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In mathematical chemistry, the algebraic polynomial serves as essential for calculating the most accurate expressions of distance-
based, degree-distance-based, and degree-based topological indices. The chemical reactivity of molecules, which includes their
tendency to engage in particular chemical processes or go through particular reactions, can be predicted using topological
indices. Considerable effort has been put into examining the many topological descriptors of simple graphs using ring
structures and well-known groups instead of nonassociative algebras, quasigroups, and loops. Both finite quasigroups and
loops are the generalizations of groups. In this article, we calculate topological descriptors and some well-known polynomials,
M-polynomial, Hosoya’s polynomial, Schultz’s polynomial, and modified Schultz polynomial of finite relatively prime graphs
of most orders connected with two classes of quasigroups and go through their graphical aspects.

1. Introduction and Basic Definitions

A subfield of theoretical chemistry known as “chemical
graph theory” studies chemical structures and reactions
using the concepts of graph theory. A mathematical frame-
work known as graph theory allows molecules to be repre-
sented as graphs, with chemical bonds acting as edges and
atoms acting as vertices. The representational form utilized
in mathematical models of chemical molecules is called a
molecular graph. Many topological and structural properties
of these molecules are investigated using concepts from
graph theory. For instance, the degree and number of edges
among the vertices of a chemical compound—a physical
entity—can be used to predict the compound’s boiling point.
Thus, it is evident that when a chemical problem is described
mathematically, the topology of the molecule structure plays
a critical role in defining the favorable properties of the
matching molecular structure. Between 1975 and 2023, sev-
eral academics employed algebraic structures, rings, and

groups to address problems related to graph theory. The
author showed that the maximal prime order of the nontriv-
ial subgroup of the finite abelian group is the vertex indepen-
dence number of the intersecting graph connected to the
abelian group [1]. But eight years after the publication of this
paper, several mathematicians proposed a novel idea for fig-
uring out a finite simple graph’s vertex independence num-
ber using the vertex degrees [2]. In 1990, the author used
the class of finite groups whose Cayley’s graphs are planar
to characterize well-known groups, quasi-Frobenius groups,
and linked components of finite simple graphs, whose nodes
were the noncentral conjugacy classes of the group investi-
gated by [3, 4]. A thorough analysis has been done on
degree-based topological descriptors of two distinct gra-
phynes and minimum transmission, depending on certain
parameters, in two-mode networks [5, 6]. In addition,
Zaman et al. and Mondal et al. [7, 8] have provided a com-
plete computation of topological indices related with regres-
sion models and two particular ring structures; however, the
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researchers are still in the process of discovering certain
well-known descriptors and polynomials associated with
nonassociative algebras.

From here, we use Ξ = Λ1,Λ2 for the undirected, sim-
ple, and finite graph, in which the set of edges is Λ2 and the
nodes are Λ1. The distance, a positive integer, between any
two distinct vertices τ1 and τ2 of Λ1 can be denoted by d
τ1, τ2 , and dτ is the degree of any vertex τ ∈Λ1 in Ξ.
Regarding degree-based topological indices, the M-polyno-
mial has a similar function in calculating closed expressions
of multiple degree-based topological indices [9]. The follow-
ing is the definition of a graph Ξ′sM-polynomial associated
with polynomial ring ℝ θ1, θ2 (see [10]):

M Ξ ; θ1, θ2 = 〠
λ1≤λ2

M λ1,λ2 Ξ θλ11 θλ22 , 1

where M λ1,λ2 Ξ is the overall number of edges τ1τ2 ∈
Λ2 Ξ such that dτ1 , dτ2 = λ1, λ2 . In this article, we
use M Ξ instead of M Ξ ; θ1, θ2 . In reality, a topological
index is a mapping from the set of real numbers to a class
of isomorphic finite simple graphs [8]. For a graph Ξ, any
degree-based topological index can be written as follows:

I Ξ = 〠
τ1τ2∈Λ2 Ξ

g dτ1 , dτ2 , 2

where g = g θ1, θ2 represents a function that has been
specifically selected for potential chemical applications
[11]. The result shown above can also be expressed as

I Ξ = 〠
λ1≤λ2

M λ1,λ2 Ξ g λ1, λ2 3

Zagreb indices were first developed by Gutman and
Trinajstić in 1972. The following defines the first Zagreb
index according to [12]:

M1 Ξ = 〠
τ∈Λ1 Ξ

dτ 2 4

Here is how the second Zagreb index is described:

M2 Ξ = 〠
τ1τ2∈Λ2 Ξ

dτ1dτ2 5

In 2015, Furtula and Gutman introduced the term forgot-
ten topological index, which is expressed as follows [13]:

F Ξ = 〠
τ1τ2∈Λ2 Ξ

dτ1 2 + dτ2 2 6

The second modified Zagreb index was introduced by
Nikolić et al. in 2003, and it is defined as follows [14]:

Mm
2 Ξ = 〠

τ1τ2∈Λ2 Ξ

1
dτ1dτ2

7

Hu et al. put forward the generalized Randić index, which
has been extensively researched in the chemistry and mathe-
matics [15]. The following is a definition of the generalized
Randić index:

Rα Ξ = 〠
τ1τ2∈Λ2 Ξ

dτ1dτ2 α 8

∀α ∈ℝ. The definition of the inverse Randić index is as
follows:

RRα Ξ = 〠
τ1τ2∈Λ2 Ξ

1
dτ1dτ2 α 9

∀α ∈ℝ. A connected graph’s symmetric division deg index
with the following definition was given by Vukicević in 2010
(see [16]).

SDD Ξ = 〠
τ1τ2∈Λ2 Ξ

min dτ1 , dτ2
max dτ1 , dτ2 + max dτ1 , dτ2

min dτ1 , dτ2

10

In 1987, Fajtlowicz introduced the concept of a graph’s
harmonic index, which is in [17]. It is described by

H Ξ = 〠
τ1τ2∈Λ2 Ξ

2
dτ1 + dτ2

11

The following is how Balaban introduced the inverse sum
indeg index in 1982 (see [18]):

I Ξ = 〠
τ1τ2∈Λ2 Ξ

dτ1dτ2

dτ1 + dτ2
12

Furtula et al. presented the augmented Zagreb index,
which can be summed up as follows [19]:

A Ξ = 〠
τ1τ2∈Λ2 Ξ

dτ1dτ2

dτ1 + dτ2 − 2
3

13

For a graph Ξ, the distance-based Wiener index is defined
as follows:

W Ξ = 〠
τ1,τ2 ⊆Λ1 Ξ

d τ1, τ2 14

The Hosoya polynomial, with derivatives at 1 yield the
Wiener index, is one basic polynomial in the domain of
distance-based topological indices [20]. The following for-
mula represents the Hosoya polynomial of a graph Ξ related
with ℝ θ :

H Ξ, θ = 〠
D

i=0
d Ξ, i θi, 15
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where d Ξ, i is the total number of node pairings in Ξ with
a distance of i between them and D =max d τ1, τ2 : τ1,
τ2 ∈Λ1 Ξ . The Wiener index is obtained as follows using
the Hosoya polynomial’s first derivative at θ = 1:

W Ξ = d H Ξ, θ
dθ θ=1

16

For the study of structure-property interactions of mol-
ecules, Randić gave the hyper-Wiener index in 1993, in
[21]. It is a different distance-based index and is expressed
as follows:

WW Ξ = 1
2 〠

τ1,τ2 ⊆Λ1 Ξ

d τ1, τ2 + d τ1, τ2 2 17

Hyper-Wiener index can also be obtained with the help
of the Hosoya polynomial according to Cash et al. [22].

WW Ξ = d H Ξ, θ
dθ θ=1 +

1
2
d2 H Ξ, θ

dθ2
θ=1

18

A topological index that combines distance and degree
was first introduced by Schultz in 1989 and is known as the
Schultz index [23]. Graph Ξ’s Schultz index can be obtained as

Sc Ξ = 〠
τ1,τ2 ⊆Λ1 Ξ

dτ1 + dτ2 d τ1, τ2 19

Afterward, the modified Shultz index, a degree-distance-
based index with the following definition, was published in
1997 by Klavžar and Gutman [24].

Sc∗ Ξ = 〠
τ1,τ2 ⊆Λ1 Ξ

dτ1dτ2 d τ1, τ2 20

For a graph Ξ, the Schultz polynomial in integral domain
ℝ θ can be calculated by

Sc Ξ, θ = 〠
τ1,τ2 ⊆Λ1 Ξ

dτ1 + dτ2 θd τ1,τ2 21

A graph Ξ’s modified Schultz polynomial in ring ℝ θ is
written as follows:

Sc∗ Ξ, θ = 〠
τ1,τ2 ⊆Λ1 Ξ

dτ1dτ2 θd τ1,τ2 22

The following are the relationships that connect the
Shultz, modified Shultz indices, and the related polynomials:

Sc Ξ = d Sc Ξ, θ
dθ θ=1

,

Sc∗ Ξ = d Sc∗ Ξ, θ
dθ θ=1

23

Under the assumption of three groupoids, L, · , (L, \),
and (L, /), and the identities

τ1 τ1 \ τ2 = τ2, τ1 \ τ1τ2 = τ2,
τ1τ2 /τ2 = τ1, τ1/τ2 τ2 = τ1,

24

a mathematical system (L, ·, \, and /) is known as a qua-
sigroup ∀τ1, τ2 ∈ L (see [25]). A quasigroup which satisfies
the identity law, τe = eτ = τ∀τ ∈ L and for unique e ∈ L, is
called Loop. If L is some power of prime number p, then L

is called p-loop (see [26]).

2. Motivation and Applications

The Wiener index initiated the path of topological indices in
1947, modeling the paraffin’s temperatures at boiling point
as follows [27]:

tB = a1x + a2y + a3, 25

where a1, a2, and a3 are constants for a given isomeric
group, tB is the boiling point, and x and y are the Wiener
index and polarity number, respectively. The quantitative
structure-property relationships between boiling tempera-
tures and hyper-Wiener index were found in a range of
cyclic and acyclic alkanes [28]. The first and second Zagreb
indices were demonstrated to be effective in the estimation
of the total π-electron energy of molecule [29]. The linear
combination of the forgotten topological index and the first
Zagreb index yields a mathematical model of several physi-
cochemical properties of alkanes with good accuracy [13].
They were proposed for the approximation of stretched car-
bon skeleton [12]. Randić observed the association between
the Randić index and physicochemical parameters of alkane
such as boiling temperature, enthalpy of formation, and sur-
face area. Encoding molecular structure information with
topological indices has a low processing cost and a high pre-
dictive potential. Additionally, these molecular descriptors
provide information on easily recognized structural proper-
ties. The interaction between the algebraic and graph theo-
retical characteristics of the simple graph is the main area
of study for graphs constructed from nonassociative finite
algebra. Information in communication theory can be
related to this. Therefore, it makes sense to calculate the
finite quasigroups’ topological indices for relatively prime
graph.

Theorem 1 (Lagrange’s theorem). Let L be the finite loop
and τ be any element of L. Then, τ divides the order of L.

Theorem 2 (fundamental theorem of arithmetic). Any posi-
tive integer n can be written as a product of the powers of
prime numbers.

Theorem 3 (see [30]). With the help of two finite groups C2,
cyclic group of order 2, and ℤ2∝, even order group of residue
classes, the algebraic structure C2 ×ℤ2∝,∗ is a quasigroup,
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where∝ is a positive integer. We can denote this class of qua-
sigroups by Ω1.

Theorem 4 (see [31]). Let C∝ and ℤ2 be a cyclic group of
order ∝ containing an element of order greater than 2 and
two-element group of residue classes, respectively. Then, the
algebraic structure C∝ ×ℤ2,∗ is a quasigroup. We repre-
sent this class of quasigroups by Ω2.

The layout of this work consists of the following two sec-
tions: in the first section, we calculate topological indices of
two classes given in [30, 31], and in the second section, there
are some polynomials of relatively prime graphs associated
with these quasigroups.

3. Topological Indices and Finite Quasigroups

Definition 5 (relatively prime graph). A finite simple graph
GRP
L is said to be relatively prime graph if and only if each

element of L is the vertex of GRP
L and τ1 , τ2 = 1; i.e.,

orders of two distinct elements of L are relatively prime.

Example 1. The following Table 1 and Figure 1 indicate qua-
sigroup of order 12 and its relatively prime graph, respectively.

Theorem 6. A relatively prime graph GRP
L is star if and only if

L is p-loop.

Proof. Let GRP
L be a star graph, since the order of the identity

element of L is one and it is relatively prime to the order of
each nonidentity element of L. Moreover, any two noniden-
tity elements are not adjacent in GRP

L . It is only possible when
order of loop L is some power of prime number by Theorem
1. Other direction of the proof is just consequence of the
Lagrange theorem. It completes the proof.

Theorem 7. A relatively prime graph GRP
L is always

connected.

Proof. Because the vertex associated with identity element is
adjacent to each vertex so trivially, we can say relatively
prime graph GRP

L is connected.

Theorem 8. Let GRP
L = Λ1,Λ2 be the relatively prime graph

associated with L ∈Ω1, where ∝ = 2β−2 and β is the positive
integer greater than 1. Then, the degree-based topological
indices are as follows:

(1) M1 GRP
L = 2β + 4β − 2β+1

(2) M2 GRP
L = 4β + 1 − 2β+1

(3) F GRP
L = 2β − 1 1 + 2β − 1

2

(4) Mm
2 GRP

L = 1

(5) Rα GRP
L = 2β − 1

α+1

(6) RRα GRP
L = 2β − 1

1−α

(7) SDD GRP
L =2 + 4β − 2β+1

(8) H GRP
L = 2 − 21−β

(9) I GRP
L = 2β + 2−β − 2

(10) A GRP
L = 2β − 1

4/ 2β − 2
3

Proof. The following are the vertex and edge partitions of
relatively prime graph GRP

L with Equations (4)–(13) yield
the required results.

Λ
1
1 = τ ∈Λ1 deg τ = 1 ,

Λ
2
1 = τ ∈Λ1 deg τ = 2β − 1 ,

Λ2 = e = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = 2β − 1 ,

26

where Λ 1
1 = 2β − 1, Λ 2

1 = 1, and Λ2 = 2β − 1.

Theorem 9. Let GRP
L = Λ1,Λ2 be the relatively prime graph

associated with L ∈Ω1, where ∝ = 2β−2 and β is the positive
integer greater than 1. Then, the distance-based topological
indices are as follows:

(1) W GRP
L = 4β − 2β+1 + 1

(2) WW GRP
L = 3 22β−1 − 2β−1 − 2β+1 + 2

Proof. Let H1 and H2 be two distance-based subsets of
Λ1 ×Λ1 defined by

H1 = τ1, τ2 ∈Λ1 ×Λ1 d τ1, τ2 = 1, τ1 ≠ τ2 ,
H2 = τ1, τ2 ∈Λ1 ×Λ1 d τ1, τ2 = 2, τ1 ≠ τ2 ,

27

Table 1: A finite quasigroup.

∗ 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12

2 2 3 4 5 6 7 8 9 10 11 12 1

3 3 4 5 6 7 8 9 10 11 12 1 2

4 4 5 6 7 8 9 10 11 12 1 2 3

5 5 6 7 8 9 10 11 12 1 2 3 4

6 6 7 8 9 10 11 12 1 2 3 4 5

7 7 8 9 10 11 12 1 2 3 4 5 6

8 8 9 10 11 12 1 2 3 4 5 6 7

9 9 10 11 12 1 2 3 4 5 6 7 8

10 10 11 12 1 2 3 4 5 6 7 8 9

11 11 12 1 2 3 4 5 6 7 8 9 10

12 12 1 2 3 4 5 6 7 8 9 10 11
∗ in the table shows a binary operation.
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where cardinalities of H1 and H2 are 2β − 1 and 22β−1 −
2β−1 − 2β + 1, respectively. It completes the proof with the
help of Equations (14) and (17).

Theorem 10. Let GRP
L = Λ1,Λ2 be the relatively prime

graph associated with L ∈Ω1, where ∝ = 2β−2 and β is the
positive integer greater than 1. Then, the degree-distance-
based topological indices are as follows:

(1) Sc GRP
L = 22β − 2β

(2) Sc∗ GRP
L = 22β + 1 − 2β+1

Proof. Let K1 and K2 be two subsets of Λ2 defined by

K1 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = 2β − 1 ,

K2 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = 1 ,
28

where K1 = 2β − 1 and K2 = 0.

Sc GRP
L = 〠

τ1,τ2 ⊆Λ1 GRP
L

dτ1 + dτ2 d τ1, τ2

= 2β − 1 1 + 2β − 1 1 = 2β − 1 1 + 2β − 1

= 2β 2β − 1 = 22β − 2β,

Sc∗ GRP
L = 〠

τ1,τ2 ⊆Λ1 GRP
L

dτ1dτ2 d τ1, τ2

= 2β − 1 1 2β − 1 1 = 2β − 1
2
= 22β + 1 − 2β+1

29

It completes the proof.
If ∝ = 2 and β = 3, then Figure 2 indicates relatively prime
graph of quasigroup L in Ω1.

Theorem 11. Let GRP
L = Λ1,Λ2 be the relatively prime

graph associated with L ∈Ω1, where ∝ = 2β−2pk11 , p1 is an

odd prime, k1 is a natural number, and β > 1 is a positive
integer. Then, we have the following degree-based topological
indices:

(1) M1 GRP
L = 22β + 2β − 2β+1 − 1 pk11 + 2β + 22β − 1

p2k11 − 22β − 2β + 2

(2) M2 GRP
L = −2β − 3 × 22β + 1 pk11 + 22β+2 − 2β+1

p2k11 + 2β+1 − 1

(3) F GRP
L = 23β + 2β+1 + 22β+2 + 2β pk11 − 2β+2 + 2β+1

p2k11 + 2β + 1 p3k11 − 23β − 2β+1 + 1.

(4) Mm
2 GRP

L = 2βpk11 − 2β − pk11 + 1 /2βpk11 + pk11 −
1 / 22βpk11 − 2β + 2β−1/ 2βp2k11 − pk11 + 2βpk11 −
2β − pk11 + 1 / 2βpk11 − 1

(5) Rα GRP
L = 2βpk11 − 2β − pk11 + 1 2βpk11

α + pk11 − 1

22βpk11 − 2β α + 2β − 1 2βp2k11 − pk11
α + 2βpk11 −

2β − pk11 + 1 2βpk11 − 1
α

(6) RRα GRP
L = 2βpk11 − 2β − pk11 + 1 / 2βpk11

α + pk11
− 1 / 22βpk11 − 2β

α + 2β − 1 / 2βp2k11 − pk11
α +

2βpk11 − 2β − pk11 + 1 / 2βpk11 − 1
α

(7) SDD GRP
L = 2βpk11 − 2β − pk11 + 1 22β + p2k11 /2β

pk11 + pk11 − 1 22β + 22βp2k11 − 2β+1pk11 + 1 / 22βpk11
− 2β + 2β − 1 p2k11 + 22βp2k11 − 2β+1pk11 + 1 /
2βp2k11 − pk11 + 2βpk11 − 2β − pk11 + 1 2 + 22βp2k11

− 2β+1p2k11 / 2βpk11 − 1

(8) H GRP
L = 2β+1pk11 − 2β+1 − 2pk11 + 2 / 2β + pk11

+ 2pk11 − 2 / 2β + 2βpk11 − 1 + 2β+1 − 2 / 2β
pk11 + pk11 − 1 + 2β+1pk11 − 2β+1 − 2pk11 + 2 /2βpk11

(9) I GRP
L = 2β − 1 pk11 − 1 2βpk11 / 2β + pk11 + pk11 −

1 2β 2βpk11 − 1 / 2β + 2βpk11 − 1 + 2β − 1 pk11 2β

pk11 − 1 / pk11 + 2βpk11 − 1 + 2β − 1 pk11 − 1 2β

pk11 − 1 /2βpk11

1

2

3

4

5

6
78

9

10

11

12

Figure 1: Relatively prime graph of order 12.

(e, 0)

(i, 3)

(i, 2)
(i, 1) (i, 0) (e, 3)

(e, 2)

(e, 1)

Figure 2: Relatively prime graph of order 8 associated with
C2 ×ℤ4,∗ .
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(10) A GRP
L = 2βpk11 − 2β − pk11 + 1 2βpk11 / 2β + pk11 − 2

3

+ pk11 − 1 22βpk11 2
β/ 2β + 2βpk11 − 3 3 + 2β − 1

2βp2k11 − pk11 / 2β + pk11 + pk11 − 3 3 + 2βpk11 − 2β

− pk11 + 1 2βpk11 − 1 / 2βpk11 − 2
3

Proof. The following are the partitions of Λ1 and Λ2:

Λ
1
1 = τ ∈Λ1 deg τ = 1 ,

Λ
2
1 = τ ∈Λ1 deg τ = 2βpk11 − 1 ,

Λ
3
1 = τ ∈Λ1 deg τ = pk11 ,

Λ
4
1 = τ ∈Λ1 deg τ = 2β ,

Λ
1
2 = e = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 − 1, deg τ2 = 1 ,

Λ
2
2 = e = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 − 1, deg τ2 = pk11 ,

Λ
3
2 = e = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 − 1, deg τ2 = 2β ,

Λ
4
2 = e = τ1τ2 ∈Λ2 deg τ1 = pk11 , deg τ2 = 2β ,

30

where Λ 1
1 = 2β − 1 pk11 − 1 , Λ 2

1 = 2βpk11 , Λ
3
1 = 2β − 1,

Λ 4
1 = pk11 − 1, Λ 1

2 = 2β − 1 pk11 − 1 , Λ 2
2 = 2β − 1,

Λ 3
2 = pk11 − 1, and Λ 4

2 = 2β − 1 pk11 − 1 .

M2 GRP
L = 〠

τ1τ2∈Λ2 GRP
L

dτ1dτ2 = 〠
τ1τ2∈Λ

1
2 GRP

L

dτ1dτ2

+ 〠
τ1τ2∈Λ

2
2 GRP

L

dτ1dτ2 + 〠
τ1τ2∈Λ

3
2 GRP

L

dτ1dτ2

+ 〠
τ1τ2∈Λ

4
2 GRP

L

dτ1dτ2 = −2β − 3 × 22β + 1 pk11

+ 22β+2 − 2β+1 p2k11 + 2β+1 − 1,

F GRP
L = 〠

τ1τ2∈Λ2 GRP
L

dτ1 2 + dτ2 2 = 〠
τ1τ2∈Λ

1
2 GRP

L

dτ1 2 + dτ2 2

+ 〠
τ1τ2∈Λ

2
2 GRP

L

dτ1 2 + dτ2 2 + 〠
τ1τ2∈Λ

3
2 GRP

L

dτ1 2 + dτ2 2

+ 〠
τ1τ2∈Λ

4
2 GRP

L

dτ1 2 + dτ2 2 = 23β + 2β+1 + 22β+2 + 2β pk11

− 2β+2 + 2β+1 p2k11 + 2β + 1 p3k11 − 23β − 2β+1 + 1

31

Similarly, we can prove the other results. It completes the
proof.

To understand some of the following theorems, we
introduce a mapping T Soddg ⟶ At defined by

T C2i+1 =

1 if ∝ = 3, 6, 12, 24,⋯ = C3,

6 if ∝ = 5,10,20,40,⋯ = C5,
15 if ∝ = 7,14,28,56,⋯ = C7,
28 if ∝ = 9,18,36,72,⋯ = C9,
45 if ∝ = 11,22,44,88,⋯ = C11,
66 if ∝ = 13,26,52,104,⋯ = C13,

32

where Soddg and At are the sets of geometric
sequences and alternate triangular numbers, respectively,
with T C2i+1 = T 2i − 1 ∀i ∈ 1, 2, 3,⋯ .

Theorem 12. Let GRP
L = Λ1,Λ2 be the relatively prime

graph associated with L ∈Ω1, where ∝ = 2β−2pk11 , p1 is an
odd prime, k1 is a natural number, and β > 1 is a positive
integer. Then, degree-distance-based topological indices are
as follows:

(1) Sc GRP
L = 2β − 22β+1 − 2β+2 + 15 pk11 + 22β+2 − 3 ×

22β+1 + 3 p2k11 + 2β + 22β + 2β+2 − 4 T C2i+1 − 6

(2) Sc∗ GRP
L = 3 × 2β+2 − 22β+3 − 3 × 22β − 4 pk11 + 5 ×

22β − 3 × 2β + 22β+2 − 2β+3 + 4 p2k11 + 22β − 2β+1 − 2β

+ 2 p3k11 + 2β+1 + 22β+1 − 2 T C2i+1 + 22β+2 − 2β+2

− 22β + 2β + 1

Proof. Let K1, K2,⋯, K9 be the subsets of Λ2 defined by

K1 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = 2βpk11 − 1 ,

K2 = τ1τ2 ∈Λ2 deg τ1 = 2β, deg τ2 = 2βpk11 − 1 ,

K3 = τ1τ2 ∈Λ2 deg τ1 = pk11 , deg τ2 = 2βpk11 − 1 ,

K4 = τ1τ2 ∈Λ2 deg τ1 = 2β, deg τ2 = pk11 ,

K5 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = 1 ,

K6 = τ1τ2 ∈Λ2 deg τ1 = 2β, deg τ2 = 1 ,

K7 = τ1τ2 ∈Λ2 deg τ1 = 2β, deg τ2 = 2β ,

K8 = τ1τ2 ∈Λ2 deg τ1 = pk11 , deg τ2 = 1 ,

K9 = τ1τ2 ∈Λ2 deg τ1 = pk11 , deg τ2 = pk11 ,

33
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where K1 = 2β − 1 pk11 − 1 , K2 = pk11 − 1, K3 =
2β − 1, K4 = 2β − 1 pk11 − 1 , K5 = 22β−1p2k11 − 2β−1pk11 −
2β+1pk11 + 2β + pk11 − 2β − 1 pk11 − 1 2

− 2β − 1 2
pk11 − 1 −

2β − 1 2β−1 − 1 − T C2i+1 , K6 = 2β − 1 pk11 − 1 2
, K7

= T C2i+1 , K8 = 2β − 1 2
pk11 − 1 , and K9 = 2β − 1

2β−1 − 1 . The proof is complete by Equations (21) and (22).

Numerical values ∝ = 3, β = 4, p1 = 3, k1 = 1, and
T C2i+1 represent the relatively prime graph (see Figure 3
to support Theorem 12).

Theorem 13. Let GRP
L = Λ1,Λ2 be the relatively prime

graph associated with L ∈Ω2, where ∝ = 2β−1pk11 , p1 is an
odd prime, k1 is a natural number, and β ≥ 1 is a positive
integer. Then, we have the following degree-based topological
indices:

(1) M1 GRP
L = 2β − 1 − 2β+1 + 22β−2 pk11 + 22β + 2β−1 −

1 p2k11 − 22β−2 − 2

(2) M2 GRP
L = 5 × 2β+1 − 22β − 22β−1 − 2β+2 + 2 pk11 +

22β+1 − 2β+1 − 5 × 2β−1 + 22β−1 p2k11 + 2β−1 + 1

(3) F GRP
L = 2β+3 − 22β+1 + 2β+2 + 23β−2 + 4 pk11 + 22β −

2β+2 − 22β+1 + 2β−1 + 23β−1 − 2β + 4 p2k11 + 23β + 2β −
5 p3k11 + 2β−1 + 22β − 23β−2 − 8

(4) Mm
2 GRP

L = 2β − 1 pk11 − 3 / 2βpk11 − 1 + 2β−1

− 1 /pk11 2βpk11 − 1 + pk11 − 1 /2β−1 2βpk11 − 1 +
pk11 − 1 2β − 5 /2β−1pk11

(5) Rα GRP
L = 2β − 1 pk11 − 3 2βpk11 − 1

α + pk11 2β−1 −
1 2βpk11 − 1

α + 2β−1 pk11 − 1 2βpk11 − 1
α + 2αβ−αpk11

2β − 5 pk11 − 1

(6) RRα GRP
L = 2β − 1 pk11 − 3 2βpk11 − 1

α + pk11 2β−1

− 1 2βpk11 − 1
α + 2β−1 pk11 − 1 2βpk11 − 1

α + 2αβ−α

pk11 2β − 5 pk11 − 1

(7) SDD GRP
L = 2β − 1 pk11 − 3 1/ 2βpk11 − 1 + 2β

pk11 − 1 + 2β−1 − 1 pk11 / 2βp
k1
1 − 1 + 2βpk11 − 1 /

pk11 + pk11 − 1 2β−1/ 2βpk11 − 1 + 2βpk11 − 1 /
2β−1 + 2β − 5 pk11 − 1 pk11 /2β−1 + 2β−1/pk11 +
2β−1 − 1 2/pk11

(8) H GRP
L = 2β − 1 pk11 − 3 2/2βpk11 + 2β−1 − 1 2/

pk11 + 2βpk11 − 1 + pk11 − 1 2/ 2β−1 + 2βpk11 − 1 +
2β − 5 pk11 − 1 2/ 2β−1 + pk11

(9) I GRP
L = 2β − 1 pk11 − 3 2βpk11 − 1 /2βpk11 + 2β−1

− 1 pk11 2βpk11 − 1 / pk11 + 2βpk11 − 1 + pk11 − 1 2β−1

2βpk11 − 1 / 2β−1 + 2βpk11 − 1 + 2β − 5 pk11 − 1
2β−1pk11 / 2β−1 + pk11

(10) A GRP
L = 2β − 1 pk11 − 3 2βpk11 − 1 / 2βpk11 − 2

3

+ 2β−1 − 1 pk11 2βpk11 − 1 / pk11 + 2βpk11 − 3
3 + pk11

− 1 2β−1 2βpk11 − 1 / 2β−1 + 2βpk11 − 3
3 + 2β − 5

pk11 − 1 2β−1pk11 / 2β−1 + pk11 − 2
3

Proof. The following are the partitions of Λ1 and Λ2:

Λ
1
1 = τ ∈Λ1 deg τ = 1 ,

Λ
2
1 = τ ∈Λ1 deg τ = 2βpk11 − 1 ,

Λ
3
1 = τ ∈Λ1 deg τ = pk11 ,

Λ
4
1 = τ ∈Λ1 deg τ = 2β−1 ,

Λ
1
2 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = 2βpk11 − 1 ,

Λ
2
2 = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 − 1, deg τ2 = pk11 ,

Λ
3
2 = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 − 1, deg τ2 = 2β−1 ,

Λ
4
2 = τ1τ2 ∈Λ2 deg τ1 = pk11 , deg τ2 = 2β−1 ,

34

with cardinalities Λ 1
1 = 2β − 1 pk11 − 3, Λ 2

1 = 1, Λ 3
1

= 2β−1 − 1, Λ 4
1 = pk11 − 1, Λ2 = 2βpk11 , Λ 1

2 = 2β − 1 pk11
− 3, Λ 2

2 = 2β−1 − 1, Λ 3
2 = pk11 − 1, and Λ 4

2 = 2β − 5
pk11 − 1 .

Theorem 14. Let GRP
L = Λ1,Λ2 be the relatively prime graph

associated with L ∈Ω2, where∝ = 2β−1pk11 , p1 is an odd prime,

(e, 0)

(i, 3)

(i, 4)

(i, 5)

(i, 2)

(i, 1) (i, 0)

(e, 3)

(e, 4)

(e, 5)

(e, 2)

(e, 1)

Figure 3: Relatively prime graph of order 12 associated with
C2 ×ℤ6,∗ .
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k1 is a natural number, and β ≥ 1 is a positive integer. Then,
distance-based topological indices are as follows:

(1) W GRP
L = 2β+1 − 2β − 2β+2 + 5 pk11 + 22βp2k11 − 2β +

2β+1 − 4

(2) WW GRP
L = − 3 × 2β−1 + 2β+2 − 10 pk11 + 3 × 22β−1

p2k11 + 2β+1 − 8

Proof. Let H1 and H2 be two distance-based subsets of
Λ1 ×Λ1 defined by

H1 = τ1, τ2 ∈Λ1 ×Λ1 d τ1, τ2 = 1, τ1 ≠ τ2 ,
H2 = τ1, τ2 ∈Λ1 ×Λ1 d τ1, τ2 = 2, τ1 ≠ τ2 ,

35

with H1 = 2β+1pk11 − 2β − 5pk11 + 4 and H2 = 22β−1p2k11 −
2β−1pk11 − 2β+1pk11 + 2β + 5pk11 − 4.

Theorem 15. Let GRP
L = Λ1,Λ2 be the relatively prime graph

associated with L ∈Ω2, where∝ = 2β−1pk11 , p1 is an odd prime,
k1 is a natural number, and β ≥ 1 is a positive integer. Then,
degree-distance-based topological indices are as follows:

(1) Sc GRP
L = 22β − 5 × 2β + 3 × 2β+1 − 2β+3 − 22β+2 + 1

pk11 + 22β+1 + 2β+2 + 23β−1 − 1 p2k11 − 2β+4 − 22β + 2β+1

− 4

(2) Sc∗ GRP
L = 22β−1 − 2β+1 + 2 T C2i+1 + 2β+1 − 11 ×

2β − 22β − 22β+2 + 8 pk11 + 22β − 2β + 2β+1 + 23β−1 + 4

p2k11 + 2β−1 − 22β−1 − 7 × 2β + 3

Proof. Let K1, K2,⋯, K9 be the subsets of Λ2 defined by

K1 = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 − 1, deg τ2 = 1 ,

K2 = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 − 1, deg τ2 = pk11 ,

K3 = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 − 1, deg τ2 = 2β−1 ,

K4 = τ1τ2 ∈Λ2 deg τ1 = pk11 , deg τ2 = 2β−1 ,

K5 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = 1 ,

K6 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = pk11 ,

K7 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = 2β−1 ,

K8 = τ1τ2 ∈Λ2 deg τ1 = pk11 , deg τ2 = pk11 ,

K9 = τ1τ2 ∈Λ2 deg τ1 = 2β−1, deg τ2 = 2β−1,

36

where K1 = 2β − 1 pk11 − 3, K2 = 2β−1 − 1, K3 = pk11 − 1,
K4 = 2β − 5 pk11 − 1 , K5 = T C2i+1 , K6 = 2βpk11 + 2β−1
pk11 + 2β + 2p1k11 + 4, K7 = 22β−1p12k1 − 2β+2pk11 − 2β−1 − 7pk11
− 2T C2i+1 − 7, K8 = 2β−1 − 1, and K9 = T C2i+1 .

Let L be an element of the class Ω2 with ∝ = 12, β = 3,
p1 = 3, and k1 = 1. Then, Figure 4 shows the relatively prime
graph for Theorem 15.

4. Algebraic Approach of Topological
Indices with Graphical Representations

Theorem 16. Let GRP
L = Λ1,Λ2 be the relatively prime

graph associated with L ∈Ω1, where ∝ = 2β−2 and β is the
positive integer greater than 1. Then, we have the following

(z11, 1)

(z11, 0)

(z10, 1)

(z10, 0)

(z9, 1)

(z9, 0)

(z8, 1)

(z8, 0)

(z7, 1)

(z7, 0)

(z6, 1)
D

(z6, 0)
(z5, 1)

(z5, 0)

(z4, 1)

(z4, 0)

(z3, 1)

(z3, 0)

(z2, 1)

(z2, 0)

(z, 1)

(z, 0)

(e, 1)

(e, 0)

D

Figure 4: Relatively prime graph of order 24 associated with C12 ×ℤ2,∗ .
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polynomials of one and two variables in the integral domains
ℝ θ and ℝ θ1, θ2 :

(1) M GRP
L ; θ1, θ2 = 2β − 1 θ1θ

2β−1
2

(2) H GRP
L , θ = 2β + 2β − 1 θ + 22β−1 − 2β−1 − 2β + 1 θ2

(3) Sc GRP
L , θ = 2β 2β − 1 θ + 22β − 2β − 2β+1 + 2 θ2

(4) Sc∗ GRP
L , θ = 22β + 1 − 2β+1 θ + 22β−1 − 2β−1 − 2β +

1 θ2

Proof.

M GRP
L ; θ1, θ2 = 〠

1≤λ1≤λ2≤2β−1
M λ1,λ2 GRP

L θλ11 θλ22 = 2β − 1 θ1θ
2β−1
2 ,

H GRP
L , θ = 〠

D

i=0
d GRP

L , i θi = 2β + 2β − 1 θ + 22β−1 − 2β−1 − 2β + 1 θ2,

Sc GRP
L , θ = 〠

τ1,τ2 ⊆Λ1 GRP
L

dτ1 + dτ2 θd τ1,τ2

= 2β − 1 1 + 2β − 1 θ + 22β−1 − 2β−1 − 2β + 1 1 + 1 θ2

= 2β 2β − 1 θ + 22β − 2β − 2β+1 + 2 θ2,

Sc∗ GRP
L , θ = 〠

τ1,τ2 ⊆Λ1 GRP
L

dτ1dτ2 θd τ1,τ2

= 2β − 1 1 2β − 1 θ + 22β−1 − 2β−1 − 2β + 1 1 1 θ2

= 22β + 1 − 2β+1 θ + 22β−1 − 2β−1 − 2β + 1 θ2

37

It completes the required proof.

Example 2. If∝ = 2 and β = 3, then the graphical representa-
tion (Figure 5) indicates the surface of M-polynomial for
quasigroup L in Ω1.

Theorem 17. Let GRP
L = Λ1,Λ2 be the relatively prime graph

associated with L ∈Ω1, where∝ = 2β−2pk11 , p1 is an odd prime,

k1 is a natural number, and β > 1 is a positive integer. Then,
polynomials in ℝ θ and ℝ θ1, θ2 are as follows:

(1) M GRP
L ; θ1, θ2 = Aθ2

β

1 θ
pk11
2 + Bθ2

β

1 θ
2βpk11 −1
2 + Cθ

pk11
1

θ
2βpk11 −1
2 +Dθ1θ

2βpk11 −1
2 , where

A = 2βpk11 − 2β − pk11 + 1,

B = pk11 − 1,
C = 2β − 1,
D = 2βpk11 − 2β − pk11 + 1

38

(2) H GRP
L , θ = Aθ + Bθ2, where

A = 2β − 1 pk11 − 1 ,

B = −2β+1 − 2β−1 + 1 pk11 + 22β−1p2k11 + 2β
39

(3) Sc GRP
L , θ = Aθ + Bθ2, where

A = 22β − 2β + 22β − 1 pk11 + 2β − 1 p2k11 − 22β − 2β,

B = 22β+1 − 3 × 2β − 2β+2 − 22β+1 + 2β+2 + 1 pk11

+ 22β+1 − 2β+1 p2k11 + 2β+1 − 1 T C2i+1

+ 2β+3 + 2β+1 − 22β−1 + 2β−1

40

(4) Sc∗ GRP
L , θ = Aθ + Bθ2, where

–10
–600000000

–400000000

–200000000

z 0

200000000

400000000

600000000

–5
0

5x

–10

–5
0

5

y

–5
0

5x –5
0

5

y

Figure 5: Graphical representation of M-polynomial associated with C2 ×ℤ4,∗ .
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A = − 3 × 22β + 2β pk11 + 22β+2 − 3 × 2β p2k11 + 2β+1 − 1,

B = 3 × 2β+1 − 2β−1 − 22β+2 − 2 pk11

+ 22β−1 − 2β+1 − 3 × 2β22β − 2β−1 + 3 p2k11

+ 2β+1 − 1 T C2i+1 + 22β + 22β − 2β+1

− 22β−1 + 2β−1 + 1

41

Proof. The partitions of Theorem 11, Corollary 18, and The-
orem 12 with Equations (1), (15), (21), and (22) give the
required results.

Corollary 18. Let GRP
L = Λ1,Λ2 be the relatively prime

graph associated with L ∈Ω1, where ∝ = 2β−2pk11 , p1 is an
odd prime, k1 is a natural number, and β > 1 is a positive
integer. Then, distance-based topological indices are as
follows:

(1) W GRP
L = −2β+2 + 1 pk11 + 22βp2k11 + 2β+1 − 2β + 1

(2) WW GRP
L = 2β − 3 × 2β−1 − 3 × 2β+1 + 2 pk11 + 3 ×

22β−1p2k11 + 2β+1 + 1

Proof. Polynomials are studied to facilitate the calculations
of topological indices. So Equations (16) and (17) give the
required Wiener index W GRP

L and hyper-Wiener index
WW GRP

L , where the Hosoya polynomial is Aθ + Bθ2 given
in Theorem 17.

Example 3. Numerical values ∝ = 3, β = 4, p1 = 3, k1 = 1, and
T C2i+1 represent the graph of M-polynomial (see
Figure 6).

Theorem 19. Let GRP
L = Λ1,Λ2 be the relatively prime

graph associated with L ∈Ω2, where ∝ = 2β−1pk11 , p1 is an
odd prime, k1 is a natural number, and β ≥ 1 is a positive

integer. Then, some well-known elements of ℝ θ and ℝ
θ1, θ2 are as follows:

(1) M GRP
L ; θ1, θ2 = Aθ1θ

2βpk11 −1
2 + Bθ

pk11
1 θ

2βpk11 −1
2 + C

θ
2β−1+pk11
1 θ

2βpk11 +2β−1−1
2 , where

A = 2β − 1 pk11 − 3,

B = 2β−1 − 1,

C = 2β − 5 pk11 − 1
2

42

(2) H GRP
L , θ = Aθ + Bθ2, where

A = 2β+1 − 5 pk11 − 2β + 4,

B = −2β−1 − 2β+1 + 5 pk11 + 22β−1 p2k11 + 2β − 4
43

(3) Sc GRP
L , θ = Aθ + Bθ2, where

A = 2T C2i+1 + 22β − 3 × 2β−1 − 3 × 2β+1 + 3 pk11

+ 2β + 22β − 5 p2k11 − 22β−1 + 3 × 2β−1 + 2,

B = − 22β+1 + 2β+2 + 1 pk11 + 23β−2 + 22β−1 + 2β−1 + 2β + 2

p2k11 + 2β − 2β+2 − 22β−2 − 3

44

(4) Sc∗ GRP
L , θ = Aθ + Bθ2, where

0
–10

–5
0

x
5

–10

–5
0

y

5

2e+22

4e+22

6e+22z

8e+22

1e+23

1.2e+23

10
–5

0 –5
0

5

Figure 6: Graphical representation of M-polynomial associated with C2 ×ℤ6,∗ .
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A = 3 × 2β−1 − 2β+2 − 22β + 2 pk11

+ 22β − 2β+1 + 3 × 22β−1 − 5 × 2β−1 p2k11 + 2β−1 + 3,

B = 22β−2 − 2β + 1 T C2i+1

+ 2β − 22β+1 − 7 × 2β−1 + 4 pk11

+ 2β + 2β−1 + 23β−2 + 2β−1 + 2

p2k11 − 22β−2 − 7 × 2β−1

45

Proof. The partitions of Theorems 13, 14, and 15 with
Equations (1), (15), (21), and (22) constitute the required
results.

Example 4. Let L be an element of the class Ω2 with ∝ = 12,
β = 3, p1 = 3, and k1 = 1. Then, Figure 7 is the surface of
M-polynomial.

Theorem 20. Let GRP
L = Λ1,Λ2 be the relatively prime

graph associated with L ∈Ω2, where ∝ = 2β−1pk11 p
k2
2 , p1 and

p2 are odd primes, k1 and k2 are natural numbers, and β ≥
1 is a positive integer. Then, M-polynomial of ring ℝ θ1, θ2
is given by

M GRP
L ; θ1, θ2 = Aθ1θ

2βpk11 pk22 −1
2 + Bθ

2βpk11 pk22 −1
1 θ

pk11
2

+ Cθ
pk22
1 θ

2βpk11 pk22 −1
2 +Dθ

pk11
1 θ

pk22
2 ,

46

where A = 2βpk11 p
k2
2 − pk22 − 2, B = pk22 − 1, C = pk11 − 1, and

D = pk11 − 1 pk22 − 1 .

Proof. The following are the partitions of Λ1 and Λ2:

Λ
1
1 = τ ∈Λ1 deg τ = 1 ,

Λ
2
1 = τ ∈Λ1 deg τ = 2βpk11 p

k2
2 − 1 ,

Λ
3
1 = τ ∈Λ1 deg τ = pk11 ,

Λ
4
1 = τ ∈Λ1 deg τ = pk22 ,

Λ
1
2 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = 2βpk11 p

k2
2 − 1 ,

Λ
2
2 = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 p

k2
2 − 1, deg τ2 = pk11 ,

Λ
3
2 = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 p

k2
2 − 1, deg τ2 = pk22 ,

Λ
4
2 = τ1τ2 ∈Λ2 deg τ1 = pk11 , deg τ2 = pk22 ,

47

where Λ 1
1 = 2βpk11 p

k2
2 − pk22 − 2, Λ 2

1 = 1, Λ 3
1 = pk22 − 1,

Λ 4
1 = pk11 − 1, Λ2 = 2βpk11 p

k1
1 , Λ 1

2 = 2βpk11 p
k2
2 − pk22 − 2,

Λ 2
2 = pk22 − 1, Λ 3

2 = pk11 − 1, and Λ 4
2 = pk11 − 1 pk22

− 1 .

Theorem 21. Let GRP
L = Λ1,Λ2 be the relatively prime

graph associated with L ∈Ω2, where ∝ = 2β−1pk11 p
k2
2 , p1 and

p2 are odd primes, k1 and k2 are natural numbers, and β ≥
1 is a positive integer. Then, the following is the Hosoya poly-
nomial in ring ℝ θ :

H GRP
L , θ = Aθ + Bθ2, 48

where A = 2βpk11 p
k2
2 + 2βpk22 − 2β − 1 and B = 22β−1pk11 p

k2
2 −

2β−1 − 2β − 2βp−k11 + 2β + 1 p−k11 p−k22 pk11 p
k2
2 .

5

–1e+35

–5e+34

z 0

5e+34

1e+35

0

x
–5

–10

–5

y

0

5

35

4

0
–5

–––––––

Figure 7: Graphical representation of M-polynomial associated with C12 ×ℤ2,∗ .
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Proof. Let H1 and H2 be two distance-based subsets of
Λ1 ×Λ1 defined by

H1 = τ1, τ2 ∈Λ1 ×Λ1 d τ1, τ2 = 1, τ1 ≠ τ2 ,
H2 = τ1, τ2 ∈Λ1 ×Λ1 d τ1, τ2 = 2, τ1 ≠ τ2 ,

49

such that H1 = 2βpk11 p
k2
2 + 2βpk22 − 2β − 1 and H2 = 22β−1

p2k11 p2k22 − 2β−1pk11 p
k2
2 − 2βpk11 p

k2
2 − 2βpk22 + 2β + 1.

Theorem 22. Let GRP
L = Λ1,Λ2 be the relatively prime

graph associated with L ∈Ω2, where ∝ = 2β−1pk11 p
k2
2 , p1 and

p2 are odd primes, k1 and k2 are natural numbers, and β ≥
1 is a positive integer. Then, the Schultz polynomial of inte-
gral domain ℝ θ is

Sc GRP
L , θ = Aθ + Bθ2, 50

where

A = 22βpk11 p
k2
2 − 2β+2 + 2βpk11 − p−k22 − p−k11

+ pk11 − pk11 p
−k2
2 − p−k11 pk22 + 2p−k11 p−k22 pk11 p

k2
2 ,

B = 22β−1pk11 p
k2
2 − 2β−1 − 2β+1 − 2βp−k11 + 2βp−k11 p−k22

+ 22β−1p2k11 pk22 − 2β−1pk11 − 2β+1pk11 + 2βp−k22 − pk11 − 5p−k22

+ 2βpk22 + pk22 + p−k11 pk22 − 5p−k11 + 4p−k11 p−k22 pk11 p
k2
2

51

Proof. Let K1, K2,⋯, K9 be the subsets of Λ2 defined by

K1 = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 p
k2
2 − 1, deg τ2 = 1 ,

K2 = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 p
k2
2 − 1, deg τ2 = pk11 ,

K3 = τ1τ2 ∈Λ2 deg τ1 = 2βpk11 p
k2
2 − 1, deg τ2 = pk22 ,

K4 = τ1τ2 ∈Λ2 deg τ1 = pk11 , deg τ2 = pk22 ,

K5 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = 1 ,

K6 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = pk11 ,

K7 = τ1τ2 ∈Λ2 deg τ1 = 1, deg τ2 = pk22 ,

K8 = τ1τ2 ∈Λ2 deg τ1 = pk11 , deg τ2 = pk11 ,

K9 = τ1τ2 ∈Λ2 deg τ1 = pk22 , deg τ2 = pk22 ,

52

with K1 = 2βpk11 p
k2
2 − pk22 − 2, K2 = pk22 − 1, K3 = pk11 − 1,

K4 = pk11 − 1 pk22 − 1 , K5 = T C2i+1 , K6 = 22β−1p2k11
p2k222 − 2β−1pk11 p

k2
2 − 2β+1pk11 p

k2
2 − 2βpk22 + 2β − 2T C2i+1 − pk11

pk22 − pk22 + 4, K7 = 2βpk11 p
k2
2 + pk11 + 1 pk22 − 1 , K8 = T

C2i+1 , and K9 = pk11 − 2.

Theorem 23. Let GRP
L = Λ1,Λ2 be the relatively prime

graph associated with L ∈Ω2, where ∝ = 2β−1pk11 p
k2
2 , p1 and

p2 are odd primes, k1 and k2 are natural numbers, and β ≥
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Figure 8: Relatively prime graph of order 30 associated with C15 ×ℤ2,∗ .

12 Journal of Function Spaces



1 is a positive integer. Then, the following is the modified
Schultz polynomial of integral domain ℝ θ :

Sc∗ GRP
L , θ = Aθ + Bθ2, 53

where

A = 22βpk11 p
k2
2 − 3 × 2β − 2βpk22 + 2p−k11 p−k22

+ 2β+1pk11 p
k2
2 − 2βpk11 + p−k22 − 1 − 2βpk22

+ pk11 p
k2
2 − pk11 − pk22 pk11 p

k2
2 ,

B = 1 − 2pk11 + p2k11 T C2i+1

+ 22β−1p2k11 pk22 − 2β−1pk11 − 2β+1pk11 − 2β

+ 2βpk11 p
−k2
2 − pk11 − 2 + 4pk11 p

−k2
2

+ 2βpk22 + 2pk22 − p−k11 pk22 − p−k11 pk22 pk11 p
k2
2

54

Example 5. Let L be an element of the class Ω2 with ∝ = 15,
β = 1, p1 = 3, k1 = 1, p2 = 5, and k2 = 1. Then, Figures 8–10
give relatively prime graph, surface of M-polynomial, and
parabolic curve of modified Schultz polynomial, respectively.

5. Conclusion and Future Directions

This paper is the portrayal of multidisciplinary research
among algebra, graph theory, and chemical graph theory.
We have calculated degree, distance, and degree-distance-
based topological indices of relatively prime graphs asso-
ciated with two classes of quasigroups C2 ×ℤ2∝,∗ and
C∝ ×ℤ2,∗ . M-polynomials, Hosoya polynomials, Schultz
polynomials, and modified Schultz polynomials correspond-
ing to these two classes indicate the three dimensional graph-
ical representations known as surfaces θ1, θ2,M GRP

L , plane
curves θ,H GRP

L , θ, Sc GRP
L , and θ, Sc∗ GRP

L , respec-
tively. In other words, we can say that it is an effort to under-
stand the topology of a particular graph related with
nonassociative algebras through algebraic polynomials.

The isotopy-isomorphy property of these quasigroups
allows us to call them G-loops, as most of their structural
properties are very similar to those of finite groups. So the
graphical study of flexible quasigroups, Bol quasigroups,
and alternative quasigroups is still new to learn. In time to
come, it will be very interesting to study adjacency and
Laplacian spectrum, vertex connectivity, edge connectivity,
and algebraic connectivity of these graphs interrelated with
nonassociative binary operations and their connected appli-
cations like data structure and Cheeger’s inequality.
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