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The existence of factor and fractional factor in network graph in various settings has raised much attention from both
mathematicians and computer scientists. It implies the availability of data transmission and network segmentation in certain
special settings. In our paper, we consider P,,-factor and P.;-factor which are two special cases of general 7 -factor.
Specifically, we study the existence of these two kinds of path factor when some subgraphs are forbidden, and several
conclusions on the factor-deleted graph, factor critical-covered graph, and factor uniform graph are given with regards to
network parameters. Furthermore, we show that these bounds are best in some sense.

1. Introduction

All graphs considered in this work are finite simple graphs. Let
G=(V(G), E(G)) be a graph, N(v) be the neighborhood of
vertex v,and d;(v) = [N (v)|. Let w(G) be the number of con-
nected components in G and i(G) = |{v € V(G): ds(v) =0}|.
For the commonly used notations and terminologies, please
refer to book [1] by Bondy and Mutry.

Let n>2 and P, be a path with at least n vertices. A P,
-factor is a spanning subgraph of G such that each component
is isomorphic to P.,. A graph G is a (P,,, m)-factor-deleted
graph if removing any m edges from G, the resting subgraph
still admits P, ,-factor. For P.,-factor, Akiyama et al. [2] dem-
onstrated the following characteristic for its existence.

Lemma 1. A graph G permits a P, -factor if and only if 2|
X|>i(G - X) established for arbitrary vertex subset X of G.

More recent results on graph factors in various settings
can be referred to Gao et al. [3, 4], Wang and Zhang and
Zhou et al. [5-10], and Zhu et al. [11, 12].

A graph R is factor-critical if deleting any vertex v, the
resulting subgraph has a perfect matching. A graph G is
called a sun if it is isomorphic to K, K,, or the corona of
a factor-critical graph, and the last class of sun is a big sun.
Let sun(G) be the number of sun components of G. Kaneko
[13] and Kano et al. [14] revealed that sun components can
describe the existence of P;-factor, i.e, a graph G admits a
P_,-factor if and only if 2|S| > sun(G - S) for any vertex sub-
set S of G.

Zhang and Zhou [15] introduced the concept of P,
-factor-covered graph, i.e., a graph G is P, ,-factor covered
if for any edge e, there is a P, ,-factor containing e. More-
over, they obtained the following two conclusions for P.,,
-factor-covered graph when n=2 or 3.

Lemma 2 (Zhang and Zhou [15]). A connected graph G is a
P ,-factor-covered graph if and only if

i(G-5) < 2|5 - &,(S), (1)
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for any vertex subset S of G, where

2, if Sisnot anindependent set,

1, Sisindependent, and there exists a
nontrivial component of G — S,

0, otherwise.

Lemma 3 (Zhang and Zhou [15]). Assume G as a connected
graph. Then, G is a P, ;-factor-covered graph if and only if

sun(G —8) < 2|5 — &,(S), (3)
for any S < V(G), where

2, if Sisnot an independent set,
1, Sisindependent and there exists a
nonsun component of G — S,

0, otherwise.

The concept of factor-covered graph can be further
extended to factor-critical-covered graph. A graph G is
(P, k)-factor-critical covered if deleted any k vertices from
G, and the resting subgraph is still a P,,-factor-covered
graph.

In computer data communication networks, there are
three main indices to test the robustness and vulnerability
of networks, and also, there are some variables of these
parameters.

(i) Chvatal [16] firstly introduced toughness where ¢(G)
=+00 if G is complete; otherwise

t(G) =min {%w(G—S) 22}. (5)

Enomoto et al. [17] introduced a variant of toughness by
revising the denominator to w(G —S) — 1 and denoted it by
7(G). That is to say, 7(G) = +00 if G is a complete graph; and

7(G) = min {w(G|—SS)—1 |w(G=S) > 2}, (6)

for noncomplete graph.

(ii) Isolated toughness was introduced by Yang et al
[18] as follows: if G is a complete graph, then I(G)
= +00; elsewise

1(G) = min {i(és_' §/ScV(©iG-9)> z}. (7)

Similar to 7, Zhang and Liu [19] introduced a variant of
isolated toughness by revising the denominator to i(G - S)
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— 1, denoted by I' (G): I' (G) = +co for a complete graph G,
and

I'(G) = min {Z(G—|SS)—1 ISC V(G),i(G-S)> z}, (8)

for others.

(iii) Binding number is defined by Woodall [20] which
is formulated by

bind(G) = min {M @+ X € V(G), Ng(X) # V(G)}.

IX]
©)

The main contributions of this article are three folded:
(1) the relationships between (P.,, m)-factor-deleted graph
and the above three parameters are studied; (2) toughness
conditions for (P,,, k)-factor-critical covered and (P,;, k)
-factor-critical covered graph are given; (3) toughness
bounds for a graph to be P,,-factor uniform graph and P
-factor uniform graph are determined. The main conclu-
sions and detailed proofs are manifested in the next section,
and then, in the third section, we present the sharpness of
these bounds.

2. Main Results and Proofs

The purpose of this section is to present the main theorems
and detailed proofs.

2.1. Bounds for (P.,, m)-Factor-Deleted Graphs

Theorem 4. Let m be a positive integer and G be an (m + 1)
-edge-connected graph. If t(G) >m/m+1 (resp. 1(G) > 1)
then G is a (P,, m)-factor-deleted graph.

Proof. For a complete graph G, the result follows from edge
connectivity. Assume that G is not complete, and clearly we
have |V(G)| > m +2. O

For arbitrary edge subset E' = {e,---e,,} with m edges, let
G'=G-E', and we have V(G') = V(G) and E(G') = E(G)
— E'. We verify the theorem by means of proving that G’
admits P,,-factor. In contrast, we assume G' has no P.,
-factor, and hence, in view of Lemma 1, there is a subset S

of V(G') satisfying
i(G'-5)>2/8]+1. (10)

If [S| = 0, then i(G") = 1 by (1) which contradicts to G is
(m + 1)-edge-connected and |V(G)| = m + 2. Therefore, we
infer [S|>1 and i(G' - S) =2|S| + 1 > 3. Deleting one edge
from G — S, the number of its components adds most 1, thus
w(G'-8)=w(G-E-S)<w(G-S)+m.

We divide E' = {¢;}", into three classes E,, Ej, and E}.
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If e; € E' is a unique edge in K, which is a component in
G-, then e €E,.

Ife; € E' and ¢; € E(G - S), one of end vertex of ¢; (say v,)
meets d_g(v;) =2, then ¢; € E,.

Otherwise, ¢; € E' and at least one of its end vertices in S,
then ¢; € E}.

We have |E|| +|E;| <m and |E}|, |Ej| € {0,--,m}. Select
one vertex in each edge in E, with larger degree in G-
and denote X by the set of these vertices. Thus, |X| < |Ej|.

According to

_s K
w(G=S) w(G'—S) -m
s . s
i(G’—s) —m 2S|+1-m’

(11)

IN

or accordingly

(2181+ 1 [E1]) (18] +m = EL])" = (218) + 1= |E1])' (18] + m - |ES])

3
S S
1<7(G) < 1 < S
w(G-8)-1 w(G’—s)—m—l
12
S S -
< < >
i(G’—s)—m—l 2|S|-m
we get |S| € {1,---,m—1}.
For t(G), we have
m ISUX| S| + |X|
A TR VS s Raloar /
m+ w(G-SUX) w(G —SuX)—\El\
!
Sl Isl+ B
w(G'=8) - |E| i(c"-s) - |Ej|
S| +m—|Ei| _ IS+ m-|E)]
i(G’—s)—]E{] 2|S|+1~ ||
(13)

Let f(|E;|) = (S| +m — |E;|)/(2|S| + 1 - |E;|) be a func-
tion with regard to |E;|. We have

m-1-|§
f’(\E{D: — = | |, _>0. (14)
(211+1-[E1)) (211+1-[E1))
Hence, f(|E;|) is a monotonically increasing function For 7(G), we have
d Ey|)} =f(m). We get
an maX{f(‘ 1|)} f(m) € ge L< (G)< |SUX| |S|+|X|
T S =
w(G-SUX)-1 w(G’—SuX)—|E;|—1
m <H(G) < S| _1+ mf2—1/2 :
m+ 1 T2S[+1-m 2 2[§[+1-m as) S|+ 1X] 181+ |E|
_1 mR-12_ —medm-2 w(G’—s) - Bl -1 i(G’—s) - Bl -1
T2 2+41-m 2 ’
e S| +m — |E}| S| +m — |E]|
g G’—S)— El-1 2|8+1-|E]|-1
which implies m = 2. l( ’ 1’ 9 | 1}
If m=2, then || =1 and i(G' - $) >2|S| +1=3. If w(G |S| +m - |E||
—-8)>2, then 2/3=m/(m+1)<t(G)<|S|/w(G-S)<1/2, - 28| - ]E'{ :
a contradiction. Hence, G- S is a connected graph, and !
there are at least 3 isolated vertices after removing 2 edges (16)

from G - S. That is to say, G = K,VP; which contradicts to
G is a 3-edge-connected graph.

Let g(|E;|) = (|S| + m — |E;|)/(2|S| - |E;|) be a function
with regard to |E}|. We obtain

g/(wi’):(2|S|—|Ei|>(|S|+m—|Ei|>’_(2|S|—|E1})’(|S|+m—|E;|): m=1Sl o (17)

(281~ 1)’

(2151~ 1))’



Hence, g(|E]|) is a monotonically increasing function
and max {g(|E]|)} = g(m). We get

N 1 m
1<1(G) < =
"G =35 =2 T s = 18)
1 m 1
<+ =,
2 22-m) 2-m

which implies m = 2.

If m=2, then |S| =1 and i(G' - §) >2|5| + 1=3. If w(G
-8)>2, then 1<7(G) <|S|/w(G-S)-1<1, a contradic-
tion. Hence, G — Sis a connected graph, and there are at least
three isolated vertices after removing two edges from G - S.
That is to say, G = K,VP; which contradicts to G that is a
3-edge-connected graph.

Hence, the proof of result is completed.

Theorem 5. Let m be a positive integer and G be an (m + 1)
-edge-connected graph. If 1(G) > 2m/(m + 1) (resp. I' (G) > 2
), then, G is a (P.,, m)-factor-deleted graph.

Proof. For a complete graph G, the result follows from edge
connectivity. Assume that G is not complete, and clearly, we
have |V(G)|>m +2. O

For arbitrary edge subset E' = {e,,---e,,} with m edges,
let G' =G —E', and we have V(G') = V(G) and E(G') = E(

(2151+1-2[EL]) (18] + m = EL])' = (215) + 1-2|E1] )" (IS] + m - |E}])
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G) — E'. We check the correctness of Theorem 5 via proving
G' permits P,,-factor. If not, we assume G' has no P.,
-factor, and hence ,using Lemma 1, there is a subset S of V'
(G') satisfying (1).

If |S| = 0, then i(G") =1 by (1) which contradicts to G
being (m + 1)-edge-connected and |V(G)|>m + 2. There-
fore, we infer |S|>1 and i(G' —S)>2|S|+ 1> 3. Deleting
one edge from G — S, the number of its isolated vertices adds
most 2; thus, i(G' - 8) =i(G—- E-S) <i(G - S) +2m.

We divide E' into three classes E{, E;, and E; as described
in Theorem 4, and hence, |E;| + |E}| <m and |E||, |E}| € {0,
---,m}. Also, we use the same way to select vertex set X, and
thus, |X| < |E}|.

For I(G), we have

2m ISUX| 1]+ [X]
<I(G) < - =
m+ 1 i(G-SUX) i(G’—SuX)—2|E;|
IS+
i(6'-s) -2/E]

(19)

Reset f(|E;|) = (|S| +m—|E|)/(2|S|+1-2|E]|) be a
function with regard to |E||. We acquire

2m -1
f'(\E”): — = — >0 (20)
(2181 +1-2[E])) (211 +1-[E1])
Hence, f(|E;|) is a monotonically increasing function For I' (G), we have
and max {f(|E;|)} = f(m). Thus, we get
yer'(Gye VXL _ 18]+ |X]
T i(G-SuX)-1 i(G’—Sux)—z|E{|—1
2m N 1 m—1/2
——<I(G) < = — + Ty
mr1 1O 28[+1-2m 2 2S[+1-m < \S|+|X|, o ISI+m |€1\ (22)
L, om-12 ] i(G' =) 2B} -1 2S|+1-2[E| -1
T2 2+41-2m  3-2m’ 18]+ m - |EL|
(21) o2ls|-2[E]]
!
2 contradiction. . Reéet g(|E]|) = (|S,| +m— |E1|)./(2|S| ~2|E}]) be a func-
tion with regard to |E,|. We acquire
! ! ! ! ! !
(2181 -2[Ex]) (18 + m— |E3])" = (2181 -2[E1])" (18] + m - |ES]) o

= > 0. (23)

g'(|E1) =

2
(2151-2/E1])

2
(2181~ |E})
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Hence, g(|E;|) is a monotonically increasing function
and max {g(|E}|)} = f(m). Thus, we get

|S] 1 m

2<1'(G) < =_ 24
Oy m ™2 as—am W
a contradiction if m > 2.
Specially, if m = 1, then
2<I'(G) < - I 1S
i(G-9)-1 i(G'—S) —om—1
(25)
IS ISl

T2I8+1-3  2/§)-2’

which implies |S| = 1. In this case, i(G' — S) > 3 leads to i(G
~8)>i(G' - 8) —2m>1 which contradicts to G being a 2-
edge-connected graph.

Hence, the proof of this result is completed.

Theorem 6. Let m be a positive integer and G be an (m + 1)
-edge-connected graph. If bind(G) > 3/2, then, G is a (P.,, m)
~factor-deleted graph.

Proof. For a complete graph G, the result follows from edge
connectivity. Assume that G is not complete, and clearly, |
V(G)|zm+2.

Let G'=G-E' for arbitrary edge subset E' with m
edges, and we have V(G')=V(G) and E(G')=E(G)-E'.
Assume that G’ has no P,,-factor, and hence, in view of
Lemma 1, there is a subset S of V(G') satisfying (1).

If S| = 0, then, i(G") > 1 by (1) which contradicts to G
being (m + 1)-edge-connected and |V(G)|=m + 2. There-
fore, we infer |S|>1 and i(G' —S)>2|S|+ 1> 3. Deleting
one edge from G — S, the number of its isolated components
adds most 2, thus, i(G' =) =i(G—E~S) <i(G - S) +2m.

Note that there are at least 3 isolated vertices after
removing m edges from G - S. Also, since §(G) 2 A(G) =m
+1, we get [S|=m+1-m/i(G' =S)=m+1-m/(2]S] +1),
ie, m<(2|S]+1)(]S| —1)/2|S|. Let X be the vertex set of
these isolated vertices in G' —S. If Ns(X)# V(G), we
acquire

3 N (X S| +2 S/+2
5 bind() < Vel _ ISl +2m _[S|+2m
2 X i(G'—S) 2[8[+1

_ ISI+2(218) + D)(IS] - 1)/2]]) (26)
B 2|8 +1
3 1 1 3

R EECEEDRES

a contradiction.

Now, we consider N (X) # V(G). If there is a vertex v in
G — S meeting d;_s(v) = 1, then, set uv € E(G-S) and u e X
since N (X) £ V(G). We yield

5
3 N.(X - S|+2m—1
7<bmd(G)sl ¢(X —{u})| < S| +2m
2 X = {u}| i(G'—S) -1
- |S|+2m—1 _ |S|+2m—1
_ IS[+2(218] + D)(IS] - 1)/2|S]) - 1
- 2|8
3ISP-2|S|-1 3
= 0 < -,
PINE 2

a contradiction.
If each vertex in X has a degree at least 2 in G - S, then,
we can get the contradiction similar to what discussed above.
Hence, the proof of result is completed.

2.2. Toughness Conditions for (P,,,k)-Factor-Critical
Covered and (P.;, k)-Factor-Critical Covered Graph

Theorem 7. Let k€ NU {0} and G be a graph with x(G) >
k+1.If (G)>(k+2)/3(resp.t(G) > (k+ 2)/2), then, G is a
(P,,, k)-factor critical covered graph.

Proof. If G is complete, the result follows from 8(G) > «(G)
> k + 1. In what follows, we consider noncomplete graph. [

For any U € V(G) with |U| =k, set G' = G~ U. To demon-
strate G is (P.,, k)-factor critical covered, it is enough to
prove G' is P.,-factor covered. Otherwise, suppose G' is
not P.,-factor covered; then, according to Lemma 2, there
is a vertex subset S of G’ such that

i(G’—s) >2[S| - £,(S) + 1. (28)

The following discussion is divided into three cases in
terms of the value of |S].

Case 1. |S| =0.
In this case, &, (S) = 0 and i(G") > 1 by (2), which contra-
dicts to 8(G) 2 k(G) =k + 1.

Case 2. |S| =1.
We consider the following two subcases.

Case 3. G' — S has no nontrivial component.

We infer &,(S) =0 and i(G' - S) >2|S| —&,(S) + 1 =3. By
means of the definition of toughness, we deduce

k+2 [UUS| <k+1

3 (G)_w(G—UUS)_ 37 (29)



or

k+2 US|
> O TG-Tus 1= 2

a contradiction.
Case 4. G' — S has a nontrivial component.

We yield &(S)=1, i(G' - ) >2|S| —&(S) + 1 =2, and
w(G' = §) > 3. Using the definition of toughness, we have

k+2 [UUS| k+1
— <t < < , 31
<16) = SG=uus) = 3 (3
or
k+2 [UUS] k+1
e <2 (32)

> O CG-Tus 1= 2

a contradiction.

Case 5. |S| = 2.
We acquire ¢, (S) <2 and i(G' — §) > 2[S| —&,(S) + 1= 3.
In light of the definition of toughness, we obtain

k+2 [UUS| k+1S|

—<t(G) < =

3 w(G—UUS) w(G'—S)
k+1S]| k+1S| - k+1S]

- i(G' —s) T 218 g (S)+1 7 2[5~ 1

k+1/2

1+ k+172  k+2
2 2[5 -1

2x2-1 3

= < -+

>

1
2
or

k+2

vus k+1S
k42 g 1UYS +1S
2 w

(G-Uus§-1 w(G'—S)—l
kels) k+ S|
h i(G’—s) —1 28— (S)+1-1

k+1S| 1 k+1
< =_+ <
2[|-2 2 2/8]-2

k+1 3 k+2
2x2-2 2
(34)

+

1
2

a contradiction.
Therefore, the result follows.

Theorem 8. Let k€ N U {0} and G be a graph with k(G) >
k+1 and [V(G)| = k+3. If  (G)>(k+2)/3
(resp.t(G) > (k+2)/2), then, G is a (P, k)-factor critical
covered graph.
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Proof. If G is a complete graph, then, the result follows from
|V(G)|=k+3. We only consider noncomplete graph in
what follows.

For any U € V(G) with k vertices, let G' = G — U, and we
aim to prove G' is P,;-factor covered. On the contrary, G is
not a P_;-factor covered graph, and then, by Lemma 3, there
is a subset S of V(G') meeting

sun(c’ —s) >2[S| - £,(S) + 1. (35)

O

The following discussion is divided into three cases by
means of the value of |S].

Case 1. |S| =0.

In this case, we summarize &,(S) = 0 and sun(G') > 1 by
(3). Using x(G) =k +1 and |U| =k, we get sun(G') = (G’
) = 1. Since |V(G)| = k + 3, we confirm that G' is a big sun.
Let R be the factor-critical graph of G’ with |V(R)|>3 and

v € V(R) be a vertex in R. Using the definition of toughness,
we obtain

k+2 [UU(V(R) - {v})]|

——<1(G)= w(G-UU(V(R) - {v}))
_k+VR)[-1 k-1 36
VR VR .
<1+k_l_k+2
st 3 =3
k+2 < UV (V(R) - {v})]
= O G- ro v - ) -
_k+|V(R)|-1 _ k
G IR ”
<1 k _k+2
S
a contradiction.
Case 2. S| =1.

If there is a nonsun component of G' — S, we have &,(S
)=1, sun(G' - §) >2|S| —&,(S) + 1 =2 by (3), and w(G' - S
) >sun(G' —§) + 1. Directly using the definition of tough-
ness, we yield

k+2<tG - [UUS] RN
3 ( )_w(G—UUS)_w<G’_S>
k+1 k+1 _k+1

>

< < =
sun(G’—S>+1 218 - &(S)+1+1 3

(38)
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or

k+2 [UUS| |U| +|S]
——<1(G) < =
2 w(G—UUS)—l w(G'—S)—l
k+1 k+1 k+1
< < = >
sun(G'—S) +1-1 28/-&(§)+1 2
(39)

a contradiction.

If there is no nonsun component of G' — S, we get &,(S
)=0, sun(G' — ) =2|S| —&,(S) + 1 =3 by (3), and w(G' - S
)=sun(G' - §). In light of the definition of toughness, we
infer

k+2<tG - [UUS| U+
3 ( )_w(G—UUS)_w(G'_S>
(40)
B k+1 - k+1 _k+1
sun(G'—S) 215 —&(S) +1 37
or
k+2<T(G)S [UUS _ U] +1S]
2 w(G—UUS)—l w(GI—S)—l
k+1 k+1 _k+1

>

< =
sun(G'—S)—l 21§ -&,(S)+1-1 2

(41)
a contradiction.

Case 3. |S| = 2.
In this case, we acquire &,(S) <2 and sun(G’ - S) > 2]
—&(S) +1>3 in terms of (3). We verify

k+2 [UU S |U|+ ||
—<t(G) < =
3 w(G—UUS) LU(G,—S>
k+1S| - k+|S|
- sun(G' —S) 28 - &(S) +1 (42)
k+|S] 1 k+1/2
< =_+
218)-1 2 2|§-1
1 k+1/2 k+2
<+ ==

>

2 2x2-1 3

7
or
k+2 Uus Ul+|S
2 e MUUSL_ [Ul+s
2 w(G—UUS)—l w(G'—S)—l
k+1S| k+1S|
_sun(G'—S)—l_2|S‘_52(S)+1_1
k+ S| 1 k+1 1 k+1 k+2
< — = — + < -+ = >
218]-2 2 28|-2 2 2x2-2 2
(43)

a contradiction.
Hence, Theorem 8 is verified.

Theorem 9. Let k€ NU {0} and G be a graph with x(G) >
k+ 1 If (G)> (k+1)/2(resp.I'(G) >k+1), then, G is a (
P, ,, k)-factor critical covered graph.

Proof. If G is complete, we check the theorem using §(G)
> k(G) > k + 1. Hence, we only consider noncomplete graph
in the following contents.

For any U < V(G) with |U| =k, set G' = G- U. To dem-
onstrate G that is (P.,, k)-factor critical covered, it is enough
to prove G' is P.,-factor covered. Otherwise, suppose G' is
not P.,-factor covered; then, using Lemma 2, there is a ver-
tex subset S of G’ satisfying (2).

The following discussion is divided into three cases in
terms of the value of |S].

Case 1. |S| =0.
In this case, we get contradiction as we discussed in The-
orem 7.

Case 2. |S| =1.
We consider the following two subcases.

Case 3. G' = S has no nontrivial component.
Weinfer &, (S) =0 and i(G' - S) >2|S| —¢,(S) + 1 =3. By
means of the definition of isolated toughness, we deduce

k+1 [UUS| k+1
— < < R 44
> 1O G-Tuy = 3 (44)
or
k+1<I'(G) < uusl  _k+l (45)

i(G-UuUS) -1~ 2~

a contradiction.

Case 4. G' - S has nontrivial component.



We yield &,(S)=1 and i(G' —S)>2|S| —&,(S) +1=2.
Using the definition of isolated toughness, we have

k+1 vus k+1
1 ey AYYSL kL (46)
i(G-UUS) ~ 2
or
Uus
k+1<I'(G)< ¥<k+1, (47)
i(G-UUS) -1
a contradiction.
Case 5. |S] > 2.

We acquire &,(S) <2 and i(G' - §) > 2|S| —&,(S) + 1> 3.
We can get the contradiction using the similar derivation to
Theorem 7.

Therefore, we get the desired result.

Theorem 10. Let k € N and G be a graph with k(G) 2k + 1
and |V(G)| 2k +3. If I(G) > (k+ 3)/2 (resp. I'(G) > k+ 3),
then, G is a (P;, k)-factor critical covered graph.

Proof. If G is a complete graph, the result is hold from |V(
G)| = k+3. We only discuss noncomplete graph in the fol-
lowing context.

For any U ¢ V(G) with k vertices, let G' = G — U, and we
aim to prove G' is P_,-factor covered. On the contrary, G is
not a P.;-factor covered graph; then, using Lemma 3, there
is a subset S of V(G') satisfying (3).

The following discussion is divided into three cases
according to how many elements in S. O

Case 1. |S| =

In this case, similar to what’s discussed in Theorem 8, we
have &,(S) =0 and sun(G') = w(G') =1, and G is a big sun.
Let R be the factor-critical of G' with |V(R)| > 3. Using the
definition of I(G), we obtain

k+3 1(G) < - [UU V(R)]| =k+|V(R)|
2 Z(G -Uu V(R)) |V(R)| (48)
k k k+3
=1+ <l+—-=—,
[V(R)] 3 3
or
|[UUV(R)|
k+3<I'(G)< (G-UUV{R)-
_ R+ VIR)] & (49)
[V(R)| -1 [V(R)| -1
k+1 k+3
<l+ ——=—,
3-1 2
a contradiction.
Case 2. |S| =1.
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We have &,(S) <1. Suppose that there are K’s, bK,’s,
and ¢ big sun components H,, -+, H, with |V(H,)| 26 in G
"~ S. Hence, a+b+c=sun(G' —8) >2|S| —&(S) +1=2 by
(3). We select one vertex from each K, and choose vertex
set of factor-critical subgraph of every big sun and then
denote X by the vertex set of all these selected vertices. We
infer |X|=b+Y:,|V(H;)|/2 and i(G-UUSUX)=>2. In
terms of the definition of isolated toughness, we yield

k+3 [UUuSUX]| [U| +|S] + |X]
——<I(G) < - =
2 Z(G—UUSUX) i(G’—SUX)
(50)
- k+1+b+Y: (|[V(H)|/2)
T oatb+ YL ([VIH)I2)
It implies
C ‘V
2k+2> (k+3)a+ (k+1)b+ (k+1 Z
. (51)

>(k+3)a+ (k+1)b+ (3k+3)c
2(k+1)(a+b+c)=2k+2,

a contradiction.
For I' (G), we have

UUSUX|
i(G-UUSUX)-1
[UI+[SI+1X] _ k+1+b+ 35, (V(H)|2)

k+3<I'(G)<

) i(6'-sux) -1 a+br 2L (VH)I2)- U
(52)
It implies
C ‘V
2k+4> (k+3)a+ (k+2)b+ (k+2 Z
. (53)

> (k+3)a+ (k+2)b+ (3k+6)c
>(k+2)(a+b+c)=2k+4,

a contradiction.

Case 3. |S] = 2.

In this case, we acquire &,(S) <2 and a + b + ¢ = sun(G’
—-8)>2|S| —&(S) +1>3 in terms of (3). Let X be vertex
subset defined as Case 2. We verify

[UuSuX|  |U|I+|S]+|X]
_i(G—UUSUX) i(G’—SUX)

kIS b+ XL (VH)I2)
T oa+b+ YL (|V(H))|2)

(54)

>
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that is,

o

2k +2|S| > (3+k)a+ (

>(3+k)a+(k+1)b+ (3k+3)
>(k+1)(a+b+c)>(k+1)(2]S] - &(S) +1)
> (k+1)(2|| - 1).

(55)

It is implies that |S| < (3k+1)/2k<2 since k>1, a
contradiction.

For I'(G), we confirm

|[UuSUX]|
i(G-UUSUX) -

|U|+[S] +|X]|
(G'—SUX)—I
RIS+ b+ T (VH)IR)
Ta+b+ Y ([V(H)2) -1

k+3<I'(G)<

(56)
which means,

|V(H

2k+3+|S|>B3+k)a+ (k+2)b+ (k+2) Z

2(3+k)a+ (k+2)b+ (3k+6)c
2(k+2)(a+b+c)=(k+2)(2]5]—&(S) +1)
> (k+2)(2]5]-1).

(57)

It implies that |S| < (3k + 5)/(2k + 3) < 2, a contradiction.

Hence, Theorem 10 is verified.

Note that k # 0 in Theorem 10. From Zhou et al. [21], we
know that G is a P, ;-factor covered graph if I(G) > 5/3, and
5/3 is tight.

2.3. Toughness Conditions for Factor Uniform Graph. A
graph G is a P, ,-factor uniform graph if for any two edges
e, and e,, G admits a P, ,-factor including e, and excluding
e,. Zhou and Sun [?] studied the binding number condition
for P.,-factor uniform graph and P.;-factor uniform graph.
In this section, we research on other two parameters: tough-
ness and isolated toughness. The idea to prove the following
results is based on the observation that G is P,,-factor uni-
form if G- e is P,,-covered for any e € E(G).

Theorem 11. Let G be a 2-edge-connected graph. If (G) > 1
(resp.t(G) > 2), then, G is a P, ,-factor uniform graph.

Proof. For any e=uv, G' = G — e is connected since G is 2-
edge-connected graph. To confirm Theorem 11, we need to
verify that G is P_,-factor covered. If not, we assume that
G' is not P_,-factor covered. Using Lemma 2, there is a ver-
tex subset S of G’ satisfying

i(G'=8) 2| —¢&,/(S) +1. (58)
(6" -s)228/-¢.(9)

Furthermore, we have i(G - §) <i(G' - ) <i(G - S) +2.
We consider three cases according to the value of |S|. O

Case 1. If |§] =
We obtain i(G') > 1 which contradicts A(G) > 2.

Case 2. If |§| = 1.
Then, &,(S) <1 and i(G' - §) = 2[S| —&,(S) + 1 = 2. If i(
G- S) =2, then
S S 1
1<t(G) < S B L (59)
w(G-8) " i(G=-S) " 2
or
S| S|
2<1(G) < < <1, 60
<70 SG=9 =1 S G- -1 (60)

a contradiction.
If i(G-S) =1, then, e=uv € E(G-S) and w(G-S) >2
We infer

1<t(G) < 151

1
e (61)

or

S|

2<T(G)Sm

<1, (62)

a contradiction.

If i(G—-S8) =0, then, K, is a component in G— S and e
=uv € E(K,). If there is another component in G — S except
K, then, w(G - S) > 2, and we get the contradiction similar
to the derivation above. If w(G - S) =1, then, G=Kj since
G is 2-edge-connected graph. Special for K, we yield #(K;)
=1(K;) = +00, G' = P, which is a P.,-factor covered graph.
Hence, K; satisfies the condition of theorem which is a P,
-factor un1f0rm graph.

Case 3. If |§] > 2.

Then, &,(S) <2, i(G' - 8)=2|S| —¢/(S)+1>3 and i(G
-8)2i(G' -8)-2>1.

Notice that if i(G — S) #i(G' - S), then, e € E(G - S) and
w(G-8)2i(G-8)+12i(G' -8)-2+1=i(G' -8)-1. If
i(G-8)=i(G' -S), then, w(G-S8)=i(G-S)=i(G -S).
Combining the above two cases, we have w(G - §) > i(G’ -
S)-1.
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If i(G-S) =2, then
S S
1<iG)s 1o B
w(G-S) i(G' -s) -1
(63)
. N < B
2S— & (S)+1-1 " 2[s|-2
or
S S
2<r(G) s Lo 51
w(G-8)-1 i(G' —s) —1-1
(64)
s s

< .
S 2S|—e(S)+1-2 2[S[-3

It implies |S| < 2, a contradiction.

If i(G - S) = 1, then, using the fact that i(G' - S) > 3, we
confirm that K, and K, are components in G-, e=uv €
E(K,), and i(G' = S) = i(G - S) + 2 = 3. We acquire

N S| S|
1<t(G) < < - =
w(G=8) " i(G-8+1 iOT—S)—l
(65)
. S| <8
2|8 - (S)+1-1" 2|§] -2
or
N S|
2<1(G) < <
<10 SG=9 =1 S G- +1-1
___ i s s (6

< .
i(G/-s) -2 A-al)+1-27 293

Again, in both situation we get |S| < 2, which leads to a
contradiction.

Theorem 12. Let G be a 2-edge-connected graph. If (G) > 1
(resp.t(G) > 2), then, G is a P.;-factor uniform graph.

Proof. For any e=uv € E(G), G' =G —e is connected, and
we only need to prove that G' is P.,-factor covered. On
the contrary, G' is not P,;-factor covered, and we can find
a subset S of V(G') such that

sun(G' —8) =2[S| - &,(S) + 1. (67)
(6" =5) 2218 - ex(8)

The following discussion is divided into three cases
according to the value of [S]. O

Case 1. |S| =0.
Then, &,(S) =0 and sun(G') > 1 by (67). It implies sun
(G')=1,and G’ is a big sun with at least six vertices. More-
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over, G is a graph constructed by adding an edge in a big
sun. Let R be the factor-critical of G’ and x € V(R). We have

VRN >} _[R[=1 _

O ey e SR (@
or
[V(R)\ {x}]|
2<76) = SR ) -1
(69)
IR -1 1 1
< =1+ <1+ =2,
R[-2 IR[-2 3-2
a contradiction.
Case 2. |S| =1.

Then, &,(S) < 1 and sun(G’' - S) > 2 by (67). If w(G - S)
> 2, then

S

1<t(G) < (70)

or

2<1(G) < w(G_S|S)_1 <1, (71)

a contradiction. If w(G — §) = 1, then, e € E(G - §), and it
produces two sun components after deleting e from G - S. If
G - § isomorphic to K,, then, G = K; which is a P, ;-factor
uniform graph. Otherwise, |V(G - S)| >3, and there are at
least two vertices having degree 1 in G —S. Let xy € E(G - S)
such that dg_g(x) =1. We acquire 1 <#(G) <|SU{y}|//w(G
-Su{y}) <1 or 2<7(G) <|SU{y}/w(G-Su{y})-1<
2, a contradiction.

Case 3. S| > 2.

In this case, &,(S) <2, sun(G' - S) >3 by (67), sun(G -
S)=sun(G' —8)-2>1, and w(G-S)>2. If sun(G-S) =
sun(G' =) or sun(G - S) = sun(G' - S) - 1, we deduce

s
1<t(G)= w(G-S) " sun(G-YS)

S 9

< <
sun(G/ =) -1 2~ +1-1 72)
N 1 1

< -2 <l
2(S[-2 2 2/8|-2"2

1 —
2x2-2

>
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or
S| S|
2<1(G) < <

*(G) w(G-8) -1 sun(G-S5)-1

_ s __ K
sun(G'—S)—l—l 2I5] - &(S)+1-2

N 3 1 3

< =_+ < -+ =2,

218-3 2 2(25|-3) 2 2(2x2-3)

(73)
a contradiction.

If sun(G-S)=sun(G' —S) -2, then, edge e=uv
belongs to a nonsun component W, while removing e will
produce two sun components. It means at least one of u
and v is a cut vertex of component W, and without loss of
generality, we set u as a cut vertex in W. Hence, we get

SuU Su
Lexoye ISUlal_ Isufm
w(G-SU{u})  w(G-8)+1

- S| +1 |S] +1
_Sun(G_s)+2_sun(G'—S>—2+2
- S| +1 IS|+1 1
T28|-&(S)+1 T 28 -1 2

1+ 3
2 2(2%x2-1)

3

TENED

>

or

Su Su
yex(Gye  ISUMI_suu]
w(G-Su{u})-1" w(G-S)+1-1
S| +1 S| +1
_sun(G_S)"'l_sun(G'—S)—2+1
[S| +1 S| +1
< <
2|S|—&(S)+1-1 " 2|§]-2
1 1

=1, <1 3
2 S-172 2-1 2

(75)

a contradiction.
Thus, the proof of Theorem 12 is completed.

Theorem 13. Let G be a 2-edge-connected graph. If (G) > (|
V(G)| - 2)/2(resp.I'(G) > |V(G)| - 2), then, G is a P,,-fac-
tor uniform graph.

Proof. Clearly, we have |V(G)| = 3. Foranye=uv, G' =G —e
is connected since G is a 2-edge-connected graph. Similar as
Theorem 11, we only need to verify that G is P,,-factor cov-
ered. In contrast, suppose that G’ is not P_,-factor covered.
In terms of Lemma 2, there is a vertex subset S of G’ that
meets (58). Furthermore, i(G' - S) € {i(G-S),i(G-S) +1,
i(G-S8)+2}.
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We consider three cases in view of the value of |S]. O

Case 1. |S| =0.
We get i(G') > 1 which contradicts to A(G) = 2.

Case 2. |S| =1.
Then, &,(S) <1 and i(G' - 8) = 2[S| —&,(S) + 1 = 2. If i(
G- S) =2, then

V©G)I-2

V(G-

a contradiction.
If i(G-S8)=1, then, e=uv e E(G-S) and assume d_g
(u) > dg_g(v) =1. We infer

V(G)[ -2
2

[SU{u}|

<I(G)sm

<1, (78)
or

V(G)|—2<1’(G)s%sz, (79)

a contradiction.

If i(G-S) =0, then, K, is a component in G— S and e
=uv € E(K,). If there is another component in G — S except
K,, then denote this component by W. Select w e V(W)
such that w has a minimum degree in G — S among all verti-
ces in W. Hence, i(G—SU{u} UN;_4(w)) =2 and

|V(G)| -2 __ 1Su{u} UNg s(w)|
2 MO G somm uGNSG_S(w))
24 [V(W)| =1 _ L+ |V(W)| (80)
- 2 2
_1+V(G)| -3 _ |[V(G)|-2
- 2 - 2

or

|SU{u} UNg 5(w)|
i(G=SU{u} UNg g(w)) -1
< w =1+|V(W) (81)
B 2-1
<1+|V(G)|-3=|V(G)| -2,

V(G)|-2<I'(G) <

a contradiction. If w(G — §) =1, then, G becomes K;. As dis-
cussed in Theorem 11, K5 meets the condition of Theorem
13 that is a P,,-factor uniform graph.

Case 3. |S] > 2.
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Then, &,(S) <2, i(G' - 8)=2[S| —£,(S) + 123 and i(G
~8) 2i(G' —8) — 2> 1. We consider the following subcases
in light of the value of i(G - S).

Case 4. i(G-S) > 2.
If i(G-S)=i(G' - ), then |V(G)| > 4,

2 S| S|
<I(G) < - <
(G=9)"i(c'-s)
S| S| 1 1
< < =_+
2S[—e,(S)+1 - 2S[-1 2 2025|-1)
1 1 2

2 22x2-1) 3

>

(82)

or

2<|V(G)|-2<I'(G) < ﬁ

s s
i -s) -1 AWlma® -t (83)

S| 1
< =_
2S-2 2

1
+ <
28|-2

1 1
[
2 2x2-2

a contradiction.
Ifi(G-S8) #i(G' - ), then, |[V(G)| 26,

V(G)[ -2
2

IS N

i(G-9) i(G’—s)—z

< 18| < IS (84)
28—, (S)+1-2 ~ 2[S[-3
1 3 3

1
:—+7S—+7:2)
2 2025]-3) "2 2(2x2-3)

2< <I(G) <

a contradiction. For 7(G), if |S| = 3, then

4<|V(G)| -2<I'(G) < %

R g R .
i(6'-5)-2-1 2-a©+1-3 (85)
N 1 2

< =_+
215]-4 2 2/5-4

<

2 3
2x3-4 2

1
<-4
2

>

a contradiction. If |§| =2, we can easily check that 4 <
|V(G)|-2<TI'(G) <|S|/i(G~S) —1<2, a contradiction.

Case 5. i(G-S) = 1.
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Since i(G' - §) > 3, we confirm that K, and K, are com-
ponents in G-, e=uv € E(K,) and i(G' —8) =i(G-S) +
2 =3. Using |V(G)| = 5, we acquire

3 V(G)| -2 Su
3 IVEOI=2 g ISU{m)]
2 2 i(G-Su{u})
B [S]+1 B [S]+1
i(G-9)+1 i(G’—s)—2+1
(86)
[S]+1 S| +1
< <
28|~ (S)+1-1" 2|52
1 2 1 2 3
==+ < -+ ==,
2 2§[-272 2x2-2 2
or
SU{u}|
3<|V(G)|-2<1'(G g—|
e ()< e=s0 -1
3 S| +1 _ S| +1
_i(G—S)+1—1_i(G’_S)_2
(87)
|S| +1 |S| +1
TS| (S)+1-2 " 2[5[-3
1,5 1 5,
T2 2(28]-3) T2 2(2x2-3)

a contradiction.
Thus, we confirm that Theorem 13 is established.

Theorem 14. Let G be a 2-edge-connected graph. If (G) > (|
V(G)| - 2)/2(resp.I'(G) > |V(G)| - 2), then, G is a P, ;-fac-
tor uniform graph.

Proof. For any e=uv € E(G), G' =G - e is connected, and
we only need to prove that G' is P.,-factor covered. On
the contrary, G’ is not P, ;-factor covered. Then, there exists
a subset S of V(G') satisfying (67). O

Let a, b, ¢ be the number of K; components, K, compo-
nents, and big sun components in G — S, respectively. Let
H,,---, H, be big sun components in G — S with |V(H,)| >
6. Choosing one vertex from each K, component in G- §
and let X be the set of these vertices. Set R; as the factor-
critical subgraph of H; and Y = U{_, V(R;). We have |X|=b,
|Y| =Y |H|/2 and a+b+c=sun(G-S)=sun(G' -S) -
2. The following discussion is divided into three cases
according to the value of |S].

Case 1. |S] =0.

Then, &,(S)=0 and sun(G')>1 by (67). It implies
sun(G') =1, G' is a big sun with at least six vertices, and |
V(G)| = 6. Moreover, G is a graph constructed by adding

an edge in a big sun. Let R be the factor-critical of G'. We
obtain
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V(G)| -2 V(R
2 VOI72 o VR
2 i(G-V(R))
(88)
IR| 1 13
< =1+ <1+ =2,
IR -1 IR -1 3-1 2
or
V(R
4<|V(G)|-2<I'(G) < %
i(G-V(R)) -1
(89)
IR| 2 2
IR -2 IR| -2 3-2
a contradiction.
Case 2. |S| =1.

In this case, &,(S) <1, sun(G' —S) >2 by (67), and a =0
since |S| =1 and G is 2-edge-connected.
Case 3. sun(G - S) =sun(G' - S).

We get i(G-SUXUY)=b+Y; |H|/2>b+3c>b+c
=sun(G-S) =sun(G' - §) =2 and |V(G)| 24 (if |V(G)| =
3, then G=K;, G- S isomorphic to K, which contradicts
to sun(G - S) = sun(G' - S) > 2).

If |[V(G)| = 6, using the definition of isolated toughness,
we have

ZSW# <I(G) <

L4+ X5 (|H2)
b+ Yo (Hi[12)

ISUXUY|

i(G-SUXUY) 50)

>

which implies b+ Y | |H;|/2 < 1, a contradiction. For I'(G),
we yield

SUXUY|
4<|V(G)| -2<I'(G) < |
V(G)] (@) i(G-SUXUY)-1

_L+b+ X (H )
by (H|2) -1

(o1)

which implies 3b + 3} ;| |H;|/2 < 5, contradicting to b+ ¢ > 2

If |V(G)| =5, then, c=a=0 and

3 |V(G)|-2 SUX| 145
g ) DY , 2
2 > MO G50n = B 2)
or
SuX 1+b
3=|V(G)|-2<I'(G) < SUX] 14D gy

Ti(G-SuX)-1" b-1’

which implies b < 2 which contradicts to b=sun(G-3S§) =
sun(G' - 8) = 2.

If |V(G)| =4, then, c=a=0 and b=1 contradicting to
b=sun(G-S) =sun(G' - ) >2.
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Case 4. sun(G - S) =sun(G’' - S) - 1.
In this case, sun(G - §) > 1 since sun(G' - §) > 2.
Claim 1. If K, is one of components in G - S, then, ecE(K,).
Proof. Suppose K, is a component in G— S and e € E(K,) is
exactly a deleted edge, set u € V(K,). If G- S is isomorphic
to K,, then, G is isomorphic to K; which is clearly a P,
-factor uniform graph. O

If there is a K, component in G - S, then, |V(G)| = 4 and

[V(G)[ -2
2

SUG] 2y

1< N il i B
i(G-Su{u}) = 2

<I(G) <

or

:2’

2<|V(G)|-2<T'(G) < i(GJiLiJ{{L:t}}')—l < 231

(95)

a contradiction.

If there is another K, component or big sun component
in G- S (say W), then, there is a vertex x in W such that
di_g(x) =1 and assume xy € E(G-S). We have |V(G)| =5
and

2SW}2)|_2<I(G)Smg;, (96)
or
3<|V(G)|-2<I'(G) < i(GJSSt{{t,yy}}J)_l . 231 s

(97)

a contradiction.

If there exists a nonsun component in G- 3§ (say M),
the,n we select x € V(M) with its degree in G—§ as small
as possible. We infer

V(G)| -2 SO {4} U (VM) - {x})
e (OF i(G-SU{u} U(V(M) - {x}))
V(G)| -2

<!l 271 =

2

(98)

>

or

, ISU{u} U (V(M)-{x})|
V(G)|-2<I'(G)< i(G-Su{u}u(V(M)-{x})) -1

<|V(G)|-2,
(99)

a contradiction.
Hence, the claim is hold.
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From Claim 1, we see that there is a nonsun component
W in G - S with |V(W)| >3 (and hence, |V(G)| > 5), delete
edge e =uv from W, and then, it produces a new sun com-
ponent in G — S. Thus, there is a vertex x in W with d_¢(x
) =1, and set xy € E(G - S). Note that sun(G-S) > 1, if K,
is a component in G - S, then, we yield

ESW<I(G)S
2 2

ISU
i(G-SU{y})

IN

2

—-=1, 100
o= (100)
or

=2,

3<|V(G)|-2<I'(G) < i(GJSSLiJ{{yy}}'>_1 < 231

(101)

a contradiction. If K, or a big sun is a component in G- S
(denote this sun component by M), then, there is a vertex
x" in M with dg_s(x')=1, and set x'y’ € E(G-S). We
acquire

VG2 . [0

N CE )

3 3
Z< <—, (102
3 5> (102)

or

sopryl s

i(G—Su{y,y’})-l S2-1

(103)

3<|V(G)| -2<I'(G) <

a contradiction.

Case 3. sun(G—S) =sun(G' - §) - 2.
In this case, there is a nonsun component W in G -,
and it produces two sun components after deleting e =uv

from W. Thus, there are at least two vertices x,x’ € V(W)
such that dg s(x) =dg_s(x')=1. Set xy,x'y' € E(W) and
note that y and y' are allowed to be the same vertex (if W
=P,). If W =P, then, y=y', |V(G)| 2 4, and

V()| -2
2

[SU{y}

1< B Lt V1 B
i(G=-Su{y})

2
<I(G)< < 5= 1, (104)
or

:2,

2<|V(G)| -2<I'(G) < i(G—|SSUU{{);/}}|)—1 < 231

(105)

a contradiction. Otherwise, |V(G)| > 5, and
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VG2 . SUD]

R CE )

3 3
Z< < -, (106)
2 2

or

soprt s

i(G—Su{y,y’})—1 S 2-1

(107)

3<|V(G)|-2<I'(G) <

a contradiction.

Case 4. |S] = 2.
In this case, &,(S) <2, a+ b+ c=sun(G' - ) >3 by (67),
and sun(G - S) > sun(G' - S) -2 > 1. We have |V(G)| =5,

-2
;g % <I(G)
[SUXUY]| (108)

3 IS/ +b+ 3L (H2)
T i(G-SuXUY)

b+ Y (|Hi|/2)

Then, the rest proof process is consistent with the part of
Theorem 4 and Theorem 5 in Gao et al. [22], and we will not
repeat here.

Hence, the proof of Theorem 14 is finished.

3. Sharpness

In this section, we present some counterexamples to verify
that the bounds of parameters in theorems in the second sec-
tion are tight.

3.1. Sharpness of Theorem 4-Theorem 6. We manifest that (1)
MG)=m+1and t(G) > m/(m + 1) or (G) > 1 in Theorem 4
cannot change to A(G) >m and t(G) =m/(m+ 1) (or 7(G)
=1); (2) MG)=2m+1 and I(G) > 2m/(m+1) or I'(G) >2
in Theorem 5 cannot change to A(G) >m and I(G) =2m/(2
m+1) (or I'(G) = 1); 3) A(G) = m + 1 and bind(G) > 3/2 in
Theorem 6 cannot change to A(G) > m and bind(G) = 3/2.

Let G=K,,vV(mK, UK)). Taking one vertex from each
K, and denote X by the set of these vertices, we have

_ VK)o om
O)= SG-vK,)) “me1’
_ [V (K, __m
)= S G=-VK, ) =1 ma1-1 "
_ VK,)ux] o 2m
16)= i(G-V(K,)-X) m+1’ (109)

roye  IVK)UX] o 2m
( )_i(G—V(Km)—X)—l_m+1—1_
_ INg(V(mKy))| _3m _3

bind(G) W =35

>
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Set E' =E(mK,) and G'=G-E' =K, Vv((2m+1)K)).
Then, |E'| = m, and by setting S= K, we have

i(G'—S)=2m+1>2m=2|S|. (110)

Thus, G' has no P.,-factor, and accordingly, G is not a
(P,,, m)-factor-deleted graph.

3.2. Sharpness of Theorem 7 and Theorem 8. We show that
the toughness bounds in Theorem 7 and Theorem 8 are best.
Consider G=K,,V(3K,), and we have x(G)=k+2, t(G)
= (k+2)/3 and 7(G) = (k+2)/2. Set U < V(G) with |U| =
k, and let G' = G- U =K,V(3K,). Take S=K, in G', then,
we have ¢,(S) = ¢&,(S) =2,

i(c’ —s) =3>2=25| - &(S),
(111)
sun(G' - §) =3>2=2[8] - &,(5).

Hence, according to Lemma 2, G’ is not P_,-factor cov-
ered, and G is not a (P.,, k)-factor critical covered graph.
Moreover, in terms of Lemma 3, G is not P_;-factor cov-
ered, and G is not a (P, k)-factor critical covered graph.

3.3. Sharpness of Theorem 9. We depict that the isolated
toughness bounds in Theorem 9 for a graph to be (P.,, k)
-factor critical covered are best. Consider G = K, ,V(2K, U
K,) where ¢ is enough large, and we have x(G) =k + 1, I(G
)=(k+1/2)(k+1)/2 and I' (G) =k + 1. Set U < V(G) with
|U|=k, and let G'=G-U=K,V(2K, UK,). Set S as the
first K, in G', then, we have &,(S) = 1 and

i(G'—S)=2>1=2|S|—el(S). (112)

Hence, by means of Lemma 2, G' is not P,,-factor cov-
ered, and G is not a (P,,, k)-factor critical covered graph.

3.4. Sharpness of Theorem 10. The isolated toughness condi-
tions in Theorem 10 are tight. Consider G = K;,,V(2K, U
G'") where G'" is connected but not a sun. Set U ¢ V(K,,,
) with |[U| =k, G' =G-U=K,V(2K,UG""), and $=K, in
G'. Selecting one vertex from each K, in the 2K, part and
denoting X by the set of these two vertices, we confirm

1(G) = [UuSUX|  |UJ+|S]+[X]|

(G-UUSUX) (6 -sux)

_k+1+2 3+k

T2 27

(113)

1'G) = [UuSUX|
( )_i(G—UUSUX)—l

|U| + |S] + |X] k+1+2

i(G'—SUX)—l
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On the other hand, &,(S) = 1 since G'' is a nonsun com-
ponent of G’ — S and

sun<G’—S) =2>1=25| - &(S). (114)

In view of Lemma 3, G' is not P, ;-factor covered, and G
is not a (P, k)-factor critical covered graph.

3.5. Sharpness of Theorem 11. The toughness bounds in The-
orem 11 are tight. Consider G = K,V(K, UK,) which is 2-
edge-connected graph with #(G) =1 and 7(G) = 2. Select e
€E(K,UK,) and set G' =G -e=K,V(3K,). Let S= V(K,
) S V(G'). We have ¢,(S) =2 and

i(G’—S):3>2:Z|S|—sl(S). (115)

Therefore, by means of Lemma 2, G is not P.,-factor
covered, and G is not a P.,-factor uniform graph.

3.6. Sharpness of Theorem 12. The isolated toughness bounds
in Theorem 12 are sharp. Consider G = K,V(2K,) which is a
2-edge-connected graph. We have ¢(G) = 1 and 7(G) = 2. Let
e€E(2K,), G' = G- e=K,V(K, U2K,), and S be the vertex
set of first K, in G'. We infer &,(S) = 2 and

sun(G’—s) =3>2=25| - &(S). (116)

Hence, in terms of Lemma 3, G’ is not P.,-factor cov-
ered, and G is not a P ;-factor uniform graph.

3.7. Sharpness of Theorem 13 and Theorem 14. To show the
isolated toughness bounds in Theorem 13 and Theorem 14
that are sharp, we consider G=K,V(K, UK,) where ¢ is a
large number. Select one vertex from K, and t — 1 vertices
from K, and denote X by the vertex subset of these vertices.
We have

__IV(KYUX]|
16)= i(G-V(K,)UX)
_ L+t _1+|V(G)[-3 _|V(G)|-2
2 [V(Ky) ?z(l . )
! 1 U
O = e v&)ux -1

1+t
:_2+1 —1+|V(G)|-3=|V(G)|-2.

On the other hand, let e € E(K,) and G' = G —e =K, V(

2K, UK,). Let S be the vertex set of first K, in G', and then,
we have €,(S) =&,(S) =1,

i(G' —s) =2>1=25|—&/(S),
(118)
sun(G' —S) =2>1=2|5| - &(S).
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Therefore, by means of Lemma 2, G' is not P,,-factor
covered, and G is not a P.,-factor uniform graph. Also, in
terms of Lemma 3, G’ is not P,;-factor covered, and G is
not a P,;-factor uniform graph.

4. Open Problems

The restrictions in factor critical graphs can be further
extended to more general ones. For instance, a graph G is
a (P, k, m)-factor critical covered graph if removing any
k vertices from G, the resting subgraph is still a (P, m)
-factor covered graph (that is, if for any E € E(G) with |E|
=m, G has a P, -factor containing all the edges in E, and
then, G is called a (P,,, m)-factor covered graph). The big-
gest obstacle to solve these problems is lacking of necessary
and sufficient condition for (P.,, m)-factor covered graph.
Hence, as the first step, we need to expand the results on
P.,-factor covered graph and P.;-factor covered graph
determined by Zhang and Zhou [15] to necessary and suffi-
cient condition of (P,,, m)-factor covered graph and (P.;,
m)-factor covered graph. These problems are worthy of deep
study in the future.
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