it is isomorphic to K1, K2, or the corona of
a factor-critical graph, and the last class of sun is a big sun.
Let sunðGÞ be the number of sun components of G. Kaneko
[13] and Kano et al. [14] revealed that sun components can
describe the existence of P≥3-factor, i.e, a graph G admits a
P≥3-factor if and only if 2jSj ≥ sunðG − SÞ for any vertex sub-
set S of G.

Zhang and Zhou [15] introduced the concept of P≥n
-factor-covered graph, i.e., a graph G is P≥n-factor covered
if for any edge e, there is a P≥n-factor containing e. More-
over, they obtained the following two conclusions for P≥n
-factor-covered graph when n = 2 or 3.

Lemma 2 (Zhang and Zhou [15]). A connected graph G is a
P≥2-factor-covered graph if and only if

i G − Sð Þ ≤ 2 Sj j − ε1 Sð Þ, ð1Þ
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for any vertex subset S of G, where

ε1 Sð Þ =

2, if S is not an independent set,
1, S is independent, and there exists a
  nontrivial component of G − S,
0, otherwise:

8>>>>><
>>>>>:

ð2Þ

Lemma 3 (Zhang and Zhou [15]). Assume G as a connected
graph. Then, G is a P≥3-factor-covered graph if and only if

sun G − Sð Þ ≤ 2 Sj j − ε2 Sð Þ, ð3Þ

for any S ⊆ VðGÞ, where

ε2 Sð Þ =

2, if S is not an independent set,
1, S is independent and there exists a

  nonsun component of G − S,
0, otherwise:

8>>>>><
>>>>>:

ð4Þ

The concept of factor-covered graph can be further
extended to factor-critical-covered graph. A graph G is
ðP≥n, kÞ-factor-critical covered if deleted any k vertices from
G, and the resting subgraph is still a P≥n-factor-covered
graph.

In computer data communication networks, there are
three main indices to test the robustness and vulnerability
of networks, and also, there are some variables of these
parameters.

(i) Chvátal [16] firstly introduced toughness where tðGÞ
= +∞ if G is complete; otherwise

t Gð Þ =min Sj j
ω G − Sð Þ ω G − Sð Þj ≥ 2

� �
: ð5Þ

Enomoto et al. [17] introduced a variant of toughness by
revising the denominator to ωðG − SÞ − 1 and denoted it by
τðGÞ. That is to say, τðGÞ = +∞ if G is a complete graph; and

τ Gð Þ =min Sj j
ω G − Sð Þ − 1 ω G − Sð Þj ≥ 2

� �
, ð6Þ

for noncomplete graph.

(ii) Isolated toughness was introduced by Yang et al.
[18] as follows: if G is a complete graph, then IðGÞ
= +∞; elsewise

I Gð Þ =min Sj j
i G − Sð Þ S ⊂ V Gð Þj , i G − Sð Þ ≥ 2

� �
: ð7Þ

Similar to τ, Zhang and Liu [19] introduced a variant of
isolated toughness by revising the denominator to iðG − SÞ

− 1, denoted by I ′ðGÞ: I ′ðGÞ = +∞ for a complete graph G,
and

I ′ Gð Þ =min Sj j
i G − Sð Þ − 1 S ⊂V Gð Þj , i G − Sð Þ ≥ 2

� �
, ð8Þ

for others.

(iii) Binding number is defined by Woodall [20] which
is formulated by

bind Gð Þ =min NG Xð Þj j
Xj j ∅≠ X ⊆V Gð Þj ,NG Xð Þ ≠V Gð Þ

� �
:

ð9Þ

The main contributions of this article are three folded:
(1) the relationships between ðP≥2,mÞ-factor-deleted graph
and the above three parameters are studied; (2) toughness
conditions for ðP≥2, kÞ-factor-critical covered and ðP≥3, kÞ
-factor-critical covered graph are given; (3) toughness
bounds for a graph to be P≥2-factor uniform graph and P≥3
-factor uniform graph are determined. The main conclu-
sions and detailed proofs are manifested in the next section,
and then, in the third section, we present the sharpness of
these bounds.

2. Main Results and Proofs

The purpose of this section is to present the main theorems
and detailed proofs.

2.1. Bounds for ðP≥2,mÞ-Factor-Deleted Graphs

Theorem 4. Let m be a positive integer and G be an ðm + 1Þ
-edge-connected graph. If tðGÞ >m/m + 1 (resp. τðGÞ > 1)
then G is a ðP≥2,mÞ-factor-deleted graph.

Proof. For a complete graph G, the result follows from edge
connectivity. Assume that G is not complete, and clearly we
have jVðGÞj ≥m + 2.

For arbitrary edge subset E′ = fe1,⋯,emg with m edges, let
G′ = G − E′, and we have VðG′Þ =VðGÞ and EðG′Þ = EðGÞ
− E′. We verify the theorem by means of proving that G′
admits P≥2-factor. In contrast, we assume G′ has no P≥2
-factor, and hence, in view of Lemma 1, there is a subset S
of VðG′Þ satisfying

i G′ − S
� �

≥ 2 Sj j + 1: ð10Þ

If jSj = 0, then iðG′Þ ≥ 1 by (1) which contradicts to G is
ðm + 1Þ-edge-connected and jVðGÞj ≥m + 2. Therefore, we
infer jSj ≥ 1 and iðG′ − SÞ ≥ 2jSj + 1 ≥ 3. Deleting one edge
from G − S, the number of its components adds most 1, thus
ωðG′ − SÞ = ωðG − E − SÞ ≤ ωðG − SÞ +m.

We divide E′ = feigmi=1 into three classes E1′, E2′, and E3′.
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If ei ∈ E′ is a unique edge in K2 which is a component in
G − S, then ei ∈ E1′.

If ei ∈ E′ and ei ∈ EðG − SÞ, one of end vertex of ei (say vi)
meets dG−SðviÞ ≥ 2, then ei ∈ E2′.

Otherwise, ei ∈ E′ and at least one of its end vertices in S,
then ei ∈ E3′.

We have jE1′j + jE2′j ≤m and jE1′j, jE2′j ∈ f0,⋯,mg. Select
one vertex in each edge in E2′ with larger degree in G − S
and denote X by the set of these vertices. Thus, jXj ≤ jE2′j.

According to

m
m + 1 < t Gð Þ ≤ Sj j

ω G − Sð Þ ≤
Sj j

ω G′ − S
� �

−m

≤
Sj j

i G′ − S
� �

−m
≤

Sj j
2 Sj j + 1 −m

,
ð11Þ

or accordingly

1 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤

Sj j
ω G′ − S
� �

−m − 1

≤
Sj j

i G′ − S
� �

−m − 1
≤

Sj j
2 Sj j −m

,
ð12Þ

we get jSj ∈ f1,⋯,m − 1g.
For tðGÞ, we have
m

m + 1 < t Gð Þ ≤ S ∪ Xj j
ω G − S ∪ Xð Þ = Sj j + Xj j

ω G′ − S ∪ X
� �

− E1′
�� ��

≤
Sj j + Xj j

ω G′ − S
� �

− E1′
�� �� ≤

Sj j + E2′
�� ��

i G′ − S
� �

− E1′
�� ��

≤
Sj j +m − E1′

�� ��
i G′ − S
� �

− E1′
�� �� ≤

Sj j +m − E1′
�� ��

2 Sj j + 1 − E1′
�� �� :

ð13Þ

Let f ðjE1′jÞ = ðjSj +m − jE1′jÞ/ð2jSj + 1 − jE1′jÞ be a func-
tion with regard to jE1′j. We have

Hence, f ðjE1′jÞ is a monotonically increasing function
and max f f ðjE1′jÞg = f ðmÞ. We get

m
m + 1 < t Gð Þ ≤ Sj j

2 Sj j + 1 −m
= 1
2 + m/2 − 1/2

2 Sj j + 1 −m

≤
1
2 + m/2 − 1/2

2 + 1 −m
= −m2 + 4m − 2

2 ,
ð15Þ

which implies m = 2.
If m = 2, then jSj = 1 and iðG′ − SÞ ≥ 2jSj + 1 = 3. If ωðG

− SÞ ≥ 2, then 2/3 =m/ðm + 1Þ < tðGÞ ≤ jSj/ωðG − SÞ ≤ 1/2,
a contradiction. Hence, G − S is a connected graph, and
there are at least 3 isolated vertices after removing 2 edges
from G − S. That is to say, G = K1∨P3 which contradicts to
G is a 3-edge-connected graph.

For τðGÞ, we have

1 < τ Gð Þ ≤ S ∪ Xj j
ω G − S ∪ Xð Þ − 1 = Sj j + Xj j

ω G′ − S ∪ X
� �

− E1′
�� �� − 1

≤
Sj j + Xj j

ω G′ − S
� �

− E1′
�� �� − 1

≤
Sj j + E2′

�� ��
i G′ − S
� �

− E1′
�� �� − 1

≤
Sj j +m − E1′

�� ��
i G′ − S
� �

− E1′
�� �� − 1

≤
Sj j +m − E1′

�� ��
2 Sj j + 1 − E1′

�� �� − 1

= Sj j +m − E1′
�� ��

2 Sj j − E1′
�� �� :

ð16Þ

Let gðjE1′jÞ = ðjSj +m − jE1′jÞ/ð2jSj − jE1′jÞ be a function
with regard to jE1′j. We obtain

f ′ E1′
�� ��� �

=
2 Sj j + 1 − E1′

�� ��� �
Sj j +m − E1′

�� ��� �
′ − 2 Sj j + 1 − E1′

�� ��� �
′ Sj j +m − E1′

�� ��� �

2 Sj j + 1 − E1′
�� ��� �2 = m − 1 − Sj j

2 Sj j + 1 − E1′
�� ��� �2 ≥ 0: ð14Þ

g′ E1′
�� ��� �

=
2 Sj j − E1′

�� ��� �
Sj j +m − E1′

�� ��� �
′ − 2 Sj j − E1′

�� ��� �
′ Sj j +m − E1′

�� ��� �

2 Sj j − E1′
�� ��� �2 = m − Sj j

2 Sj j − E1′
�� ��� �2 > 0: ð17Þ
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Hence, gðjE1′jÞ is a monotonically increasing function
and max fgðjE1′jÞg = gðmÞ. We get

1 < τ Gð Þ ≤ Sj j
2 Sj j −m

= 1
2 + m

2 2 Sj j −mð Þ
≤
1
2 + m

2 2 −mð Þ = 1
2 −m

,
ð18Þ

which implies m = 2.
If m = 2, then jSj = 1 and iðG′ − SÞ ≥ 2jSj + 1 = 3. If ωðG

− SÞ ≥ 2, then 1 < τðGÞ ≤ jSj/ωðG − SÞ − 1 ≤ 1, a contradic-
tion. Hence, G − S is a connected graph, and there are at least
three isolated vertices after removing two edges from G − S.
That is to say, G = K1∨P3 which contradicts to G that is a
3-edge-connected graph.

Hence, the proof of result is completed.

Theorem 5. Let m be a positive integer and G be an ðm + 1Þ
-edge-connected graph. If IðGÞ > 2m/ðm + 1Þ (resp. I ′ðGÞ > 2
), then, G is a ðP≥2,mÞ-factor-deleted graph.

Proof. For a complete graph G, the result follows from edge
connectivity. Assume that G is not complete, and clearly, we
have jVðGÞj ≥m + 2.

For arbitrary edge subset E′ = fe1,⋯,emg with m edges,
let G′ = G − E′, and we have VðG′Þ =VðGÞ and EðG′Þ = Eð

GÞ − E′. We check the correctness of Theorem 5 via proving
G′ permits P≥2-factor. If not, we assume G′ has no P≥2
-factor, and hence ,using Lemma 1, there is a subset S of V
ðG′Þ satisfying (1).

If jSj = 0, then iðG′Þ ≥ 1 by (1) which contradicts to G
being ðm + 1Þ-edge-connected and jVðGÞj ≥m + 2. There-
fore, we infer jSj ≥ 1 and iðG′ − SÞ ≥ 2jSj + 1 ≥ 3. Deleting
one edge from G − S, the number of its isolated vertices adds
most 2; thus, iðG′ − SÞ = iðG − E − SÞ ≤ iðG − SÞ + 2m.

We divide E′ into three classes E1′, E2′, and E3′ as described
in Theorem 4, and hence, jE1′j + jE2′j ≤m and jE1′j, jE2′j ∈ f0,
⋯,mg. Also, we use the same way to select vertex set X, and
thus, jXj ≤ jE2′j.

For IðGÞ, we have

2m
m + 1 < I Gð Þ ≤ S ∪ Xj j

i G − S ∪ Xð Þ = Sj j + Xj j
i G′ − S ∪ X
� �

− 2 E1′
�� ��

≤
Sj j + Xj j

i G′ − S
� �

− 2 E1′
�� ��

ð19Þ

Reset f ðjE1′jÞ = ðjSj +m − jE1′jÞ/ð2jSj + 1 − 2jE1′jÞ be a
function with regard to jE1′j. We acquire

Hence, f ðjE1′jÞ is a monotonically increasing function
and max f f ðjE1′jÞg = f ðmÞ. Thus, we get

2m
m + 1 < I Gð Þ ≤ Sj j

2 Sj j + 1 − 2m = 1
2 + m − 1/2

2 Sj j + 1 −m

≤
1
2 + m − 1/2

2 + 1 − 2m = 1
3 − 2m ,

ð21Þ

a contradiction.

For I ′ðGÞ, we have

2 < I ′ Gð Þ ≤ S ∪ Xj j
i G − S ∪ Xð Þ − 1 = Sj j + Xj j

i G′ − S ∪ X
� �

− 2 E1′
�� �� − 1

≤
Sj j + Xj j

i G′ − S
� �

− 2 E1′
�� �� − 1

≤
Sj j +m − E1′

�� ��
2 Sj j + 1 − 2 E1′

�� �� − 1

= Sj j +m − E1′
�� ��

2 Sj j − 2 E1′
�� �� :

ð22Þ

Reset gðjE1′jÞ = ðjSj +m − jE1′jÞ/ð2jSj − 2jE1′jÞ be a func-
tion with regard to jE1′j. We acquire

f ′ E1′
�� ��� �

=
2 Sj j + 1 − 2 E1′

�� ��� �
Sj j +m − E1′

�� ��� �
′ − 2 Sj j + 1 − 2 E1′

�� ��� �
′ Sj j +m − E1′

�� ��� �

2 Sj j + 1 − 2 E1′
�� ��� �2 = 2m − 1

2 Sj j + 1 − E1′
�� ��� �2 > 0: ð20Þ

g′ E1′
�� ��� �

=
2 Sj j − 2 E1′

�� ��� �
Sj j +m − E1′

�� ��� �
′ − 2 Sj j − 2 E1′

�� ��� �
′ Sj j +m − E1′

�� ��� �

2 Sj j − 2 E1′
�� ��� �2 = 2m

2 Sj j − E1′
�� ��� �2 > 0: ð23Þ
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Hence, gðjE1′jÞ is a monotonically increasing function
and max fgðjE1′jÞg = f ðmÞ. Thus, we get

2 < I ′ Gð Þ ≤ Sj j
2 Sj j − 2m = 1

2 + m
2 Sj j − 2m ð24Þ

a contradiction if m ≥ 2.
Specially, if m = 1, then

2 < I ′ Gð Þ ≤ Sj j
i G − Sð Þ − 1 ≤

Sj j
i G′ − S
� �

− 2m − 1

≤
Sj j

2 Sj j + 1 − 3 = Sj j
2 Sj j − 2 ,

ð25Þ

which implies jSj = 1. In this case, iðG′ − SÞ ≥ 3 leads to iðG
− SÞ ≥ iðG′ − SÞ − 2m ≥ 1 which contradicts to G being a 2-
edge-connected graph.

Hence, the proof of this result is completed.

Theorem 6. Let m be a positive integer and G be an ðm + 1Þ
-edge-connected graph. If bindðGÞ > 3/2, then, G is a ðP≥2,mÞ
-factor-deleted graph.

Proof. For a complete graph G, the result follows from edge
connectivity. Assume that G is not complete, and clearly, j
VðGÞj ≥m + 2.

Let G′ =G − E′ for arbitrary edge subset E′ with m
edges, and we have VðG′Þ =VðGÞ and EðG′Þ = EðGÞ − E′.
Assume that G′ has no P≥2-factor, and hence, in view of
Lemma 1, there is a subset S of VðG′Þ satisfying (1).

If jSj = 0, then, iðG′Þ ≥ 1 by (1) which contradicts to G
being ðm + 1Þ-edge-connected and jVðGÞj ≥m + 2. There-
fore, we infer jSj ≥ 1 and iðG′ − SÞ ≥ 2jSj + 1 ≥ 3. Deleting
one edge from G − S, the number of its isolated components
adds most 2, thus, iðG′ − SÞ = iðG − E − SÞ ≤ iðG − SÞ + 2m.

Note that there are at least 3 isolated vertices after
removing m edges from G − S. Also, since δðGÞ ≥ λðGÞ ≥m
+ 1, we get jSj ≥m + 1 −m/iðG′ − SÞ ≥m + 1 −m/ð2jSj + 1Þ,
i.e., m ≤ ð2jSj + 1ÞðjSj − 1Þ/2jSj. Let X be the vertex set of
these isolated vertices in G′ − S. If NGðXÞ ≠VðGÞ, we
acquire

3
2 < bind Gð Þ ≤ NG Xð Þj j

Xj j ≤
Sj j + 2m

i G′ − S
� � ≤

Sj j + 2m
2 Sj j + 1

≤
Sj j + 2 2 Sj j + 1ð Þ Sj j − 1ð Þ/2 Sj jð Þ

2 Sj j + 1

= 3
2 −

1
Sj j −

1
2 2 Sj j + 1ð Þ < 3

2 ,

ð26Þ

a contradiction.
Now, we consider NGðXÞ ≠VðGÞ. If there is a vertex v in

G − S meeting dG−SðvÞ = 1, then, set uv ∈ EðG − SÞ and u ∈ X
since NGðXÞ ≠VðGÞ. We yield

3
2 < bind Gð Þ ≤ NG X − uf gð Þj j

X − uf gj j ≤
Sj j + 2m − 1

i G′ − S
� �

− 1

≤
Sj j + 2m − 1
2 Sj j + 1 − 1 = Sj j + 2m − 1

2 Sj j
≤

Sj j + 2 2 Sj j + 1ð Þ Sj j − 1ð Þ/2 Sj jð Þ − 1
2 Sj j

= 3 Sj j2 − 2 Sj j − 1
2 Sj j2 < 3

2 ,

ð27Þ

a contradiction.
If each vertex in X has a degree at least 2 in G − S, then,

we can get the contradiction similar to what discussed above.
Hence, the proof of result is completed.

2.2. Toughness Conditions for ðP≥2, kÞ-Factor-Critical
Covered and ðP≥3, kÞ-Factor-Critical Covered Graph

Theorem 7. Let k ∈N ∪ f0g and G be a graph with κðGÞ ≥
k + 1 . If ðGÞ > ðk + 2Þ/3ðresp:τðGÞ > ðk + 2Þ/2Þ, then, G is a
ðP≥2, kÞ-factor critical covered graph.

Proof. If G is complete, the result follows from δðGÞ ≥ κðGÞ
≥ k + 1. In what follows, we consider noncomplete graph.

For any U ⊆VðGÞ with jU j = k, set G′ =G −U . To demon-
strate G is ðP≥2, kÞ-factor critical covered, it is enough to
prove G′ is P≥2-factor covered. Otherwise, suppose G′ is
not P≥2-factor covered; then, according to Lemma 2, there
is a vertex subset S of G′ such that

i G′ − S
� �

≥ 2 Sj j − ε1 Sð Þ + 1: ð28Þ

The following discussion is divided into three cases in
terms of the value of jSj.

Case 1. jSj = 0.
In this case, ε1ðSÞ = 0 and iðG′Þ ≥ 1 by (2), which contra-

dicts to δðGÞ ≥ κðGÞ ≥ k + 1.

Case 2. jSj = 1.
We consider the following two subcases.

Case 3. G′ − S has no nontrivial component.

We infer ε1ðSÞ = 0 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 = 3. By
means of the definition of toughness, we deduce

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ ≤
k + 1
3 , ð29Þ
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or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 ≤
k + 1
2 , ð30Þ

a contradiction.

Case 4. G′ − S has a nontrivial component.

We yield ε1ðSÞ = 1, iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 = 2, and
ωðG′ − SÞ ≥ 3. Using the definition of toughness, we have

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ ≤
k + 1
3 , ð31Þ

or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 ≤
k + 1
2 , ð32Þ

a contradiction.

Case 5. jSj ≥ 2.
We acquire ε1ðSÞ ≤ 2 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 3.

In light of the definition of toughness, we obtain

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ = k + Sj j
ω G′ − S
� �

≤
k + Sj j

i G′ − S
� � ≤

k + Sj j
2 Sj j − ε1 Sð Þ + 1 ≤

k + Sj j
2 Sj j − 1

= 1
2 + k + 1/2

2 Sj j − 1 ≤
1
2 + k + 1/2

2 × 2 − 1 = k + 2
3 ,

ð33Þ

or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 = k + Sj j
ω G′ − S
� �

− 1

≤
k + Sj j

i G′ − S
� �

− 1
≤

k + Sj j
2 Sj j − ε1 Sð Þ + 1 − 1

≤
k + Sj j
2 Sj j − 2 = 1

2 + k + 1
2 Sj j − 2 ≤

1
2 + k + 1

2 × 2 − 2 = k + 2
2 ,

ð34Þ

a contradiction.
Therefore, the result follows.

Theorem 8. Let k ∈N ∪ f0g and G be a graph with κðGÞ ≥
k + 1 and jVðGÞj ≥ k + 3. If ðGÞ > ðk + 2Þ/3
ðresp:τðGÞ > ðk + 2Þ/2Þ, then, G is a ðP≥3, kÞ-factor critical
covered graph.

Proof. If G is a complete graph, then, the result follows from
jVðGÞj ≥ k + 3. We only consider noncomplete graph in
what follows.

For any U ⊆ VðGÞ with k vertices, let G′ =G −U , and we
aim to prove G′ is P≥3-factor covered. On the contrary, G is
not a P≥3-factor covered graph, and then, by Lemma 3, there
is a subset S of VðG′Þ meeting

sun G′ − S
� �

≥ 2 Sj j − ε2 Sð Þ + 1: ð35Þ

The following discussion is divided into three cases by
means of the value of jSj.

Case 1. jSj = 0.
In this case, we summarize ε2ðSÞ = 0 and sunðG′Þ ≥ 1 by

(3). Using κðGÞ ≥ k + 1 and jUj = k, we get sunðG′Þ = ωðG′
Þ = 1. Since jVðGÞj ≥ k + 3, we confirm that G′ is a big sun.
Let R be the factor-critical graph of G′ with jVðRÞj ≥ 3 and
v ∈ VðRÞ be a vertex in R. Using the definition of toughness,
we obtain

k + 2
3 < t Gð Þ ≤ U ∪ V Rð Þ − vf gð Þj j

ω G −U ∪ V Rð Þ − vf gð Þð Þ
= k + V Rð Þj j − 1

V Rð Þj j = 1 + k − 1
V Rð Þj j

≤ 1 + k − 1
3 = k + 2

3 ,

ð36Þ

or

k + 2
2 < τ Gð Þ ≤ U ∪ V Rð Þ − vf gð Þj j

ω G −U ∪ V Rð Þ − vf gð Þð Þ − 1

= k + V Rð Þj j − 1
V Rð Þj j − 1 = 1 + k

V Rð Þj j − 1

≤ 1 + k
3 − 1 = k + 2

2 ,

ð37Þ

a contradiction.

Case 2. jSj = 1.
If there is a nonsun component of G′ − S, we have ε2ðS

Þ = 1, sunðG′ − SÞ ≥ 2jSj − ε2ðSÞ + 1 = 2 by (3), and ωðG′ − S
Þ ≥ sunðG′ − SÞ + 1. Directly using the definition of tough-
ness, we yield

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ = Uj j + Sj j
ω G′ − S
� �

≤
k + 1

sun G′ − S
� �

+ 1
≤

k + 1
2 Sj j − ε2 Sð Þ + 1 + 1 = k + 1

3 ,

ð38Þ
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or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 = Uj j + Sj j
ω G′ − S
� �

− 1

≤
k + 1

sun G′ − S
� �

+ 1 − 1
≤

k + 1
2 Sj j − ε2 Sð Þ + 1 = k + 1

2 ,

ð39Þ

a contradiction.

If there is no nonsun component of G′ − S, we get ε2ðS
Þ = 0, sunðG′ − SÞ ≥ 2jSj − ε2ðSÞ + 1 = 3 by (3), and ωðG′ − S
Þ = sunðG′ − SÞ. In light of the definition of toughness, we
infer

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ = Uj j + Sj j
ω G′ − S
� �

= k + 1
sun G′ − S

� � ≤
k + 1

2 Sj j − ε2 Sð Þ + 1 = k + 1
3 ,

ð40Þ

or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 = Uj j + Sj j
ω G′ − S
� �

− 1

= k + 1
sun G′ − S

� �
− 1

≤
k + 1

2 Sj j − ε2 Sð Þ + 1 − 1 = k + 1
2 ,

ð41Þ

a contradiction.

Case 3. jSj ≥ 2.
In this case, we acquire ε2ðSÞ ≤ 2 and sunðG′ − SÞ ≥ 2jSj

− ε2ðSÞ + 1 ≥ 3 in terms of (3). We verify

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ = Uj j + Sj j
ω G′ − S
� �

≤
k + Sj j

sun G′ − S
� � ≤

k + Sj j
2 Sj j − ε2 Sð Þ + 1

≤
k + Sj j
2 Sj j − 1 = 1

2 + k + 1/2
2 Sj j − 1

≤
1
2 + k + 1/2

2 × 2 − 1 = k + 2
3 ,

ð42Þ

or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 = Uj j + Sj j
ω G′ − S
� �

− 1

≤
k + Sj j

sun G′ − S
� �

− 1
≤

k + Sj j
2 Sj j − ε2 Sð Þ + 1 − 1

≤
k + Sj j
2 Sj j − 2 = 1

2 + k + 1
2 Sj j − 2 ≤

1
2 + k + 1

2 × 2 − 2 = k + 2
2 ,

ð43Þ

a contradiction.
Hence, Theorem 8 is verified.

Theorem 9. Let k ∈N ∪ f0g and G be a graph with κðGÞ ≥
k + 1. If ðGÞ > ðk + 1Þ/2ðresp:I ′ðGÞ > k + 1Þ, then, G is a ð
P≥2, kÞ-factor critical covered graph.

Proof. If G is complete, we check the theorem using δðGÞ
≥ κðGÞ ≥ k + 1. Hence, we only consider noncomplete graph
in the following contents.

For any U ⊆VðGÞ with jU j = k, set G′ =G −U . To dem-
onstrate G that is ðP≥2, kÞ-factor critical covered, it is enough
to prove G′ is P≥2-factor covered. Otherwise, suppose G′ is
not P≥2-factor covered; then, using Lemma 2, there is a ver-
tex subset S of G′ satisfying (2).

The following discussion is divided into three cases in
terms of the value of jSj.

Case 1. jSj = 0.
In this case, we get contradiction as we discussed in The-

orem 7.

Case 2. jSj = 1.
We consider the following two subcases.

Case 3. G′ − S has no nontrivial component.
We infer ε1ðSÞ = 0 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 = 3. By

means of the definition of isolated toughness, we deduce

k + 1
2 < I Gð Þ ≤ U ∪ Sj j

i G −U ∪ Sð Þ ≤
k + 1
3 , ð44Þ

or

k + 1 < I ′ Gð Þ ≤ U ∪ Sj j
i G −U ∪ Sð Þ − 1 ≤

k + 1
2 , ð45Þ

a contradiction.

Case 4. G′ − S has nontrivial component.
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We yield ε1ðSÞ = 1 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 = 2.
Using the definition of isolated toughness, we have

k + 1
2 < I Gð Þ ≤ U ∪ Sj j

i G −U ∪ Sð Þ ≤
k + 1
2 , ð46Þ

or

k + 1 < I ′ Gð Þ ≤ U ∪ Sj j
i G −U ∪ Sð Þ − 1 ≤ k + 1, ð47Þ

a contradiction.

Case 5. jSj ≥ 2.
We acquire ε1ðSÞ ≤ 2 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 3.

We can get the contradiction using the similar derivation to
Theorem 7.

Therefore, we get the desired result.

Theorem 10. Let k ∈N and G be a graph with κðGÞ ≥ k + 1
and jVðGÞj ≥ k + 3. If IðGÞ > ðk + 3Þ/2 (resp. I ′ðGÞ > k + 3),
then, G is a ðP≥3, kÞ-factor critical covered graph.

Proof. If G is a complete graph, the result is hold from jVð
GÞj ≥ k + 3. We only discuss noncomplete graph in the fol-
lowing context.

For any U ⊆VðGÞ with k vertices, let G′ = G −U , and we
aim to prove G′ is P≥3-factor covered. On the contrary, G is
not a P≥3-factor covered graph; then, using Lemma 3, there
is a subset S of VðG′Þ satisfying (3).

The following discussion is divided into three cases
according to how many elements in S.

Case 1. jSj = 0.
In this case, similar to what’s discussed in Theorem 8, we

have ε2ðSÞ = 0 and sunðG′Þ = ωðG′Þ = 1, and G′ is a big sun.
Let R be the factor-critical of G′ with jVðRÞj ≥ 3. Using the
definition of IðGÞ, we obtain

k + 3
2 < I Gð Þ ≤ U ∪ V Rð Þj j

i G −U ∪V Rð Þð Þ = k + V Rð Þj j
V Rð Þj j

= 1 + k
V Rð Þj j ≤ 1 + k

3 = k + 3
3 ,

ð48Þ

or

k + 3 < I ′ Gð Þ ≤ U ∪V Rð Þj j
i G −U ∪V Rð Þð Þ − 1

= k + V Rð Þj j
V Rð Þj j − 1 = 1 + k + 1

V Rð Þj j − 1

≤ 1 + k + 1
3 − 1 = k + 3

2 ,

ð49Þ

a contradiction.

Case 2. jSj = 1.

We have ε2ðSÞ ≤ 1. Suppose that there are K1’s, bK2’s,
and c big sun components H1,⋯,Hc with jVðHiÞj ≥ 6 in G
′ − S. Hence, a + b + c = sunðG′ − SÞ ≥ 2jSj − ε2ðSÞ + 1 ≥ 2 by
(3). We select one vertex from each K2 and choose vertex
set of factor-critical subgraph of every big sun and then
denote X by the vertex set of all these selected vertices. We
infer jXj = b +∑c

i=1jVðHiÞj/2 and iðG −U ∪ S ∪ XÞ ≥ 2. In
terms of the definition of isolated toughness, we yield

k + 3
2 < I Gð Þ ≤ U ∪ S ∪ Xj j

i G −U ∪ S ∪ Xð Þ =
Uj j + Sj j + Xj j
i G′ − S ∪ X
� �

≤
k + 1 + b +∑c

i=1 V Hið Þj j/2ð Þ
a + b +∑c

i=1 V Hið Þj j/2ð Þ :

ð50Þ

It implies

2k + 2 > k + 3ð Þa + k + 1ð Þb + k + 1ð Þ〠
c

i=1

V Hið Þj j
2

≥ k + 3ð Þa + k + 1ð Þb + 3k + 3ð Þc
≥ k + 1ð Þ a + b + cð Þ ≥ 2k + 2,

ð51Þ

a contradiction.

For I ′ðGÞ, we have

k + 3 < I ′ Gð Þ ≤ U ∪ S ∪ Xj j
i G −U ∪ S ∪ Xð Þ − 1

= Uj j + Sj j + Xj j
i G′ − S ∪ X
� �

− 1
≤
k + 1 + b +∑c

i=1 V Hið Þj j/2ð Þ
a + b +∑c

i=1 V Hið Þj j/2ð Þ − 1 :

ð52Þ

It implies

2k + 4 > k + 3ð Þa + k + 2ð Þb + k + 2ð Þ〠
c

i=1

V Hið Þj j
2

≥ k + 3ð Þa + k + 2ð Þb + 3k + 6ð Þc
≥ k + 2ð Þ a + b + cð Þ ≥ 2k + 4,

ð53Þ

a contradiction.

Case 3. jSj ≥ 2.
In this case, we acquire ε2ðSÞ ≤ 2 and a + b + c = sunðG′

− SÞ ≥ 2jSj − ε2ðSÞ + 1 ≥ 3 in terms of (3). Let X be vertex
subset defined as Case 2. We verify

k + 3
2 < I Gð Þ ≤ U ∪ S ∪ Xj j

i G −U ∪ S ∪ Xð Þ =
Uj j + Sj j + Xj j
i G′ − S ∪ X
� �

≤
k + Sj j + b +∑c

i=1 V Hið Þj j/2ð Þ
a + b +∑c

i=1 V Hið Þj j/2ð Þ ,
ð54Þ
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that is,

2k + 2 Sj j > 3 + kð Þa + k + 1ð Þb + k + 1ð Þ〠
c

i=1

V Hið Þj j
2

≥ 3 + kð Þa + k + 1ð Þb + 3k + 3ð Þc
≥ k + 1ð Þ a + b + cð Þ ≥ k + 1ð Þ 2 Sj j − ε2 Sð Þ + 1ð Þ
≥ k + 1ð Þ 2 Sj j − 1ð Þ:

ð55Þ

It is implies that jSj < ð3k + 1Þ/2k ≤ 2 since k ≥ 1, a
contradiction.

For I ′ðGÞ, we confirm

k + 3 < I ′ Gð Þ ≤ U ∪ S ∪ Xj j
i G −U ∪ S ∪ Xð Þ − 1 = Uj j + Sj j + Xj j

i G′ − S ∪ X
� �

− 1

≤
k + Sj j + b +∑c

i=1 V Hið Þj j/2ð Þ
a + b +∑c

i=1 V Hið Þj j/2ð Þ − 1 ,

ð56Þ

which means,

2k + 3 + Sj j > 3 + kð Þa + k + 2ð Þb + k + 2ð Þ〠
c

i=1

V Hið Þj j
2

≥ 3 + kð Þa + k + 2ð Þb + 3k + 6ð Þc
≥ k + 2ð Þ a + b + cð Þ ≥ k + 2ð Þ 2 Sj j − ε2 Sð Þ + 1ð Þ
≥ k + 2ð Þ 2 Sj j − 1ð Þ:

ð57Þ

It implies that jSj < ð3k + 5Þ/ð2k + 3Þ ≤ 2, a contradiction.
Hence, Theorem 10 is verified.
Note that k ≠ 0 in Theorem 10. From Zhou et al. [21], we

know that G is a P≥3-factor covered graph if IðGÞ > 5/3, and
5/3 is tight.

2.3. Toughness Conditions for Factor Uniform Graph. A
graph G is a P≥n-factor uniform graph if for any two edges
e1 and e2, G admits a P≥n-factor including e1 and excluding
e2. Zhou and Sun [?] studied the binding number condition
for P≥2-factor uniform graph and P≥3-factor uniform graph.
In this section, we research on other two parameters: tough-
ness and isolated toughness. The idea to prove the following
results is based on the observation that G is P≥n-factor uni-
form if G − e is P≥n-covered for any e ∈ EðGÞ.

Theorem 11. Let G be a 2-edge-connected graph. If ðGÞ > 1
ðresp:τðGÞ > 2Þ, then, G is a P≥2-factor uniform graph.

Proof. For any e = uv, G′ =G − e is connected since G is 2-
edge-connected graph. To confirm Theorem 11, we need to
verify that G′ is P≥2-factor covered. If not, we assume that
G′ is not P≥2-factor covered. Using Lemma 2, there is a ver-
tex subset S of G′ satisfying

i G′ − S
� �

≥ 2 Sj j − ε1 Sð Þ + 1: ð58Þ

Furthermore, we have iðG − SÞ ≤ iðG′ − SÞ ≤ iðG − SÞ + 2.
We consider three cases according to the value of jSj.

Case 1. If jSj = 0.
We obtain iðG′Þ ≥ 1 which contradicts λðGÞ ≥ 2.

Case 2. If jSj = 1.
Then, ε1ðSÞ ≤ 1 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 2. If ið

G − SÞ ≥ 2, then

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

Sj j
i G − Sð Þ ≤

1
2 , ð59Þ

or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤

Sj j
i G − Sð Þ − 1 ≤ 1, ð60Þ

a contradiction.
If iðG − SÞ = 1, then, e = uv ∈ EðG − SÞ and ωðG − SÞ ≥ 2.

We infer

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

1
2 , ð61Þ

or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤ 1, ð62Þ

a contradiction.
If iðG − SÞ = 0, then, K2 is a component in G − S and e

= uv ∈ EðK2Þ. If there is another component in G − S except
K2, then, ωðG − SÞ ≥ 2, and we get the contradiction similar
to the derivation above. If ωðG − SÞ = 1, then, G ≅ K3 since
G is 2-edge-connected graph. Special for K3, we yield tðK3Þ
= τðK3Þ = +∞, G′ = P3 which is a P≥2-factor covered graph.
Hence, K3 satisfies the condition of theorem which is a P≥2
-factor uniform graph.

Case 3. If jSj ≥ 2.
Then, ε1ðSÞ ≤ 2, iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 3 and iðG

− SÞ ≥ iðG′ − SÞ − 2 ≥ 1.
Notice that if iðG − SÞ ≠ iðG′ − SÞ, then, e ∈ EðG − SÞ and

ωðG − SÞ ≥ iðG − SÞ + 1 ≥ iðG′ − SÞ − 2 + 1 = iðG′ − SÞ − 1. If
iðG − SÞ = iðG′ − SÞ, then, ωðG − SÞ ≥ iðG − SÞ = iðG′ − SÞ.
Combining the above two cases, we have ωðG − SÞ ≥ iðG′ −
SÞ − 1.
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If iðG − SÞ ≥ 2, then

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

Sj j
i G′ − S
� �

− 1

≤
Sj j

2 Sj j − ε1 Sð Þ + 1 − 1 ≤
Sj j

2 Sj j − 2 ,
ð63Þ

or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤

Sj j
i G′ − S
� �

− 1 − 1

≤
Sj j

2 Sj j − ε1 Sð Þ + 1 − 2 ≤
Sj j

2 Sj j − 3 :
ð64Þ

It implies jSj < 2, a contradiction.
If iðG − SÞ = 1, then, using the fact that iðG′ − SÞ ≥ 3, we

confirm that K1 and K2 are components in G − S, e = uv ∈
EðK2Þ, and iðG′ − SÞ = iðG − SÞ + 2 = 3. We acquire

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

Sj j
i G − Sð Þ + 1 = Sj j

i G′ − S
� �

− 1

≤
Sj j

2 Sj j − ε1 Sð Þ + 1 − 1 ≤
Sj j

2 Sj j − 2 ,
ð65Þ

or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤

Sj j
i G − Sð Þ + 1 − 1

= Sj j
i G′ − S
� �

− 2
≤

Sj j
2 Sj j − ε1 Sð Þ + 1 − 2 ≤

Sj j
2 Sj j − 3 :

ð66Þ

Again, in both situation we get jSj < 2, which leads to a
contradiction.

Theorem 12. Let G be a 2-edge-connected graph. If ðGÞ > 1
ðresp:τðGÞ > 2Þ, then, G is a P≥3-factor uniform graph.

Proof. For any e = uv ∈ EðGÞ, G′ =G − e is connected, and
we only need to prove that G′ is P≥3-factor covered. On
the contrary, G′ is not P≥3-factor covered, and we can find
a subset S of VðG′Þ such that

sun G′ − S
� �

≥ 2 Sj j − ε2 Sð Þ + 1: ð67Þ

The following discussion is divided into three cases
according to the value of jSj.

Case 1. jSj = 0.
Then, ε2ðSÞ = 0 and sunðG′Þ ≥ 1 by (67). It implies sun

ðG′Þ = 1, and G′ is a big sun with at least six vertices. More-

over, G is a graph constructed by adding an edge in a big
sun. Let R be the factor-critical of G′ and x ∈ VðRÞ. We have

1 < t Gð Þ ≤ V Rð Þ \ xf gj j
ω G −V Rð Þ \ xf gð Þ ≤

Rj j − 1
Rj j − 1 = 1, ð68Þ

or

2 < τ Gð Þ ≤ V Rð Þ \ xf gj j
ω G −V Rð Þ \ xf gð Þ − 1

≤
Rj j − 1
Rj j − 2 = 1 + 1

Rj j − 2 ≤ 1 + 1
3 − 2 = 2,

ð69Þ

a contradiction.

Case 2. jSj = 1.
Then, ε2ðSÞ ≤ 1 and sunðG′ − SÞ ≥ 2 by (67). If ωðG − SÞ

≥ 2, then

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

1
2 , ð70Þ

or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤ 1, ð71Þ

a contradiction. If ωðG − SÞ = 1, then, e ∈ EðG − SÞ, and it
produces two sun components after deleting e from G − S. If
G − S isomorphic to K2, then, G ≅ K3 which is a P≥3-factor
uniform graph. Otherwise, jVðG − SÞj ≥ 3, and there are at
least two vertices having degree 1 in G − S. Let xy ∈ EðG − SÞ
such that dG−SðxÞ = 1. We acquire 1 < tðGÞ ≤ jS ∪ fygj/ωðG
− S ∪ fygÞ ≤ 1 or 2 < τðGÞ ≤ jS ∪ fygj/ωðG − S ∪ fygÞ − 1 ≤
2, a contradiction.

Case 3. jSj ≥ 2.
In this case, ε2ðSÞ ≤ 2, sunðG′ − SÞ ≥ 3 by (67), sunðG −

SÞ ≥ sunðG′ − SÞ − 2 ≥ 1, and ωðG − SÞ ≥ 2. If sunðG − SÞ =
sunðG′ − SÞ or sunðG − SÞ = sunðG′ − SÞ − 1, we deduce

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

Sj j
sun G − Sð Þ

≤
Sj j

sun G′ − S
� �

− 1
≤

Sj j
2 Sj j − ε2 Sð Þ + 1 − 1

≤
Sj j

2 Sj j − 2 = 1
2 + 1

2 Sj j − 2 ≤
1
2 + 1

2 × 2 − 2 = 1,

ð72Þ
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or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤

Sj j
sun G − Sð Þ − 1

≤
Sj j

sun G′ − S
� �

− 1 − 1
≤

Sj j
2 Sj j − ε2 Sð Þ + 1 − 2

≤
Sj j

2 Sj j − 3 = 1
2 + 3

2 2 Sj j − 3ð Þ ≤
1
2 + 3

2 2 × 2 − 3ð Þ = 2,

ð73Þ

a contradiction.

If sunðG − SÞ = sunðG′ − SÞ − 2, then, edge e = uv
belongs to a nonsun component W, while removing e will
produce two sun components. It means at least one of u
and v is a cut vertex of component W, and without loss of
generality, we set u as a cut vertex in W. Hence, we get

1 < t Gð Þ ≤ S ∪ uf gj j
ω G − S ∪ uf gð Þ ≤

S ∪ uf gj j
ω G − Sð Þ + 1

≤
Sj j + 1

sun G − Sð Þ + 2 ≤
Sj j + 1

sun G′ − S
� �

− 2 + 2

≤
Sj j + 1

2 Sj j − ε2 Sð Þ + 1 ≤
Sj j + 1

2 Sj j − 1 = 1
2 + 3

2 2 Sj j − 1ð Þ
≤
1
2 + 3

2 2 × 2 − 1ð Þ = 1,

ð74Þ

or

2 < τ Gð Þ ≤ S ∪ uf gj j
ω G − S ∪ uf gð Þ − 1 ≤

S ∪ uf gj j
ω G − Sð Þ + 1 − 1

≤
Sj j + 1

sun G − Sð Þ + 1 ≤
Sj j + 1

sun G′ − S
� �

− 2 + 1

≤
Sj j + 1

2 Sj j − ε2 Sð Þ + 1 − 1 ≤
Sj j + 1

2 Sj j − 2

= 1
2 + 1

Sj j − 1 ≤
1
2 + 1

2 − 1 = 3
2 ,

ð75Þ

a contradiction.
Thus, the proof of Theorem 12 is completed.

Theorem 13. Let G be a 2-edge-connected graph. If ðGÞ > ðj
VðGÞj − 2Þ/2ðresp:I ′ðGÞ > jVðGÞj − 2Þ, then, G is a P≥2-fac-
tor uniform graph.

Proof. Clearly, we have jVðGÞj ≥ 3. For any e = uv, G′ =G − e
is connected since G is a 2-edge-connected graph. Similar as
Theorem 11, we only need to verify that G′ is P≥2-factor cov-
ered. In contrast, suppose that G′ is not P≥2-factor covered.
In terms of Lemma 2, there is a vertex subset S of G′ that
meets (58). Furthermore, iðG′ − SÞ ∈ fiðG − SÞ, iðG − SÞ + 1,
iðG − SÞ + 2g.

We consider three cases in view of the value of jSj.

Case 1. jSj = 0.
We get iðG′Þ ≥ 1 which contradicts to λðGÞ ≥ 2.

Case 2. jSj = 1.
Then, ε1ðSÞ ≤ 1 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 2. If ið

G − SÞ ≥ 2, then

V Gð Þj j − 2
2 < I Gð Þ ≤ Sj j

i G − Sð Þ ≤
1
2 , ð76Þ

or

V Gð Þj j − 2 < I ′ Gð Þ ≤ Sj j
i G − Sð Þ − 1 ≤ 1, ð77Þ

a contradiction.
If iðG − SÞ = 1, then, e = uv ∈ EðG − SÞ and assume dG−S

ðuÞ ≥ dG−SðvÞ = 1. We infer

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ uf gj j

i G − S ∪ uf gð Þ ≤ 1, ð78Þ

or

V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ uf gj j
i G − S ∪ uf gð Þ − 1 ≤ 2, ð79Þ

a contradiction.

If iðG − SÞ = 0, then, K2 is a component in G − S and e
= uv ∈ EðK2Þ. If there is another component in G − S except
K2, then denote this component by W. Select w ∈ VðWÞ
such that w has a minimum degree in G − S among all verti-
ces in W. Hence, iðG − S ∪ fug ∪NG−SðwÞÞ ≥ 2 and

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ uf g ∪NG−S wð Þj j

i G − S ∪ uf g ∪NG−S wð Þð Þ
≤
2 + V Wð Þj j − 1

2 = 1 + V Wð Þj j
2

≤
1 + V Gð Þj j − 3

2 = V Gð Þj j − 2
2 ,

ð80Þ

or

V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ uf g ∪NG−S wð Þj j
i G − S ∪ uf g ∪NG−S wð Þð Þ − 1

≤
2 + V Wð Þj j − 1

2 − 1 = 1 + V Wð Þj
≤ 1 + V Gð Þj j − 3 = V Gð Þj j − 2,

ð81Þ

a contradiction. If ωðG − SÞ = 1, then, G becomes K3. As dis-
cussed in Theorem 11, K3 meets the condition of Theorem
13 that is a P≥2-factor uniform graph.

Case 3. jSj ≥ 2.
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Then, ε1ðSÞ ≤ 2, iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 3 and iðG
− SÞ ≥ iðG′ − SÞ − 2 ≥ 1. We consider the following subcases
in light of the value of iðG − SÞ.

Case 4. iðG − SÞ ≥ 2.
If iðG − SÞ = iðG′ − SÞ, then jVðGÞj ≥ 4,

1 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ Sj j

i G − Sð Þ ≤
Sj j

i G′ − S
� �

≤
Sj j

2 Sj j − ε1 Sð Þ + 1 ≤
Sj j

2 Sj j − 1 = 1
2 + 1

2 2 Sj j − 1ð Þ
≤
1
2 + 1

2 2 × 2 − 1ð Þ = 2
3 ,

ð82Þ

or

2 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ Sj j
i G − Sð Þ − 1

≤
Sj j

i G′ − S
� �

− 1
≤

Sj j
2 Sj j − ε1 Sð Þ + 1 − 1

≤
Sj j

2 Sj j − 2 = 1
2 + 1

2 Sj j − 2 ≤
1
2 + 1

2 × 2 − 2 = 1,

ð83Þ

a contradiction.
If iðG − SÞ ≠ iðG′ − SÞ, then, jVðGÞj ≥ 6,

2 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ Sj j

i G − Sð Þ ≤
Sj j

i G′ − S
� �

− 2

≤
Sj j

2 Sj j − ε1 Sð Þ + 1 − 2 ≤
Sj j

2 Sj j − 3

= 1
2 + 3

2 2 Sj j − 3ð Þ ≤
1
2 + 3

2 2 × 2 − 3ð Þ = 2,

ð84Þ

a contradiction. For τðGÞ, if jSj ≥ 3, then

4 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ Sj j
i G − Sð Þ − 1

≤
Sj j

i G′ − S
� �

− 2 − 1
≤

Sj j
2 Sj j − ε1 Sð Þ + 1 − 3

≤
Sj j

2 Sj j − 4 = 1
2 + 2

2 Sj j − 4 ≤
1
2 + 2

2 × 3 − 4 = 3
2 ,

ð85Þ

a contradiction. If jSj = 2, we can easily check that 4 ≤
jVðGÞj − 2 < I ′ðGÞ ≤ jSj/iðG − SÞ − 1 ≤ 2, a contradiction.

Case 5. iðG − SÞ = 1.

Since iðG′ − SÞ ≥ 3, we confirm that K1 and K2 are com-
ponents in G − S, e = uv ∈ EðK2Þ and iðG′ − SÞ = iðG − SÞ +
2 = 3. Using jVðGÞj ≥ 5, we acquire

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ uf gj j

i G − S ∪ uf gð Þ
= Sj j + 1
i G − Sð Þ + 1 = Sj j + 1

i G′ − S
� �

− 2 + 1

≤
Sj j + 1

2 Sj j − ε1 Sð Þ + 1 − 1 ≤
Sj j + 1

2 Sj j − 2

= 1
2 + 2

2 Sj j − 2 ≤
1
2 + 2

2 × 2 − 2 = 3
2 ,

ð86Þ

or

3 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ uf gj j
i G − S ∪ uf gð Þ − 1

= Sj j + 1
i G − Sð Þ + 1 − 1 = Sj j + 1

i G′ − S
� �

− 2

≤
Sj j + 1

2 Sj j − ε1 Sð Þ + 1 − 2 ≤
Sj j + 1

2 Sj j − 3

= 1
2 + 5

2 2 Sj j − 3ð Þ ≤
1
2 + 5

2 2 × 2 − 3ð Þ = 3,

ð87Þ

a contradiction.
Thus, we confirm that Theorem 13 is established.

Theorem 14. Let G be a 2-edge-connected graph. If ðGÞ > ðj
VðGÞj − 2Þ/2ðresp:I ′ðGÞ > jVðGÞj − 2Þ, then, G is a P≥3-fac-
tor uniform graph.

Proof. For any e = uv ∈ EðGÞ, G′ = G − e is connected, and
we only need to prove that G′ is P≥3-factor covered. On
the contrary, G′ is not P≥3-factor covered. Then, there exists
a subset S of VðG′Þ satisfying (67).

Let a, b, c be the number of K1 components, K2 compo-
nents, and big sun components in G − S, respectively. Let
H1,⋯,Hc be big sun components in G − S with jVðHiÞj ≥
6. Choosing one vertex from each K2 component in G − S
and let X be the set of these vertices. Set Ri as the factor-
critical subgraph of Hi and Y = ∪c

i=1VðRiÞ. We have jXj = b,
jY j =∑c

i=1jHij/2 and a + b + c = sunðG − SÞ ≥ sunðG′ − SÞ −
2. The following discussion is divided into three cases
according to the value of jSj.

Case 1. jSj = 0.
Then, ε2ðSÞ = 0 and sunðG′Þ ≥ 1 by (67). It implies

sunðG′Þ = 1, G′ is a big sun with at least six vertices, and j
VðGÞj ≥ 6. Moreover, G is a graph constructed by adding
an edge in a big sun. Let R be the factor-critical of G′. We
obtain
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2 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ V Rð Þj j

i G −V Rð Þð Þ
≤

Rj j
Rj j − 1 = 1 + 1

Rj j − 1 ≤ 1 + 1
3 − 1 = 3

2 ,
ð88Þ

or

4 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ V Rð Þj j
i G − V Rð Þð Þ − 1

≤
Rj j

Rj j − 2 = 1 + 2
Rj j − 2 ≤ 1 + 2

3 − 2 = 3,
ð89Þ

a contradiction.

Case 2. jSj = 1.
In this case, ε2ðSÞ ≤ 1, sunðG′ − SÞ ≥ 2 by (67), and a = 0

since jSj = 1 and G is 2-edge-connected.
Case 3. sunðG − SÞ = sunðG′ − SÞ.

We get iðG − S ∪ X ∪ YÞ = b +∑c
i=1jHij/2 ≥ b + 3c ≥ b + c

= sunðG − SÞ = sunðG′ − SÞ ≥ 2 and jVðGÞj ≥ 4 (if jVðGÞj =
3, then G ≅ K3, G − S isomorphic to K2 which contradicts
to sunðG − SÞ = sunðG′ − SÞ ≥ 2).

If jVðGÞj ≥ 6, using the definition of isolated toughness,
we have

2 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ X ∪ Yj j

i G − S ∪ X ∪ Yð Þ
≤
1 + b +∑c

i=1 Hij j/2ð Þ
b +∑c

i=1 Hij j/2ð Þ ,
ð90Þ

which implies b +∑c
i=1jHij/2 < 1, a contradiction. For I ′ðGÞ,

we yield

4 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ X ∪ Yj j
i G − S ∪ X ∪ Yð Þ − 1

≤
1 + b +∑c

i=1 Hij j/2ð Þ
b +∑c

i=1 Hij j/2ð Þ − 1 ,
ð91Þ

which implies 3b + 3∑c
i=1jHij/2 < 5, contradicting to b + c ≥ 2

.
If jVðGÞj = 5, then, c = a = 0 and

3
2 = V Gð Þj j − 2

2 < I Gð Þ ≤ S ∪ Xj j
i G − S ∪ Xð Þ ≤

1 + b
b

, ð92Þ

or

3 = V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ Xj j
i G − S ∪ Xð Þ − 1 ≤

1 + b
b − 1 , ð93Þ

which implies b < 2 which contradicts to b = sunðG − SÞ =
sunðG′ − SÞ ≥ 2.

If jVðGÞj = 4, then, c = a = 0 and b = 1 contradicting to
b = sunðG − SÞ = sunðG′ − SÞ ≥ 2.

Case 4. sunðG − SÞ = sunðG′ − SÞ − 1.
In this case, sunðG − SÞ ≥ 1 since sunðG′ − SÞ ≥ 2.

Claim 1. If K2 is one of components in G − S, then, e∈EðK2Þ.

Proof. Suppose K2 is a component in G − S and e ∈ EðK2Þ is
exactly a deleted edge, set u ∈ VðK2Þ. If G − S is isomorphic
to K2, then, G is isomorphic to K3 which is clearly a P≥3
-factor uniform graph.

If there is a K1 component in G − S, then, jVðGÞj ≥ 4 and

1 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ uf gj j

i G − S ∪ uf gð Þ ≤
2
2 = 1, ð94Þ

or

2 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ uf gj j
i G − S ∪ uf gð Þ − 1 ≤

2
2 − 1 = 2,

ð95Þ

a contradiction.
If there is another K2 component or big sun component

in G − S (say W), then, there is a vertex x in W such that
dG−SðxÞ = 1 and assume xy ∈ EðG − SÞ. We have jVðGÞj ≥ 5
and

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ u, yf gj j

i G − S ∪ u, yf gð Þ ≤
3
2 , ð96Þ

or

3 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ u, yf gj j
i G − S ∪ u, yf gð Þ − 1 ≤

3
2 − 1 = 3,

ð97Þ

a contradiction.
If there exists a nonsun component in G − S (say M),

the,n we select x ∈ VðMÞ with its degree in G − S as small
as possible. We infer

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ uf g ∪ V Mð Þ − xf gð Þj j

i G − S ∪ uf g ∪ V Mð Þ − xf gð Þð Þ
≤

V Gð Þj j − 2
2 ,

ð98Þ

or

V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ uf g ∪ V Mð Þ − xf gð Þj j
i G − S ∪ uf g ∪ V Mð Þ − xf gð Þð Þ − 1

≤ V Gð Þj j − 2,
ð99Þ

a contradiction.
Hence, the claim is hold.
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From Claim 1, we see that there is a nonsun component
W in G − S with jVðWÞj ≥ 3 (and hence, jVðGÞj ≥ 5), delete
edge e = uv from W, and then, it produces a new sun com-
ponent in G − S. Thus, there is a vertex x in W with dG−Sðx
Þ = 1, and set xy ∈ EðG − SÞ. Note that sunðG − SÞ ≥ 1, if K1
is a component in G − S, then, we yield

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ yf gj j

i G − S ∪ yf gð Þ ≤
2
2 = 1, ð100Þ

or

3 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ yf gj j
i G − S ∪ yf gð Þ − 1 ≤

2
2 − 1 = 2,

ð101Þ

a contradiction. If K2 or a big sun is a component in G − S
(denote this sun component by M), then, there is a vertex
x′ in M with dG−Sðx′Þ = 1, and set x′y′ ∈ EðG − SÞ. We
acquire

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ ≤

S ∪ y, y′
n o���

���
i G − S ∪ y, y′

n o� � ≤
3
2 , ð102Þ

or

3 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤
S ∪ y, y′

n o���
���

i G − S ∪ y, y′
n o� �

− 1
≤

3
2 − 1 = 3,

ð103Þ

a contradiction.

Case 3. sunðG − SÞ = sunðG′ − SÞ − 2.
In this case, there is a nonsun component W in G − S,

and it produces two sun components after deleting e = uv
from W. Thus, there are at least two vertices x, x′ ∈ VðWÞ
such that dG−SðxÞ = dG−Sðx′Þ = 1. Set xy, x′y′ ∈ EðWÞ and
note that y and y′ are allowed to be the same vertex (if W
≅ P3). If W ≅ P3, then, y = y′, jVðGÞj ≥ 4, and

1 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ yf gj j

i G − S ∪ yf gð Þ ≤
2
2 = 1, ð104Þ

or

2 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ yf gj j
i G − S ∪ yf gð Þ − 1 ≤

2
2 − 1 = 2,

ð105Þ

a contradiction. Otherwise, jVðGÞj ≥ 5, and

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ ≤

S ∪ y, y′
n o���

���
i G − S ∪ y, y′

n o� � ≤
3
2 , ð106Þ

or

3 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤
S ∪ y, y′

n o���
���

i G − S ∪ y, y′
n o� �

− 1
≤

3
2 − 1 = 3,

ð107Þ

a contradiction.

Case 4. jSj ≥ 2.
In this case, ε2ðSÞ ≤ 2, a + b + c = sunðG′ − SÞ ≥ 3 by (67),

and sunðG − SÞ ≥ sunðG′ − SÞ − 2 ≥ 1. We have jVðGÞj ≥ 5,

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ

≤
S ∪ X ∪ Yj j

i G − S ∪ X ∪ Yð Þ ≤
Sj j + b +∑c

i=1 Hij j/2ð Þ
b +∑c

i=1 Hij j/2ð Þ :

ð108Þ

Then, the rest proof process is consistent with the part of
Theorem 4 and Theorem 5 in Gao et al. [22], and we will not
repeat here.

Hence, the proof of Theorem 14 is finished.

3. Sharpness

In this section, we present some counterexamples to verify
that the bounds of parameters in theorems in the second sec-
tion are tight.

3.1. Sharpness of Theorem 4-Theorem 6.Wemanifest that (1)
λðGÞ ≥m + 1 and tðGÞ >m/ðm + 1Þ or τðGÞ > 1 in Theorem 4
cannot change to λðGÞ ≥m and tðGÞ =m/ðm + 1Þ (or τðGÞ
= 1); (2) λðGÞ ≥m + 1 and IðGÞ > 2m/ðm + 1Þ or I ′ðGÞ > 2
in Theorem 5 cannot change to λðGÞ ≥m and IðGÞ = 2m/ð2
m + 1Þ (or I ′ðGÞ = 1); (3) λðGÞ ≥m + 1 and bindðGÞ > 3/2 in
Theorem 6 cannot change to λðGÞ ≥m and bindðGÞ = 3/2.

Let G = Km∨ðmK2 ∪ K1Þ. Taking one vertex from each
K2 and denote X by the set of these vertices, we have

t Gð Þ = V Kmð Þj j
ω G −V Kmð Þð Þ =

m
m + 1 ,

τ Gð Þ = V Kmð Þj j
ω G − V Kmð Þð Þ − 1 = m

m + 1 − 1 = 1,

I Gð Þ = V Kmð Þ ∪ Xj j
i G −V Kmð Þ − Xð Þ = 2m

m + 1 ,

I ′ Gð Þ = V Kmð Þ ∪ Xj j
i G −V Kmð Þ − Xð Þ − 1 = 2m

m + 1 − 1 = 2,

bind Gð Þ = NG V mK2ð Þð Þj j
V mK2ð Þj j = 3m

2m = 3
2 :

ð109Þ
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Set E′ = EðmK2Þ and G′ =G − E′ = Km∨ðð2m + 1ÞK1Þ.
Then, jE′j =m, and by setting S = Km, we have

i G′ − S
� �

= 2m + 1 > 2m = 2 Sj j: ð110Þ

Thus, G′ has no P≥2-factor, and accordingly, G is not a
ðP≥2,mÞ-factor-deleted graph.

3.2. Sharpness of Theorem 7 and Theorem 8. We show that
the toughness bounds in Theorem 7 and Theorem 8 are best.
Consider G = Kk+2∨ð3K1Þ, and we have κðGÞ = k + 2, tðGÞ
= ðk + 2Þ/3 and τðGÞ = ðk + 2Þ/2. Set U ⊆VðGÞ with jU j =
k, and let G′ = G −U = K2∨ð3K1Þ. Take S = K2 in G′, then,
we have ε1ðSÞ = ε2ðSÞ = 2,

i G′ − S
� �

= 3 > 2 = 2 Sj j − ε1 Sð Þ,

sun G′ − S
� �

= 3 > 2 = 2 Sj j − ε2 Sð Þ:
ð111Þ

Hence, according to Lemma 2, G′ is not P≥2-factor cov-
ered, and G is not a ðP≥2, kÞ-factor critical covered graph.
Moreover, in terms of Lemma 3, G′ is not P≥3-factor cov-
ered, and G is not a ðP≥3, kÞ-factor critical covered graph.

3.3. Sharpness of Theorem 9. We depict that the isolated
toughness bounds in Theorem 9 for a graph to be ðP≥2, kÞ
-factor critical covered are best. Consider G = Kk+1∨ð2K1 ∪
KtÞ where t is enough large, and we have κðGÞ = k + 1, IðG
Þ = ðk + 1/2Þðk + 1Þ/2 and I ′ðGÞ = k + 1. Set U ⊆VðGÞ with
jUj = k, and let G′ =G −U = K1∨ð2K1 ∪ KtÞ. Set S as the
first K1 in G′, then, we have ε1ðSÞ = 1 and

i G′ − S
� �

= 2 > 1 = 2 Sj j − ε1 Sð Þ: ð112Þ

Hence, by means of Lemma 2, G′ is not P≥2-factor cov-
ered, and G is not a ðP≥2, kÞ-factor critical covered graph.

3.4. Sharpness of Theorem 10. The isolated toughness condi-
tions in Theorem 10 are tight. Consider G = Kk+1∨ð2K2 ∪
G′′Þ where G′′ is connected but not a sun. Set U ⊂VðKk+1
Þ with jUj = k, G′ =G −U = K1∨ð2K2 ∪G′′Þ, and S = K1 in
G′. Selecting one vertex from each K2 in the 2K2 part and
denoting X by the set of these two vertices, we confirm

I Gð Þ = U ∪ S ∪ Xj j
i G −U ∪ S ∪ Xð Þ = Uj j + Sj j + Xj j

i G′ − S ∪ X
� �

= k + 1 + 2
2 = 3 + k

2 ,

I ′ Gð Þ = U ∪ S ∪ Xj j
i G −U ∪ S ∪ Xð Þ − 1

= Uj j + Sj j + Xj j
i G′ − S ∪ X
� �

− 1
= k + 1 + 2

2 − 1 = k + 3:

ð113Þ

On the other hand, ε2ðSÞ = 1 since G′′ is a nonsun com-
ponent of G′ − S and

sun G′ − S
� �

= 2 > 1 = 2 Sj j − ε2 Sð Þ: ð114Þ

In view of Lemma 3, G′ is not P≥3-factor covered, and G
is not a ðP≥3, kÞ-factor critical covered graph.

3.5. Sharpness of Theorem 11. The toughness bounds in The-
orem 11 are tight. Consider G = K2∨ðK1 ∪ K2Þ which is 2-
edge-connected graph with tðGÞ = 1 and τðGÞ = 2. Select e
∈ EðK1 ∪ K2Þ and set G′ =G − e = K2∨ð3K1Þ. Let S = VðK2
Þ ⊆VðG′Þ. We have ε1ðSÞ = 2 and

i G′ − S
� �

= 3 > 2 = 2 Sj j − ε1 Sð Þ: ð115Þ

Therefore, by means of Lemma 2, G′ is not P≥2-factor
covered, and G is not a P≥2-factor uniform graph.

3.6. Sharpness of Theorem 12. The isolated toughness bounds
in Theorem 12 are sharp. Consider G = K2∨ð2K2Þ which is a
2-edge-connected graph. We have tðGÞ = 1 and τðGÞ = 2. Let
e ∈ Eð2K2Þ, G′ =G − e = K2∨ðK2 ∪ 2K1Þ, and S be the vertex
set of first K2 in G′. We infer ε2ðSÞ = 2 and

sun G′ − S
� �

= 3 > 2 = 2 Sj j − ε2 Sð Þ: ð116Þ

Hence, in terms of Lemma 3, G′ is not P≥3-factor cov-
ered, and G is not a P≥3-factor uniform graph.

3.7. Sharpness of Theorem 13 and Theorem 14. To show the
isolated toughness bounds in Theorem 13 and Theorem 14
that are sharp, we consider G = K1∨ðK2 ∪ KtÞ where t is a
large number. Select one vertex from K2 and t − 1 vertices
from Kt and denote X by the vertex subset of these vertices.
We have

I Gð Þ = V K1ð Þ ∪ Xj j
i G − V K1ð Þ ∪ Xð Þ

= 1 + t
2 = 1 + V Gð Þj j − 3

2 = V Gð Þj j − 2
2 ,

I ′ Gð Þ = V K1ð Þ ∪ Xj j
i G − V K1ð Þ ∪ Xð Þ − 1

= 1 + t
2 − 1 = 1 + V Gð Þj j − 3 = V Gð Þj j − 2:

ð117Þ

On the other hand, let e ∈ EðK2Þ and G′ =G − e = K1∨ð
2K1 ∪ KtÞ. Let S be the vertex set of first K1 in G′, and then,
we have ε1ðSÞ = ε2ðSÞ = 1,

i G′ − S
� �

= 2 > 1 = 2 Sj j − ε1 Sð Þ,

sun G′ − S
� �

= 2 > 1 = 2 Sj j − ε2 Sð Þ:
ð118Þ
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Therefore, by means of Lemma 2, G′ is not P≥2-factor
covered, and G is not a P≥2-factor uniform graph. Also, in
terms of Lemma 3, G′ is not P≥3-factor covered, and G is
not a P≥3-factor uniform graph.

4. Open Problems

The restrictions in factor critical graphs can be further
extended to more general ones. For instance, a graph G is
a ðP≥n, k,mÞ-factor critical covered graph if removing any
k vertices from G, the resting subgraph is still a ðP≥n,mÞ
-factor covered graph (that is, if for any E ⊆ EðGÞ with jEj
=m, G has a P≥n-factor containing all the edges in E, and
then, G is called a ðP≥n,mÞ-factor covered graph). The big-
gest obstacle to solve these problems is lacking of necessary
and sufficient condition for ðP≥n,mÞ-factor covered graph.
Hence, as the first step, we need to expand the results on
P≥2-factor covered graph and P≥3-factor covered graph
determined by Zhang and Zhou [15] to necessary and suffi-
cient condition of ðP≥2,mÞ-factor covered graph and ðP≥3,
mÞ-factor covered graph. These problems are worthy of deep
study in the future.
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