Review Article

Inclusion Properties for Classes of p-Valent Functions

B. M. Munasser © ${ }^{1,2}$ A. O. Mostafa, ${ }^{3}$ T. Sultan, ${ }^{1}$ Nasser A. EI-Sherbeny, ${ }^{1}$ and S. M. Madian ${ }^{(1)}{ }^{4}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt
${ }^{2}$ Department of Mathematics, Amran University, Amran, Yemen
${ }^{3}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
${ }^{4}$ Basic Science Department, Higher Institute of Engineering and Technology, New Damietta, Egypt

Correspondence should be addressed to B. M. Munasser; basheermunassar12345@gmail.com
Received 6 October 2023; Revised 8 December 2023; Accepted 29 December 2023; Published 22 January 2024
Academic Editor: Nikhil Khanna
Copyright © 2024 B. M. Munasser et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Making use of a differential operator, which is defined here by means of the Hadamard product, we introduce classes of p-valent functions and investigate various important inclusion properties and characteristics for these classes. Also, a property preserving integrals is considered.

1. Introduction

Let $A(p)$ be the class of functions

$$
\begin{equation*}
E(\varkappa)=\varkappa^{p}+\sum_{k=p+1}^{\infty} a_{k} \varkappa^{k},(p \in \mathbb{N}=\{1,2, \cdots\}), \tag{1}
\end{equation*}
$$

which are analytic and p-valent in $\mathbb{U}=\{\varkappa:|\varkappa|<1\}$.
If E and G are analytic in \mathbb{U}, E is subordinate to G, $(E<G)$ if there exists an analytic function $\omega(0)=0$ and $|\omega(\varkappa)|<1$ such that $E(\varkappa)=G(\omega(\varkappa))$. Furthermore, if G is univalent in \mathbb{U}, then (see $[1,2]$)

$$
\begin{equation*}
E(\varkappa)<G(\varkappa) \Leftrightarrow E(0)=G(0), \quad E(\mathbb{U}) \subset G(\mathbb{U}) \tag{2}
\end{equation*}
$$

For functions $E(\varkappa) \in A(p)$, given by (1) and $G(\varkappa) \in A(p)$ defined by

$$
\begin{equation*}
G(\varkappa)=\varkappa^{p}+\sum_{k=p+1}^{\infty} b_{k} \varkappa^{k}, \tag{3}
\end{equation*}
$$

the Hadamard product of E and G is given by

$$
\begin{equation*}
(E * G)(\varkappa)=\varkappa^{p}+\sum_{k=p+1}^{\infty} b_{k} a_{k} \varkappa^{k}=(G * E)(\varkappa) . \tag{4}
\end{equation*}
$$

For $E(\varkappa) \in A(p)$, denote by $S_{p}^{*}(\zeta)$ and $K_{p}(\zeta)$ the classes of p-valently starlike and convex functions of order ζ and $0 \leq \zeta<p$, respectively (see $[3,4]$), satisfying

$$
\begin{gather*}
\mathfrak{R}\left\{\frac{\varkappa E^{\prime}(\varkappa)}{E(\varkappa)}\right\}>\zeta, \tag{5}\\
\mathfrak{R}\left\{1+\frac{\varkappa E^{\prime \prime}(\varkappa)}{E^{\prime}(\varkappa)}\right\}>\zeta . \tag{6}
\end{gather*}
$$

It follows from (5) and (6) that

$$
\begin{equation*}
E(\varkappa) \in K_{p}(\zeta) \Leftrightarrow \frac{\varkappa E^{\prime}(\varkappa)}{p} \in S_{p}^{*}(\zeta) . \tag{7}
\end{equation*}
$$

See Goodman [5].

Also, denote by $C_{p}(\eta, \zeta)$ and $C_{p}^{*}(\eta, \zeta)$ the classes of p-valently close-to-convex and quasi-convex functions of order η and type ζ satisfying, respectively (see [6-8] (with $p=1$),

$$
\begin{align*}
& \mathfrak{R}\left\{\frac{\varkappa E^{\prime}(\varkappa)}{G(\varkappa)}\right\}>\eta\left(G \in S_{p}^{*}(\zeta), 0 \leq \eta, \zeta<p\right), \tag{8}\\
& \Re\left\{\frac{\left(\varkappa E^{\prime}(\varkappa)\right)^{\prime}}{G^{\prime}(\varkappa)}\right\}>\eta \quad\left(G \in K_{p}(\zeta), 0 \leq \eta, \zeta<p\right) . \tag{9}
\end{align*}
$$

It follows from (8) and (9) that

$$
\begin{equation*}
E(\varkappa) \in C_{p}^{*}(\eta, \zeta) \Leftrightarrow \frac{\varkappa E^{\prime}(\varkappa)}{p} \in C_{p}(\eta, \zeta) . \tag{10}
\end{equation*}
$$

Dziok and Srivastava [9] used the hypergeometric function (see Srivastava and Karlsson [10])

$$
\begin{equation*}
\Delta_{q, s}(x)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \cdots\left(\alpha_{q}\right)_{k}}{\left(\beta_{1}\right)_{k} \cdots\left(\beta_{s}\right)_{k}(1)_{k}} \varkappa^{k} \tag{11}
\end{equation*}
$$

and defined the linear operator

$$
\begin{align*}
H_{p, q, s}\left(\alpha_{1}\right) E(\varkappa) & =\varkappa^{p}+\sum_{k=p+1}^{\infty} \frac{\left(\alpha_{1}\right)_{k-p} \cdots\left(\alpha_{q}\right)_{k-p}}{\left(\beta_{1}\right)_{k-p} \cdots\left(\beta_{s}\right)_{k-p}(1)_{k-p}} a_{k} \varkappa^{k} \\
& =\varkappa^{p}+\sum_{k=p+1}^{\infty} \Gamma_{k} a_{k} \varkappa^{k}, \tag{12}
\end{align*}
$$

where

$$
(d)_{k}= \begin{cases}1, & \text { if } k=0 \tag{13}\\ d(d+1) \cdots(d+k-1), & \text { if } k \in \mathbb{N}\end{cases}
$$

Setting the function

$$
\begin{equation*}
D_{p, \lambda}^{n} E(\varkappa)=\varkappa^{p}+\sum_{k=p+1}^{\infty}\left(\frac{p+(k-p) \lambda}{p}\right)^{n} \varkappa^{k} \quad\left(n \in \mathbb{N}_{0}, p \in \mathbb{N}\right) \tag{14}
\end{equation*}
$$

we define a function $D_{p, \lambda}^{* n} E(\varkappa)$ in terms of the Hadamard product (or convolution) by

$$
\begin{equation*}
\left(D_{p, \lambda}^{n} * D_{p, \lambda}^{* n}\right)(\varkappa)=\varkappa^{p}+\sum_{k=p+1}^{\infty} \Gamma_{k} \varkappa^{k} \quad(\varkappa \in \mathbb{U}) . \tag{15}
\end{equation*}
$$

Let

$$
\begin{align*}
H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)= & D_{p, \lambda}^{* n} * E(\varkappa) \\
= & \varkappa^{p}+\sum_{k=p+1}^{\infty} \frac{\left(\alpha_{1}\right)_{k-p} \cdots\left(\alpha_{q}\right)_{k-p}}{\left(\beta_{1}\right)_{k-p} \cdots\left(\beta_{s}\right)_{k-p}(1)_{k-p}} \tag{16}\\
& \cdot\left(\frac{p}{p+(k-p) \lambda}\right)^{n} a_{k} \varkappa^{k}
\end{align*}
$$

From (16), it can be easy to verify that

$$
\begin{align*}
\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)\right)^{\prime}= & \alpha_{1} H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) E(\varkappa) \tag{17}\\
& -\left(\alpha_{1}-p\right) H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)
\end{align*}
$$

$$
\begin{align*}
\frac{\lambda}{p} \varkappa\left(H_{p, \lambda}^{n+1}\left(\alpha_{1}\right) E(\varkappa)\right)^{\prime}= & H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa) \tag{18}\\
& -(1-\lambda) H_{p, \lambda}^{n+1}\left(\alpha_{1}\right) E(\varkappa) .
\end{align*}
$$

Using the operator $H_{p, \lambda}^{n}\left(\alpha_{1}\right)$, we introduce the subclasses.

$$
\begin{align*}
S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right) & =\left\{E \in A(p): H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa) \in S_{p}^{*}(\zeta)\right\}, \tag{19}\\
K_{p, \lambda}\left(n, \alpha_{1} ; \zeta\right) & =\left\{E \in A(p): H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa) \in K_{p}(\zeta)\right\}, \tag{20}\\
C_{p, \lambda}\left(n, \alpha_{1} ; \eta, \zeta\right) & =\left\{E \in A(p): H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa) \in C_{p}(\eta, \zeta)\right\}, \tag{21}
\end{align*}
$$

$$
\begin{equation*}
C_{p, \lambda}^{*}\left(n, \alpha_{1} ; \eta, \zeta\right)=\left\{E \in A(p): H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa) \in C_{p}^{*}(\eta, \zeta)\right\} . \tag{22}
\end{equation*}
$$

We note that

$$
\begin{equation*}
E(\varkappa) \in K_{p, \lambda}\left(n, \alpha_{1} ; \zeta\right) \Leftrightarrow \frac{\varkappa E^{\prime}(\varkappa)}{p} \in S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right) \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
E(\varkappa) \in C_{p, \lambda}^{*}\left(n, \alpha_{1} ; \eta, \zeta\right) \Leftrightarrow \frac{\varkappa E^{\prime}(\varkappa)}{p} \in C_{p, \lambda}\left(n, \alpha_{1} ; \eta, \zeta\right) . \tag{24}
\end{equation*}
$$

2. Main Results

Unless otherwise mentioned, we assume that $n \in \mathbb{N}_{0}, \lambda, 0 \leq \zeta$, $\eta<p$ and $p \in \mathbb{N}$.

The following lemma due to Miller and Mocanu is required to prove the results.

Lemma 1 (see [11]). Let $\varphi(\tau, 9)$ be the complex function

$$
\begin{equation*}
\varphi: D \longrightarrow \mathbb{C},(D \subset \mathbb{C} \times \mathbb{C}) \tag{25}
\end{equation*}
$$

\mathbb{C} being the complex plane and let $\tau=\tau_{1}+i \tau_{2}, \vartheta=\vartheta_{1}+$ i_{2}. Suppose that $\varphi(\tau, 9)$ satisfies the following conditions:
(i) $\varphi(\tau, 9)$ is continuous in D
(ii) $(1,0) \in D$ and $\mathfrak{R}\{\varphi(1,0)\}>0$
(iii) $\mathfrak{R}\left\{\varphi\left(i \tau_{2}, \mathcal{\vartheta}_{1}\right)\right\} \leq 0$ for all $\left(i \tau_{2}, \mathcal{\vartheta}_{1}\right) \in D$ and such that $\vartheta_{1} \leq-\left(1+\tau_{2}^{2}\right) / 2$

Let

$$
\begin{equation*}
h(\varkappa)=1+h_{1} \varkappa+h_{2} \varkappa^{2}+\cdots \tag{26}
\end{equation*}
$$

be regular in \mathbb{U} such that $\left(h(\varkappa), \varkappa h^{\prime}(\varkappa)\right) \in D$ for all $\varkappa \in \mathbb{U}$. If

$$
\begin{equation*}
\mathfrak{R}\left\{\varphi\left(h(\varkappa), \varkappa h^{\prime}(\varkappa)\right)\right\}>0 \tag{27}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathfrak{R}\{h(\varkappa)\}>0 . \tag{28}
\end{equation*}
$$

Theorem 2. Let $E(\varkappa) \in A(p)$. Then,

$$
\begin{equation*}
S_{p, \lambda}^{*}\left(n, \alpha_{1}+1 ; \zeta\right) \subset S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right) \tag{29}
\end{equation*}
$$

Proof. Let $E(\varkappa) \in S_{p, \lambda}^{*}\left(n, \alpha_{1}+1 ; \zeta\right)$, and

$$
\begin{equation*}
\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)}=\zeta+(p-\zeta) h(\varkappa) \tag{30}
\end{equation*}
$$

where $h(x)$ given by (26) we have

$$
\begin{equation*}
\frac{H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) E(\varkappa)}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)}=\frac{1}{\alpha_{1}}\left\{\left(\alpha_{1}+\zeta\right)-p+(p-\zeta) h(\varkappa)\right\} . \tag{31}
\end{equation*}
$$

Differentiating (31), we have

$$
\begin{equation*}
\frac{z\left(H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) E(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) E(\varkappa)}=\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)}+\frac{(p-\zeta) \varkappa h^{\prime}(\varkappa)}{\left(\alpha_{1}+\zeta\right)-p+(p-\zeta) h(\varkappa)}, \tag{32}
\end{equation*}
$$

which, in view of (30), leads to

$$
\begin{equation*}
\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) E(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) E(\varkappa)}-\zeta=(p-\zeta) h(\varkappa)+\frac{(p-\zeta) \varkappa h^{\prime}(\varkappa)}{\left(\alpha_{1}+\zeta\right)-p+(p-\zeta) h(\varkappa)} . \tag{33}
\end{equation*}
$$

Let

$$
\begin{equation*}
\varphi(\tau, \vartheta)=(p-\zeta) \tau+\frac{(p-\zeta) \vartheta}{\left(\alpha_{1}+\zeta\right)-p+(p-\zeta) \vartheta} \tag{34}
\end{equation*}
$$

with $h(\varkappa)=\tau=\tau_{1}+i \tau_{2}, \varkappa h^{\prime}(\varkappa)=\vartheta=\vartheta_{1}+i \vartheta_{2}$. Then,
(i) $\varphi(\tau, \vartheta)$ is continuous in $D=\mathbb{C} \backslash\left\{\left(\left(\alpha_{1}-p\right)+\zeta\right) /(\zeta\right.$ $-p)\} \times \mathbb{C}$
(ii) $(1,0) \in D$ and $\mathfrak{R}\{\varphi(1,0)\}=p-\zeta$
(iii) $\mathfrak{R}\left\{\varphi\left(i \tau_{2}, \vartheta_{1}\right)\right\} \leq 0$ for all $\left(i \tau_{2}, \vartheta_{1}\right) \in D$ and such that $\vartheta_{1} \leq-\left(1+\tau_{2}^{2}\right) / 2$

$$
\begin{align*}
\mathfrak{R}\left\{\varphi\left(i \tau_{2}, \vartheta_{1}\right)\right\} & =\mathfrak{R}\left\{\frac{(p-\zeta) \vartheta_{1}}{\left(\alpha_{1}-p\right)+\zeta+(p-\zeta) i \tau_{2}}\right\} \\
& =\frac{\left(\alpha_{1}-p+\zeta\right)(p-\zeta) \vartheta_{1}}{\left(\alpha_{1}-p+\zeta\right)^{2}+(p-\zeta)^{2} \tau_{2}^{2}}<0 \tag{35}
\end{align*}
$$

for $\vartheta_{1}<0$; therefore, the function $\varphi(\tau, \vartheta)$ satisfies the conditions in Lemma 1; thus, we have $\operatorname{Re}\{h(\varkappa)\}>0(\varkappa \in \mathbb{U})$, that is, $f \in S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right)$.

Theorem 3. For $E(\varkappa) \in A(p)$, we have

$$
\begin{equation*}
K_{p, \lambda}\left(n, \alpha_{1}+1 ; \zeta\right) \subset K_{p, \lambda}\left(n, \alpha_{1} ; \zeta\right) \tag{36}
\end{equation*}
$$

Proof. Applying (23) and using Theorem 2, we have

$$
\begin{align*}
E(\varkappa) \in K_{p, \lambda}\left(n, \alpha_{1}+1 ; \zeta\right) & \Leftrightarrow H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) E(\varkappa) \in K_{p}(\zeta) \\
& \Leftrightarrow \frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) E(\varkappa)\right)^{\prime}}{p} \in S_{p}^{*}(\zeta) \\
& \Rightarrow \frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)\right)^{\prime}}{p} \in S_{p}^{*}(\zeta) \\
& \Leftrightarrow E(\varkappa) \in K_{p, \lambda}\left(n, \alpha_{1} ; \zeta\right) . \tag{37}
\end{align*}
$$

Theorem 4. For $E(\varkappa) \in A(p)$, we have

$$
\begin{equation*}
C_{p, \lambda}\left(n, \alpha_{1}+1 ; \eta, \zeta\right) \subset C_{p, \lambda}\left(n, \alpha_{1} ; \eta, \zeta\right)(\eta \geq 0, \zeta<p ; p \in \mathbb{N}) \tag{38}
\end{equation*}
$$

Proof. Let $E(\varkappa) \in C_{p, \lambda}\left(n, \alpha_{1}+1 ; \eta, \zeta\right)$; then, from (21), there exists a function $G(\varkappa) \in S_{p, \lambda}^{*}\left(n, \alpha_{1}+1 ; \zeta\right)$ such that

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) E(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) G(\varkappa)}\right\}>\eta . \tag{39}
\end{equation*}
$$

Put

$$
\begin{equation*}
\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) G(\varkappa)}=\eta+(p-\eta) h(\varkappa) \tag{40}
\end{equation*}
$$

where $h(\varkappa)$ is given by (26). Applying (17) in (40)
differentiating the resulting equation and multiplying by \varkappa, we have

$$
\begin{align*}
\alpha_{1} \varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) E(\varkappa)\right)^{\prime}= & \{\eta+(p-\eta) h(\varkappa)\} \varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) g(\varkappa)\right)^{\prime} \\
& +(p-\eta) \varkappa h^{\prime}(\varkappa) H_{p, \lambda}^{n}\left(\alpha_{1}\right) G(\varkappa) \\
& +\left(\alpha_{1}-p\right) \varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)\right)^{\prime} . \tag{41}
\end{align*}
$$

Since $G \in S_{p, \lambda}^{*}\left(n, \alpha_{1}+1 ; \zeta\right)$, then by Theorem 2, we have $G \in S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right)$. Let

$$
\begin{equation*}
\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) G(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) G(\varkappa)}=\zeta+(p-\zeta) \hat{H}(\varkappa) \tag{42}
\end{equation*}
$$

where $\mathfrak{R}\{\hat{H}(\varkappa)\}>0$. Applying (17) in (42), we have

$$
\begin{equation*}
\alpha_{1} \frac{H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) G(\varkappa)}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) G(\varkappa)}=\alpha_{1}-p+\zeta+(p-\zeta) \widehat{H}(\varkappa) . \tag{43}
\end{equation*}
$$

From (41) and (43), we have

$$
\begin{equation*}
\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) E(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}+1\right) G(\varkappa)}-\eta=(p-\eta) h(\varkappa)+\frac{(p-\eta) \varkappa h^{\prime}(\varkappa)}{\alpha_{1}-p+\zeta+(p-\zeta) \hat{H}(\varkappa)} . \tag{44}
\end{equation*}
$$

Now, let
$\varphi(\tau, \vartheta)=(p-\eta) \tau+\left(((p-\eta) \vartheta) /\left(\alpha_{1}-p+\zeta+(p-\zeta)\right.\right.$ $\hat{H}(\varkappa))$), with $h(\varkappa)=\tau=\tau_{1}+i \tau_{2}, \varkappa h^{\prime}(\varkappa)=\vartheta=\vartheta_{1}+i \vartheta$. Then,
(i) $\varphi(\tau, \vartheta)$ is continuous in $D=\mathbb{C} \backslash\left\{\left(\left(\alpha_{1}-p\right)+\zeta\right) /\right.$ $(\zeta-p)\} \times \mathbb{C}$
(ii) $(1,0) \in D$ and $\Re\{\varphi(1,0)\}=p-\eta$
(iii) $\mathfrak{R}\left\{\varphi\left(i \tau_{2}, \vartheta_{1}\right)\right\} \leq 0$ for all $\left(i \tau_{2}, \mathcal{\vartheta}_{1}\right) \in D$ and such that $\vartheta_{1} \leq-\left(1+\tau_{2}^{2}\right) / 2$
$\mathfrak{R}\left\{\varphi\left(i \tau_{2}, \vartheta_{1}\right)\right\}=\Re\left\{\frac{(p-\eta)\left[\alpha_{1}-p+\zeta+(p-\zeta) h_{1}(a, b)\right] v_{1}}{\left[\alpha_{1}-p+\zeta+(p-\zeta) h_{1}(a, b)\right]^{2}+\left[(p-\zeta) h_{2}(a, b)\right]^{2}}\right\}<0$,
for $\vartheta_{1}<0$, where $\widehat{H}(\varkappa)=h_{1}(a, b)+i h_{2}(a, b), h_{1}(a, b)$ and h_{2} (a, b) being functions of a and b, and $\Re\{\hat{H}(\varkappa)\}=h_{1}(a, b)$ >0; thus, we have $\operatorname{Re}\{h(\varkappa)\}>0$, that is, $E \in C_{p, \lambda}\left(n, \alpha_{1} ; \eta, \zeta\right)$.

Theorem 5. For $E(\varkappa) \in A(p)$, we have

$$
\begin{equation*}
C_{p, \lambda}^{*}\left(n, \alpha_{1}+1 ; \eta, \zeta\right) \subset C_{p, \lambda}^{*}\left(n, \alpha_{1} ; \eta, \zeta\right)(\eta \geq 0, \alpha<p ; p \in \mathbb{N}) \tag{46}
\end{equation*}
$$

Proof. Using (24), we can prove Theorem 5 as that making in Theorem 3.

3. Inclusion Results for $\mathrm{F}_{p, c}$

The generalized Libera integral operator $F_{p, c}$ (see [12]) is defined by

$$
\begin{align*}
F_{p, c} E(\varkappa) & =\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} E(t) d t \\
& =\varkappa^{p}+\sum_{k=p+1}^{\infty} \frac{c+p}{c+k} a_{k} \varkappa^{k}(c>-p ; p \in \mathbb{N}) \tag{47}
\end{align*}
$$

which satisfies

$$
\begin{align*}
\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(E)(\varkappa)\right)^{\prime}= & (c+p) H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa) \tag{48}\\
& -c H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(E)(\varkappa)
\end{align*}
$$

Theorem 6. Let $c+p>0$ and $E \in S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right)$; then, $F_{p, c}(E)$ $(\varkappa) \in S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right)$.

Proof. Let $E \in S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right)$ and put

$$
\begin{equation*}
\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(E)(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(E)(\varkappa)}=\zeta+(p-\zeta) h(\varkappa) \tag{49}
\end{equation*}
$$

where $h(\varkappa)$ is given by (26). Applying (48) in (49), we have

$$
\begin{equation*}
\frac{H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(E)(\varkappa)}=\frac{1}{c+p}\{c+\zeta+(p-\zeta) h(\varkappa)\} . \tag{50}
\end{equation*}
$$

Differentiating (50), we have

$$
\begin{equation*}
\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)}=\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(E)(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(E)(\varkappa)}+\frac{(p-\zeta) \varkappa h^{\prime}(\varkappa)}{c+\zeta+(p-\zeta) h(\varkappa)}, \tag{51}
\end{equation*}
$$

where in view of (49), we have

$$
\begin{equation*}
\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)}=\zeta+(p-\zeta) h(\varkappa)+\frac{(p-\zeta) \varkappa h^{\prime}(\varkappa)}{c+\zeta+(p-\zeta) h(\varkappa)} . \tag{52}
\end{equation*}
$$

Let

$$
\begin{equation*}
\varphi(\tau, \vartheta)=(p-\zeta) \tau+\frac{(p-\zeta) \vartheta}{c+\zeta+(p-\zeta) \tau} \tag{53}
\end{equation*}
$$

with $h(\varkappa)=\tau=\tau_{1}+i \tau_{2}, \varkappa h^{\prime}(\varkappa)=\vartheta=\vartheta_{1}+i \vartheta_{2}$. Then,
(i) $\varphi(\tau, \vartheta)$ is continuous in $D=\mathbb{C} \backslash\{(c+\zeta) /(\zeta-p)\} \times \mathbb{C}$
(ii) $(1,0) \in D$ and $\mathfrak{R}\{\varphi(1,0)\}=p-\zeta$
(iii) $\mathfrak{R}\left\{\varphi\left(i \tau_{2}, \vartheta_{1}\right)\right\} \leq 0$ for all $\left(i \tau_{2}, \vartheta_{1}\right) \in D$ and such that $\vartheta_{1} \leq\left(1+\tau_{2}^{2}\right) / 2$
$\mathfrak{R}\left\{\varphi\left(i \tau_{2}, \vartheta_{1}\right)\right\}=\mathfrak{R}\left\{\frac{(p-\zeta) \vartheta_{1}}{c+\zeta+(p-\zeta) i \tau_{2}}\right\}=\frac{(c+\zeta)(p-\zeta) \vartheta_{1}}{(c+\zeta)^{2}+(p-\zeta)^{2} \tau_{2}^{2}}<0$,
for $\tau_{1}<0$; therefore, the function $\varphi(\tau, \vartheta)$ satisfies the conditions in Lemma 1, $\operatorname{Re}\{h(\varkappa)\}>0(\varkappa \in \mathbb{U})$ and $E \in F_{p, c} S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right)$.

Theorem 7. Let $c+p>0$ and $E \in K_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right)$; then, $F_{p, c}(E)$ $(\varkappa) \in K_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right)$.

Proof. Applying Theorem 6 and (23), we have

$$
\begin{align*}
E(\varkappa) \in K_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right) & \Longleftrightarrow \frac{\varkappa E^{\prime}}{p} \in S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right) \\
& \Longleftrightarrow \frac{\varkappa}{p}\left(F_{p, c}(E)(\varkappa)\right)^{\prime} \in S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right) \\
& \Longleftrightarrow F_{p, c}(E)(\varkappa) \in K_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right) \tag{55}
\end{align*}
$$

Theorem 8. Let $c+p>0$ and $E \in C_{p, \lambda}\left(n, \alpha_{1} ; \eta, \zeta\right)$; then, $F_{p, c}(E)(\varkappa) \in C_{p, \lambda}\left(n, \alpha_{1} ; \eta, \zeta\right)$.

Proof. Let $E \in C_{p, \lambda}\left(n, \alpha_{1} ; \eta, \zeta\right)$; then, from (21), there exists a function $G(\varkappa) \in S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right)$ such that

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) G(\varkappa)}\right\}>\eta(\varkappa \in \mathbb{U}) \tag{56}
\end{equation*}
$$

Put

$$
\begin{equation*}
\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(E)(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(G)(\varkappa)}=\eta+(p-\eta) h(\varkappa) \tag{57}
\end{equation*}
$$

where $h(\varkappa)$ is given by (26). Applying (48) in (57) differentiating the resulting equation with respect to \varkappa and multiplying by \varkappa, we have

$$
\begin{align*}
(c+p) \varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right)(E)(\varkappa)\right)^{\prime}= & \{\eta+(p-\eta) h(\varkappa)\} \varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(G)(\varkappa)\right)^{\prime} \\
& +(p-\eta) \varkappa h^{\prime}(\varkappa) H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(G)(\varkappa) \\
& +c \varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c} E(\varkappa)\right)^{\prime} . \tag{58}
\end{align*}
$$

Since $G \in S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right)$, then by Theorem 6 , we have $F_{p, c}(G)(\varkappa) \in S_{p, \lambda}^{*}\left(n, \alpha_{1} ; \zeta\right)$. Let

$$
\begin{equation*}
\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(G)(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(G)(\varkappa)}=\zeta+(p-\zeta) \hat{H}(\varkappa) \tag{59}
\end{equation*}
$$

where $\mathfrak{R}\{\hat{H}(\varkappa)\}>0$. Applying (48) in (59), we have

$$
\begin{equation*}
(c+p) \frac{H_{p, \lambda}^{n}\left(\alpha_{1}\right)(G)(\varkappa)}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) F_{p, c}(G)(\varkappa)}=c+\zeta+(p-\zeta) \widehat{H}(\varkappa) \tag{60}
\end{equation*}
$$

From (58) and (60), we have

$$
\begin{equation*}
\frac{\varkappa\left(H_{p, \lambda}^{n}\left(\alpha_{1}\right) E(\varkappa)\right)^{\prime}}{H_{p, \lambda}^{n}\left(\alpha_{1}\right) G(\varkappa)}-\eta=(p-\eta) h(\varkappa)+\frac{(p-\eta) \varkappa h^{\prime}(\varkappa)}{c+\zeta+(p-\zeta) \widehat{H}(\varkappa)} \tag{61}
\end{equation*}
$$

Now, let

$$
\begin{equation*}
\varphi(\tau, \vartheta)=(p-\eta) \tau+\frac{(p-\eta) \vartheta}{c+\zeta+(p-\zeta) \hat{H}(\varkappa)} \tag{62}
\end{equation*}
$$

It is easy to see that $\varphi(\tau, \vartheta)$ satisfies the conditions (i) and (ii) of Lemma 1 in $D=\mathbb{C} \backslash\{(c+\zeta) /(\zeta-p)\} \times \mathbb{C}$. For (iii), we have
$\mathfrak{R}\left\{\varphi\left(i \tau_{2}, \vartheta_{1}\right)\right\}=\mathfrak{R}\left\{\frac{(p-\eta)\left[c+\zeta+(p-\zeta) h_{1}(a, b)\right] \vartheta_{1}}{\left[c+\zeta+(p-\zeta) h_{1}(a, b)\right]^{2}+\left[(p-\zeta) h_{2}(a, b)\right]^{2}}\right\}<0$,
for $\vartheta_{1}<0$, where $\widehat{H}(\varkappa)=h_{1}(a, b)+i h_{2}(a, b), h_{1}(a, b)$ and h_{2} (a, b) being functions of a and b, and $\Re\{\widehat{H}(\varkappa)\}=h_{1}(a, b)$ >0. Thus, we have $\operatorname{Re}\{h(\varkappa)\}>0$, that is, $F_{p, c} E \in C_{p, a}\left(n, \alpha_{1}\right.$; $\eta, \zeta)$.

Similarly, we can prove the following theorem.
Theorem 9. Let $c+p>0$ and $E \in C_{p, \lambda}^{*}\left(n, \alpha_{1} ; \eta, \zeta\right)$; then, $F_{p, c}$ $E \in C_{p, \lambda}^{*}\left(n, \alpha_{1} ; \eta, \zeta\right)$.

Remark 10.

(1) Using (18) instead of (17) in Theorems 2-5, we have new inclusion results
(2) For special values of the parameters in (16), we obtain another new inclusion results for different classes

4. Conclusion

Using the hypergeometric function (see Srivastava and Karlsson [10]) and Hadamard product, we defined an operator for p-valent functions. This operator generalizes many other operators for special values of its parameters and has two recurrence relations and then defined four classes related to starlike, convex, close-to-convex, and quasi-toconvex p-valent functions. We used Miller and Mocanu lemma [11] for second differential inequalities to obtain inclusion relations for these classes and also for the generalized Libera integral operator.

5. Future Studies

The authors suggest to obtain the inclusion results for the classes using the following lemma according to Jack [13] instead of Lemma 1.

Jack's lemma [13] state that, if $\omega(\varkappa)$ is analytic function in \mathbb{U}, with $\omega(0)=0,|\omega(\varkappa)|$ attains its maximum value on the circle $|\varkappa|=r<1$ at a point $x_{0} \in \mathbb{U}$ and $\xi \geq 1$; then,

$$
\begin{equation*}
\varkappa_{0} \omega^{\prime}\left(\varkappa_{0}\right)=\xi \omega \varkappa_{0} . \tag{64}
\end{equation*}
$$

Data Availability

During the current study, the data are derived arithmetically.

Conflicts of Interest

The authors do not have any competing interests.

Authors' Contributions

The authors approve and read the article.

References

[1] T. Bulboacã, Differential Subordinations and Superordinations, Recent Results, House of Scientific book Publ, Cluj-Napoca, 2005.
[2] S. S. Miller and P. T. Mocanu, "Subordinations of differential superordinations," Complex Variables, vol. 48, no. 10, pp. 815-825, 2003.
[3] S. Owa, "On certain classes of p-valent functions with negative coefficients," Simon Stevin, vol. 59, pp. 385-402, 1985.
[4] D. A. Pater and N. K. Thakare, "On convex hulls and extreme points of p-valent starlike and convex classes with applications," Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, vol. 27, no. 75, pp. 145-160, 1983.
[5] A. W. Goodman, "On the Schwarz-Christoffel transformation and p-valent functions," Transactions of the American Mathematical Society, vol. 68, pp. 204-223, 1950.
[6] M. K. Aouf, "On a class of p-valent close-to-convex functions of order β and type α," International Journal of Mathematics and Mathematical Sciences, vol. 11, Article ID 294247, 8 pages, 1988.
[7] M. K. Aouf, A. O. Mostafa, A. M. Shahin, and S. M. Madian, "Some inclusion relations for subclasses of p-valent functions defined by a multiplier transformation," Acta Universitatis Apulensis, vol. 32, pp. 1-12, 2012.
[8] R. J. Libera, "Some radius of convexity problems," Duke Mathematical Journal, vol. 31, pp. 143-158, 1964.
[9] J. Dziok and H. M. Srivastava, "Classes of analytic functions associated with the generalized hypergeometric function," Applied Mathematics and Computation, vol. 103, no. 1, pp. 1-13, 1999.
[10] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series Halsted Press (Ellis Horwood Ltd., Chichester), John Wiley and Sons, New York Chichester, Brisbane and London, 1985.
[11] S. S. Miller and P. T. Mocanu, "Second order differential inequalities in the complex plane," Journal of Mathematical Analysis and Applications, vol. 65, no. 2, pp. 289-305, 1978.
[12] S. Owa and H. M. Srivastava, "Some applications of the generalized Libera integral operator," Japan Academy, vol. 62, no. 4, pp. 125-128, 1986.
[13] I. S. Jack, "Functions starlike and convex of order α," Journal of the London Mathematical Society, vol. s2-3, no. 3, pp. 469-474, 1971.

