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Let G = V ; E be a simple graph with vertex set V and edge set E. In a graph G, a subset of edges denoted byM is referred to as an
edge-dominating set of G if every edge that is not in M is incident to at least one member of M. A set M ⊆ E is the locating
edge-dominating set if for every two edges e1, e2 ∈ E −M , the sets N e1 ∩M and N e2 ∩M are nonempty and different. The
edge domination number γL G of G is the minimum cardinality of all edge-dominating sets of G. The purpose of this study is
to determine the locating edge domination number of certain types of claw-free cubic graphs.

1. Introduction

The domination number is a key metric in graph theory,
which plays a crucial role in analyzing and comprehending
a graph structure [1]. The initial investigations into the con-
cept of the domination number can be credited to scholars
such as Berge [2]. He examined numerous facets of this
notion and its applications in graph theory. This metric finds
utility in diverse domains, encompassing network architec-
ture [3], facility placement [4], and network efficiency and
security challenges [5]. Determining the domination num-
ber of a graph is frequently a pivotal stage in resolving
optimization problems within graph theory [6]. Edge-
dominating sets play a crucial role in a wide range of appli-
cations, including network architecture, where the primary
objective is to achieve effective connectivity while minimiz-
ing the number of edges required. Mitchell and Hedetniemi
are the ones who initially proposed the concept of an edge-
dominating set [7].

The extension of domination properties to fuzzy graphs
is also possible. The following are important properties
related to domination in fuzzy extensions on graphs: fuzzy
domination, fuzzy total domination, fuzzy edge domination,

fuzzy locating domination, and fuzzy connected domination
([8, 9]). In a recent study by Sarwar et al., the researchers
examined certain formulas determining the lower and upper
bounds of dominating and double-dominating energy. The
authors also introduced the concept of double-dominating
energy of m-polar fuzzy digraphs [10]. A decision model uti-
lizing m-polar fuzzy preference relations was proposed to
address multicriteria decision-making challenges. Studying
rough approximations of graphs and hypergraphs [11], dis-
tance measures in rough environments [12], and decision-
making based on a color spectrum in rough environments
provides an extension of domination features [13]. The com-
putation of domination numbers has been conducted for
certain categories of graphs, including sparse graphs [14],
grid graphs [15], planar graphs [16], regular graphs [17],
bipartite graphs [18], social networks, random geometric
graphs, pseudofractal scale-free web graphs [19], wheel
graphs [20], neural networks [21], and others [22].

Motivated by the above articles, the present study under-
takes the task of calculating the edge domination in claw-
free cubic graphs. Claw-free cubic graphs have several appli-
cations in different fields; in network design, they can be
used as models for network design problems, such as
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designing communication or transportation networks, and
their properties make them suitable for creating efficient
and reliable network topologies. In VLSI (very large-scale
integration) design, claw-free cubic graphs can be used to
represent the layout of integrated circuits, and the absence
of claws simplifies the layout design process and leads to
more regular and efficient chip layouts. In algorithm devel-
opment, algorithms for various problems can be tested and
developed on claw-free cubic graphs due to their well-
defined properties. In computational biology, they have been
used in modeling biological networks and evolutionary rela-
tionships and provide a structured way to represent and
analyze complex biological data. In grid computing and
mesh topologies, they can serve as models for designing grid
or mesh topologies, and these are important for interconnect-
ing computing nodes efficiently. In scheduling and timeta-
bling, claw-free cubic graphs have been applied to scheduling
and timetabling problems, where the goal is to allocate
resources or time slots efficiently. In planar graphs, these
graphs are a special case of planar graphs, which have applica-
tions in geographic information systems, cartography, and
layout problems in computer-aided design.

This paper is organized in the following way. To demon-
strate our primary findings, we will begin by reviewing some
fundamental concepts, definitions, and notations relevant to
graph theory and combinatorics in Section 2. In Section 3,
we will demonstrate the significance of our findings by
referring to the concepts presented in Section 2. The paper’s
final section has some concluding thoughts regarding the
entire study.

2. Preliminaries

For undetermined notations and terminologies, we refer the
readers to read the book by Haynes et al. [23].

Let G = V ; E be a simple graph with vertex set V and
edge set E. The neighborhood or open neighborhood of a
vertex v (or edge e) of the graph G is represented by the var-
iable N v (or, resp., N e ), and it is the set of all neighbors
of the vertex v (or edge e), respectively. In a graph G, a subset
of edges denoted by M is referred to as an edge-dominating
set of G if every edge that is not in M is incident to at least
one member of M. A set M ⊆ E is the locating edge-
dominating set if for every two edges e1, e2 ∈ E −M , the
sets N e1 ∩M and N e2 ∩M are nonempty and different.
The edge domination number γL G of G is the minimum
cardinality of all edge-dominating sets of G [20]. Slater was
the first person to present and investigate the idea of posi-
tioning, often known as locating dominating set [24–26].

As a generalization of line graphs, claw-free graphs were
first investigated and analyzed. The complete bipartite graph
K1,3 is a tree usually called the claw graph. A claw-free graph
is a graph that does not have a claw as an induced subgraph.
The construction of claw-free perfect graphs was the first
topic that Chavatal and Sbihi investigated [27]. Later on,
Chudnovsky and Seymour show how the claw-free graph
can be constructed in the most general way [28]. Cubic
graphs are connected graphs having the property that each
vertex has a degree of exactly three [29]. A standard problem

in structure enumeration is the production of cubic graphs,
which can be thought of as a benchmark. Around the close
of the 19th century, de Vries and Martinetti provided one
of the first comprehensive lists of cubic-connected graphs
when he provided a list of all graphs that are cubic with a
maximum of 10 vertices [30]. They may be used to represent
three-dimensional objects, which will enable you to find a
dimension that is missing or investigate the impact that
changes made to one or more dimensions have.

Here, we introduce claw-free graphs in a different and
generalized manner. A complete graph K4 with the removal
of one edge is called diamond [31], and it is denoted by D. A
string of diamonds LN is a maximal sequence of diamonds
D1,D2,⋯,DN in which a vertex of degree two of Di is joined
by an edge to a vertex of degree two of Di+1 1 ≤ i ≤N − 1 ,
and joining the pendent vertex of D1 and DN to a vertex of
K3 (see Figure 1). Furthermore, if G is a connected-claw-
free simple cubic graph via every vertex in a diamond, then
G is often referred to as a ring of diamonds (see Figure 2).

At this stage, we are going to look at two infinite families
G and H. Let GK be a graph that is obtained in the following
manner for k ≥ 2. Consider two copies of the path P2k, each
with the vertex sequences a1, a2,⋯, an and b1, b2,⋯, bn. For
each n ∈ 1, 2,⋯, 2k, join an−1 to bn, bn−1 to an, a1 to b1, and
an to bn to complete the graph’s structure. See for illustra-
tion, Figure 3(a). Consider HK represent the graph formed
from GK for K ≥ 2 through combining a1an and b1bn and
deleting a1b1 and anbn. See, for illustration, Figure 3(b). It
has been brought to our attention that both GK and HK
are cubic graphs of order 4K .

3. Main Results

In this section, we will compute the locating edge-dominating
set and the locating edge domination number for several kinds
of claw-free cubic graphs.

Theorem 1. Let LN be a string of diamonds (see Figure 1).
Then, locating edge-dominating number of LN is γL LN =
2N + 4

Proof. The string of diamonds LN has V LN = xi, yi, zi ; 1 ≤
i ≤ 2 ∪ ai, bi, ci, di,;1 ≤ i ≤ n and E LN = aibi, bici, cidi, ai
di ; 1 ≤ i ≤ n ∪ xiyi, yizi, xizi ; 1 ≤ i ≤ 2 ∪ a1z1, cnzn ver-
tex and edge sets. The cardinality of the vertex set is V LN
= 4N + 6, while the cardinality of the edge set is E LN = 6
N + 7. In order to demonstrate the minimum cardinality
required for the locating edge-dominating set, i.e., γL LN =
2N + 4 with N ≥ 1. Take edge set of LN , i.e., E LN = aibi,
bici, cidi, aidi ; 1 ≤ i ≤ n ∪ xiyi, yizi, xizi ; 1 ≤ i ≤ 2 ∪ a1z1,
cnzn . Choose a dominating set M from edge set that is
M = xiyi, xizi ; 1 ≤ i ≤ 2 ∪ aibi, bici ; 1 ≤ i ≤ n .
As we observed, the cardinality of locating edge-dominating
set is M = 2N + 4. Subtracting the dominating set from edge
set, we get E −M = yizi ; 1 ≤ i ≤ 2 ∪ aidi, bidi, cidi ; 1 ≤ i
≤ n ∪ ciai+1 ; 1 ≤ i ≤ n − 1 . The result of putting M and
E −M together is as follows:
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N y1z1 ∩M = x1y1, x1z1 ,
N y2z2 ∩M = x2y2, x2z2 ,
N z1a1 ∩M = x1z1, a1b1 ,
N cnz2 ∩M = bncn, x2z2 ,

N aidi ; 1 ≤ i ≤ n ∩M = aibi ; 1 ≤ i ≤ n ,
N bidi ; 1 ≤ i ≤ n ∩M = aibi ∪ bici ; 1 ≤ i ≤ n ,
N cidi ; 1 ≤ i ≤ n ∩M = bici ; 1 ≤ i ≤ n ,

N ciai+1 ; 1 ≤ i ≤ n − 1 ∩M = bici ∪ bi+1ci+1 ; 1 ≤ i ≤ n − 1
1

From the above expressions, it is simple to see that they
are all nonempty and distinct. It indicates that the dominat-
ing set M dominates all edges in LN , and it satisfied the
condition, i.e., for e1, e2 ∈ E −M , the sets N e1 ∩M

and N e2 ∩M are nonempty and different.
Now,wewill prove that theedgesetM is aminimumlocating

edge-dominating set. For that, we will take the edge-dominating
set M, i.e., M = xiyi, xizi ; 1 ≤ i ≤ 2 ∪ aibi, bici ; 1 ≤ i ≤ n .
To prove the minimum cardinality, we will remove any edge
from dominating set. For example, let us remove the edge
x1y1 from the set M. Now, consider the new dominating

set M′ = x2y2, xizi ; 1 ≤ i ≤ 2 ∪ aibi, bici ; 1 ≤ i ≤ n . Sub-
tracting the new dominating set M′ from the edge set E, i.e.,
E −M′ = xiyi ∪ yizi ; 1 ≤ i ≤ 2 ∪ aibi, bidi ; 1 ≤ i ≤ n ∪
ciai+1 ; 1 ≤ i ≤ n . The result of putting E −M′ and M′

together is as follows:

N x1y1 ∩M = x1z1 ,
N y1z1 ∩M = x1z1

2

From the above expressions, it is easy to see that for e1,
e2 ∈ E −M′ , the sets N e1 ∩M and N e2 ∩M are the
same, which is a contradiction itself. So, M is the mini-
mum locating edge-dominating set, and the locating edge-
dominating number of LN is γL LN = 2N + 4.

Theorem 2. Let RN be a ring of diamonds. Then, locating
edge domination number for RN is γL RN = 2N .

Proof. The ring of diamonds RN has V RN = ai, bi, ci, di ;
1 ≤ i ≤ n and E RN = aibi ∪ bici ∪ bidi ∪ cidi ∪ aidi ; 1 ≤ i
≤ n ∪ ciai+1 ∪ a1cn vertex and edge sets. The cardinal-
ity of the vertex set is V RN = 4N , while the cardinality of
the edge set is E RN = 6N . In order to demonstrate the
minimum cardinality required for the locating edge-
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dominating set, i.e., γL RN = 2N for N ≥ 2. Take edge set of
RN , i.e., E RN = aibi ∪ bici ∪ bidi ∪ cidi ∪ aidi ; 1 ≤ i ≤ n ∪
ciai+1 ; 1 ≤ i ≤ n − 1 ∪ a1cn . Choose a dominating set M
from the edge set that is M = aibi ∪ bici ; 1 ≤ i ≤ n . As we
observed, the cardinality of locating edge-dominating set is
M = 2N . Subtracting the dominating set from edge set,
we get E −M = aidi ∪ bidi ∪ cidi ; 1 ≤ i ≤ n ∪ ciai+1 ; 1 ≤ i
≤ n − 1 ∪ a1cn . The result of putting E −M and M

together is as follows:

N aidi ; 1 ≤ i ≤ n ∩M = aibi ; 1 ≤ i ≤ n ,
N bidi ; 1 ≤ i ≤ n ∩M = aibi ∪ bici ; 1 ≤ i ≤ n ,
N cidi ; 1 ≤ i ≤ n ∩M = bici ; 1 ≤ i ≤ n ,

N ciai+1 ; 1 ≤ i ≤ n − 1 ∩M = bici ∪ ai+1bi+1 ; 1 ≤ i ≤ n − 1 ,
N a1cn ∩M = bncn ∪ a1b1

3

From the above expressions, it is simple to see that they
are all nonempty and distinct. It indicates that the dominat-
ing setM dominates all edges in RN , and it satisfied the con-
dition, i.e., for e1, e2 ∈ E −M , the sets N e1 ∩M and
N e2 ∩M are nonempty and different.

Now, we will prove that the edge set M is a minimum
locating edge-dominating set. For that, we will take edge-
dominating set M, i.e., M = aibi ∪ bici ; 1 ≤ i ≤ n . To prove
the minimum cardinality, we will remove any edge from
dominating set. For example, let us remove the edge a1b1
from the set M. Now, consider the new dominating set
M′ = aibi ; 2 ≤ i ≤ n ∪ bici ; 1 ≤ i ≤ n . Subtracting the new
dominating set M′ from the edge set E, i.e., E −M′ = a1b1
∪ aidi ∪ bidi ∪ cidi ; 1 ≤ i ≤ n ∪ ciai+1 ; 1 ≤ i ≤ n − 1
∪ a1cn . The result of putting E −M′ and M′ together is
as follows:

N a1b1 ∩M′ = b1c1 ,
N a1d1 ∩M′ = ϕ

4

From the above expressions, it is easy to see that the set
N a1d1 ∩M is empty, which is a contradiction itself. So, M
is the minimum locating edge-dominating set, and the locating
edge-dominating number of RN is γL RN = 2N.

Theorem 3. Let Gk be a cubic graph. Then, locating edge
domination number of Gk is γL Gk = 2K .

Proof. The cubic graph GK has V GK = ai ∪ bi ; 1 ≤ i ≤ 2n
and E GK = aiai+1 ∪ bibi+1 ; 1 ≤ i ≤ 2n − 1 ∪ biai+1 ∪ ai
bi+1 ; 1 ≤ i ≤ 2n − 1 ∪ a1b1 ∪ a2nb2n vertex and edge
sets. The cardinality of the vertex set is V Gk = 4K , while
the cardinality of the edge set is E Gk = 6K . In order to
demonstrate the minimum cardinality required for the
locating edge-dominating set, i.e., γL Gk = 2K for K ≥ 1.
Take edge set of GK , i.e., E GK = aiai+1 ∪ bibi+1 ; 1 ≤ i ≤ 2n
− 1 ∪ biai+1 ∪ aibi+1 ; 1 ≤ i ≤ 2n − 1 ∪ a1b1 ∪ a2nb2n .
Choose a dominating set M from the edge set that is

M = a2b1 ∪ a2nb2n−1 ∪ aiai+1 ∪ bibi+1 , where i is even
and 2 ≤ i ≤ 2n − 2. As we observed, the cardinality of locating
edge-dominating set is M = 2K. Subtracting the dominating
set from edge set, we get E −M = aibi+1, bibi+1 ; 1 ≤ i ≤ 2n − 1
∪ aiai+1 ; 3 ≤ i ≤ 2n − 1 ∪ biai+1 ; 3 ≤ i ≤ 2n − 3 ∪ a1b1,
a2nb2n (where i is odd). The result of putting E −M and M

together is as follows:

N a1b1 ∩M = a2b1, a1a2 ,
N a1b2 ∩M = b2b3 ,
N b1b2 ∩M = a2b1, b2b3 ,
N a3a4 ∩M = a2a3, a4a5 ,

N a2nb2n ∩M = a2nb2n−1

5

From the above expressions, it is simple to see that they are
all nonempty and distinct. It indicates that the dominating set
M dominates all edges in GK , and it satisfied the condition,
i.e., for e1, e2 ∈ E −M , the sets N e1 ∩M and N e2 ∩M

are nonempty and different.
Now, we will prove that the edge set M is a minimum

locating edge-dominating set. For that, we will take edge-
dominating set M, i.e., M = a2b1 ∪ a2nb2n−1 ∪ aiai+1
∪ bibi+1 , where i is even and 2 ≤ i ≤ 2n − 2. To prove the
minimum cardinality, we will remove any edge from domi-
nating set. For example, let us remove the edge a2b1 from
the set M. Now, consider the new dominating set M′ =
a2nb2n−1 ∪ aiai+1 ∪ bibi+1 , where i is even and 2 ≤ i ≤ 2n
− 2. Subtracting the new dominating set M′ from the edge
set E, we get E −M′ = a2b1 ∪ aibi+1, bibi+1 ; 1 ≤ i ≤ 2n − 1
∪ aiai+1 ; 3 ≤ i ≤ 2n − 1 ∪ biai+1 ; 3 ≤ i ≤ 2n − 3 ∪ a1b1,
a2nb2n (where i is odd). The result of putting E −M′ and
M′ together is as follows:

N a2b1 ∩M′ = a2a3 ,
N a1b1 ∩M′ = ϕ,
N a1a2 ∩M′ = a2a3

6

From the above expressions, it is easy to see that for e1,
e2 ∈ E −M′ , the sets N e1 ∩M and N e2 ∩M are the
same and empty, which is a contradiction itself. So, M is the
minimum locating edge-dominating set, and the locating
edge-dominating number of GK is γL GK = 2K.

Theorem 4. Let Hk be a cubic graph. Then, locating edge
domination number of Hk is γL Gk = 2K .

Proof. The cubic graph Hk has V HK = ai ∪ bi ; 1 ≤ i ≤ 2n
and E HK = aiai+1 ∪ bibi+1 ; 1 ≤ i ≤ 2n − 1 ∪ biai+1
∪ aibi+1 ; 1 ≤ i ≤ 2n − 1 ∪ a1a2n ∪ b1b2n vertex and edge
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sets. The cardinality of the vertex set is V Hk = 4K , while
the cardinality of the edge set is E Hk = 6K . In order to
demonstrate the minimum cardinality required for the
locating edge-dominating set, i.e., γL Hk = 2K for K ≥ 2.
Take edge set of HK , i.e., E HK = aiai+1 ∪ bibi+1 ; 1 ≤ i ≤ 2
n − 1 ∪ biai+1 ∪ aibi+1 ; 1 ≤ i ≤ 2n − 1 ∪ a1a2n ∪ b1b2n .
Choose a dominating set M from the edge set that is M =
a2b1 ∪ a2nb2n−1 ∪ aiai+1 ∪ bibi+1 , where i is even
and 2 ≤ i ≤ 2n − 2. As we observed, the cardinality of locating
edge-dominating set is γL Hk = 2K . Subtracting the domi-
nating set from edge set, we get E −M = a1a2n ∪ aiai+1
∪ bibi+1 ∪ aibi+1 ; 1 ≤ i ≤ 2n − 1 ∪ biai+1 ; 3 ≤ i ≤ 2n − 3 ∪
b1, b2n , where i is odd. The results of puttingM and E −M

together are as follows:

N a1a2 ∩M = a2b1, a2a3 ,
N a1b2 ∩M = b2b3 ,
N b1b2 ∩M = a2b1, b2b3 ,
N b3b4 ∩M = b2b3, b4b5 ,

N a1a2n ∩M = a2nb2n−1 ,
N b1b2n ∩M = a2b1

7

From the above expressions, it is simple to see that they are
all nonempty and distinct. It indicates that the dominating set
M dominates all edges in HK , and it satisfied the condition,
i.e., for e1, e2 ∈ E −M , the sets N e1 ∩M and N e2 ∩M

are nonempty and different.
Now, we will prove that the edge set M is a minimum

locating edge-dominating set. For that, we will take edge-
dominating set M, i.e., M = a2b1 ∪ a2nb2n−1 ∪ aiai+1
∪ bibi+1 ; . To prove the minimum cardinality, we will
remove any edge from dominating set. For example, let us
remove the edge a2b1 from the set M. Now, consider
the new dominating set M′ = a2nb2n−1 ∪ aiai+1 ∪ bibi+1 ,
where i is even and 2 ≤ i ≤ 2n − 2. Subtracting the new domi-
nating setM′ from the edge set E, we get E −M′ = a2b1 ∪
a1a2n ∪ aiai+1 ∪ bibi+1 ; 1 ≤ i ≤ 2n − 3 ∪ aiai+1, bibi+1 ; 1
≤ i ≤ 2n − 1 , where i is odd. The result of putting E −M′ and
M′ together is as follows:

N a2b1 ∩M′ = a2a3 ,
N a1a2 ∩M′ = a2a3

8

From the above expressions, it is easy to see that for e1,
e2 ∈ E −M′ , the sets N e1 ∩M and N e2 ∩M are the
same, which is a contradiction itself. So, M is the mini-
mum locating edge-dominating set, and the locating edge-
dominating number of HK is γL GK = 2K.

4. Conclusions

Claw-free cubic graphs are graphs with no induced sub-
graphs that are isomorphic to a claw. In this study, we used
fundamental graph theory and combinatorics definitions to
ascertain the edge-locating dominating set and the domina-
tion number for various classes of claw-free cubic graphs.
We have discovered the locating edge-dominating set and
the domination number for the cubic graphs Gk and Hk, as
well as the string of diamonds LN and the ring of diamonds
RN . The fact that the edge-dominating number for these
graphs is less than almost half of their orders is highly inter-
esting information. Because of their well-defined form and
features, graphs are valuable in modeling, analysis, and
problem-solving tools that may be applied across various
domains. This current work is limited to edge-locating dom-
inating set and domination number of various classes of
simple claw-free cubic graphs, and its consequences may
not be validated for the directed graphs. For future studies,
it is recommended that researchers compute the fuzzy total
domination, fuzzy edge domination, and fuzzy locating
domination numbers for each of the several classes of
claw-free cubic graphs.

Data Availability

All relevant data is given in the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

The first author, Muhammad Shoaib Sardar, conducted this
research, conceptualized the idea of the research, investi-
gated the problem, and wrote the original text of the manu-
script. The second coauthor, Hamna Choudhry, reviewed,
edited, and analyzed this paper. The third and last coauthor,
Jia-Bao Liu, supervised this research and also studied the
validation of the results.

Acknowledgments

The authors would like to express their sincere gratitude to
the anonymous referees for valuable suggestions, which led
to a great deal of improvement of the original manuscript.

References

[1] A. Aazami, “Domination in graphs with bounded propagation:
algorithms, formulations and hardness results,” Journal of
Combinatorial Optimization, vol. 19, no. 4, pp. 429–456, 2010.

[2] C. Berge, Theory of Graphs and Applications, A. Doig, Ed.,
Methuen Co. Ltd. London, John Wiley and Sons Inc., New
york, 1962.

[3] R. S. Rajan, J. Anitha, and I. Rajasingh, “2-power domination
in certain interconnection networks,” Procedia Computer Sci-
ence, vol. 57, pp. 739–744, 2015.

5Journal of Function Spaces



[4] P. Corcocran and A. Gagarin, “Heuristics for k-domination
models of facility location problems in street networks,” Com-
puters & Operations Research, vol. 133, article 105368, 2021.

[5] M. R. Chithra and M. K. Menon, “Secure domination of hon-
eycomb networks,” Journal of Combinatorial Optimization,
vol. 40, no. 1, pp. 98–109, 2020.

[6] Z. Sun and J. Chen, “The control system based on low signed
domination number,” in 2015 7th International Conference
on Modelling, Identification and Control (ICMIC), pp. 1–3,
Sousse, Tunisia, 2015.

[7] S. T. Hedetniemi and S. Mitchell, “Edge domination in
graphs,” Congressus Numerantium, vol. 19, pp. 489–509, 1977.

[8] A. Somasundaram and S. Somasundaram, “Domination in
fuzzy graphs – I,” Pattern Recognition Letters, vol. 19, no. 9,
pp. 787–791, 1998.

[9] J. N. Mathew, S. Mathew, and D. S. Malik, “Domination in
Fuzzy Graphs,” in Fuzzy Graph Theory with Applications to
Human Trafficking. Studies in Fuzziness and Soft Computing,
vol. 365, Springer, Cham, 2018.

[10] M. Sarwar, M. Akram, and U. Ali, “Double dominating energy
of M-polar fuzzy graphs,” Journal of Intelligent & Fuzzy Sys-
tems, vol. 38, pp. 1997–2008, 2020.

[11] M. Sarwar, F. Zafar, and M. Akram, “Novel group decision
making approach based on the rough soft approximations of
graphs and hypergraphs,” Journal of Applied Mathematics
and Computing, vol. 69, no. 3, pp. 2795–2830, 2023.

[12] S. Fatima, M. Sarwar, F. Zafar, and M. Akram, “Group
decision-making analysis based on distance measures under
rough environment,” Expert Systems, vol. 40, no. 3, article
e13196, 2023.

[13] M. Sarwar, “Decision-making approaches based on color spec-
trum and D-TOPSIS method under rough environment,”
Computational and Applied Mathematics, vol. 39, no. 4, article
291, 2020.

[14] Z. Dvořák, “Constant-factor approximation of the domination
number in sparse graphs,” European Journal of Combinatorics,
vol. 34, no. 5, pp. 833–840, 2013.

[15] M. Dorfling and M. A. Henning, “A note on power domina-
tion in grid graphs,” Discrete Applied Mathematics, vol. 154,
no. 6, pp. 1023–1027, 2006.

[16] G. MacGillivray and K. Seyffarth, “Domination numbers of
planar graphs,” Journal of Graph Theory, vol. 22, no. 3,
pp. 213–229, 1996.

[17] W. Goddard, M. A. Henning, J. Lyle, and J. Southey, “On the
independent domination number of regular graphs,” Annals
of Combinatorics, vol. 16, no. 4, pp. 719–732, 2012.

[18] J. Harant and A. Pruchnewski, “A note on the domination
number of a bipartite graph,” Annals of Combinatorics,
vol. 5, no. 2, pp. 175–178, 2001.

[19] L. Shan, H. Li, and Z. Zhang, “Domination number and min-
imum dominating sets in pseudofractal scale-free web and
Sierpiński graph,” Theoretical Computer Science, vol. 677,
pp. 12–30, 2017.

[20] R. Adawiyah, I. H. Agustin, and E. R. Albirri, “Related wheel
graphs and its locating edge domination number,” Journal of
Physics Conference Series, vol. 1022, article 012007, 2017.

[21] S. Prabhu, S. Deepa, M. Arulperumjothi, L. Susilowati, and J. B.
Liu, “Resolving power domination number of probabilistic
neural networks,” Journal of Intelligent and Fuzzy Systems,
vol. 43, no. 5, pp. 6253–6263, 2022.

[22] S. Arumugam and S. Velammal, “Edge domination in graphs,”
Taiwanese Journal of Mathematics, vol. 2, no. 2, pp. 173–179,
1998.

[23] T. W. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of
Domination in Graphs, CRC Press, 1st edition, 1998.

[24] P. J. Slater, “Domination and location in acyclic graphs,” Net-
works, vol. 17, no. 1, pp. 55–64, 1987.

[25] P. J. Slater, “Dominating and reference sets in graphs,” Journal
of Mathematical and Physical Sciences, vol. 22, pp. 445–455,
1998.

[26] A. Finbow and B. L. Hartnell, “On locating dominating sets
and well-covered graphs,” Congressus Numerantium, vol. 65,
pp. 191–200, 1988.

[27] V. Chavatal and N. Sbihi, “Recognizing claw-free perfect
graphs,” Journal of Combinatorial Theory, Series B, vol. 44,
pp. 154–176, 1998.

[28] M. Chudnovsky and P. D. Seymour, “The structure of claw-
free graphs,” Surveys in Combinatorics, vol. 327, pp. 153–171,
2005.

[29] R. Greenlaw and R. Petreschi, “Cubic graphs,” ACM Comput-
ing Surveys (CSUR), vol. 27, no. 4, pp. 471–495, 1995.

[30] J. de Vries and V. Martinetti, “Sur les configurations planes
dont chaque point supporte deux droites,” Rendiconti del Cir-
colo Matematico di Palermo, vol. 5, no. 1, pp. 221–226, 1891.

[31] M. A. Henning and C. Lowenstein, “Locating-total domina-
tion in claw-free cubic graphs,” Discrete Mathematics,
vol. 312, no. 21, pp. 3107–3116, 2012.

6 Journal of Function Spaces


	Locating Edge Domination Number of Some Classes of Claw-Free Cubic Graphs
	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Conclusions
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments



