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This paper concerns the universality of the two-layer neural network with the k-rectified linear unit activation function with
k = 1, 2,… with a suitable norm without any restriction on the shape of the domain in the real line. This type of result is
called global universality, which extends the previous result for k = 1 by the present authors. This paper covers k-sigmoidal
functions as an application of the fundamental result on k-rectified linear unit functions.

1. Introduction

The goal of this note is to specify the closure of linear sub-
spaces generated by the k-rectified linear unit functions
under various norms. As in [1], for k ∈ℕ, we set

ReLU x ≔
0, x ≤ 0,
x, x > 0,

ReLUk x ≔ ReLU x k

1

The function ReLUk is called the k-rectified linear unit (k
-ReLU for short), which is introduced to compensate for the
properties that ReLU does not have. Our approach will be a
completely mathematical one. Recently, increasing attention
has been paid to the k-ReLU function as well as the original
ReLU function. For example, if k ≥ 2, the function k-ReLU is
in the class Ck−1, so that it is smoother than the ReLU func-
tion. When we study neural networks, the function k-ReLU
is called an activation function. As in [2], k-ReLU functions
are used to reduce the amount of computation. Using this
smoothness property, Siegel and Xu investigated the error

estimates of the approximation [1]. Mhaskar and Micchelli
worked in compact sets in ℝn, while in the present work,
we consider the approximation on the whole real line.

A problem arises when we deal with k-ReLU as a func-
tion over the whole line. The function k-ReLU is not
bounded on ℝ. Our goal in this paper is to propose a Banach
space that allows us to handle such unbounded functions.
Actually, for k = 1, 2,… , we let

Yk ℝ ≔ f ∈ C ℝ : lim
x⟶±∞

f x

1 + x k
exists , 2

equipped with the norm

f
Yk

≔ sup
x∈ℝ

f x

1 + x k
, 3

and define

HReLUk ℝ ≔ Span ReLUk a · +b : a ≠ 0, b ∈ℝ 4
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Note that any element in Yk ℝ , divided by 1 + · k, is a
continuous function over ℝ≔ℝ ∪ ±∞ . Our main result
in this paper is as follows:

Theorem 1. The linear subspace HReLUk ℝ is dense in
Yk ℝ .

Understanding the structure of HReLUk ℝn is important
in the field machine learning in the last decade. We refer to
[4, 5] for example. Furthermore, dealing with unbounded
activation functions is important from the viewpoint of
application (see [6]). Remark that the approximation over
bounded domains has a long history (see [7]).

As is seen from the definition of the norm · Yk
, when

we have a function f ∈Yk ℝ , with ease, we can find a func-
tion g ∈HReLUk ℝ such that lim

x⟶±∞
f x − g x /1 + x k

= 0. However, after choosing such a function g, we have to
look for a way to control f − g inside any compact interval
by a function h ∈Yk ℝ ∩ Cc ℝ . Although Yk ℝ consists
of unbounded functions, we can manage to do so by induc-
tion on k. Actually, we will find h ∈Yk ℝ ∩ Cc ℝ such
that f − g − h is sufficiently small once we are given a com-
pact interval.

Theorem 1 says that the space Yk ℝ is mathematically
suitable when we consider the activation function k-ReLU.
We compare Theorem 1 with the following fundamental
result by Cybenko. For a function space X ℝ over the real
line ℝ and an open set Ω, X Ω stands for the restriction
of each element f to Ω, that is,

X Ω = f Ω f ∈ X ℝ , 5

and the norm is given by

f X Ω = inf g X g ∈ X ℝ , f = g Ω 6

Theorem 2 (see Cybenko [8]). Let K ⊂Ω be a compact set
and σ ℝ⟶ℝ be a continuous sigmoidal function. Then,
for all f ∈ C K and ε > 0, there exists g ∈Hσ Ω such that

sup
x∈K

g x − f x < ε 7

We remark that Theorem 1 is not a direct consequence of
Theorem 2. Theorem 2 concerns the uniform approximation
over compact intervals, while Theorem 2 deals with the uni-
form approximation over the whole real line. We will prove
Theorem 1 without using Theorem 2.

Let k = 0, 1,… . Our results readily can be carried over to
the case of k-sigmoidal functions. As in Definition 4.1 in [7], a
continuous function σ ℝ⟶ℝ is k-sigmoidal if

lim
x⟶−∞

σ x

xk
= 0,

lim
x⟶∞

σ x

xk
= 1

8

Needless to say, ReLUk is k-sigmoidal. If k = 0, then we
say that σ is a continuous sigmoidal. As a corollary of Theo-
rem 1, we extend this theorem to the case of k-sigmoidal.

Theorem 3. If σ is k -sigmoidal, then the linear subspace
Hσ ℝ is dense in Yk ℝ .

We can transplant Theorem 3 to various Banach lattices
over any open set Ω on the real line ℝ. Here and below, L0

Ω denotes the set of all Lebesgue measurable functions
from Ω to ℂ. Let X Ω be a Banach space contained in
L0 Ω endowed with the norm · X Ω . We say that X Ω

is a Banach lattice if for any f ∈ L0 Ω and g ∈ X Ω satisfy-
ing the estimate f x ≤ g x , i.e., x ∈Ω, f ∈ X Ω , and the
estimate f X Ω ≤ g X Ω holds. We refer to [3] for the case
where X is the variable exponent Lebesgue spaces. See [9] for
the function spaces to which Theorem 1 is applicable.

We write

ReLUk
+ x = ReLUk x =max 0, x k,

ReLUk
− x = ReLUk

+ −x
9

Theorem 4 (Universality on Banach lattices). Let k ∈ℕ,Ω
⊂ℝ be an open set. Assume that Yk Ω is continuously
embedded into X Ω . Assume that χΩ ∈ X Ω . Then,

HReLUk Ω
· X Ω =ℂ ReLUk

+ Ω +ℂ ReLUk Ω + Cc ℝ
n Ω

· X Ω

10

It is noteworthy that we can deal with the case of Ω =ℝ.

Remark 5.

(1) The condition that χΩ ∈ X Ω is a natural condition,
since σ ∈ X Ω

(2) If k = 0, then we saw in [9] that our result recaptures
the result by Funahashi [10]. So, our result includes a
further extension of his result

Remark 6. Let X Ω be a Banach lattice, and let σ be a 1
-sigmoidal. We put

σ0 x ≡ ReLU x − ReLU x − 1 , x ∈ℝ 11

Then, by the result for the case of k = 1,

Hσ0
Ω

· X Ω =Hσ Ω
· X Ω 12

2. Proof of Theorem 1

We need the following lemmas: we embed Yk ℝ into a
function space over ℝ =ℝ ∪ ±∞ .

Lemma 7. The operator Yk ℝ ⟶ BC ℝ , f ↦ f /1 + · k, is
an isomorphism.
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If k = 1, then this can be found in Lemma 3 in [9].

Proof. Observe that the inverse is given for F ∈ BC ℝ as
follows:

f x = 1 + x kF x   x ∈ℝ 13

Since the operator Yk ℝ ⟶ BC ℝ , f ↦ f /1 + · k,
preserves the norms, we see that this operator is an
isomorphism.

We set

H+
ReLUk ℝ = Span ReLUk ·−t : t ∈ℝ 14

We will use the following algebraic relation for
H+

ReLUk ℝ .

Lemma 8. Let k ∈ℕ. Then, for all x ∈ℝ,

〠
k+1

j=0

k + 1

j
−1 j x − j k = 0, 〠

k

j=0

k

j
−1 j x − j k = −1 k

15

Proof of Lemma 8. By comparing the coefficients, we may
reduce the matter to the proof of the following two equali-
ties:

〠
k

j=0

k + 1
j

−1 j jℓ = 0, 〠
k

j=0

k + 1
j

−1 j jk −1 k, 16

for each ℓ = 0, 1… , k − 1. We compute

et − 1 k = 〠
k

j=1

k

j
−1 k−jejt , 17

and then,

tk 〠
∞

ℓ=0

tℓ

ℓ + 1

k

= −1 k 〠
∞

ℓ=0
〠
k

j=1

k

j
−1 j jℓ

tℓ

ℓ
18

Hence,

〠
k

j=0

k + 1
j

−1 j jℓ = 0,

〠
k

j=0

k + 1
j

−1 j jk = −1 k

19

for each ℓ = 0, 1… , k − 1.

Although ReLUk is unbounded, if we consider suitable
linear combinations, we can approximate any function in

c ℝ .

Lemma 9. Any function in Cc ℝ can be approximated uni-
formly over ℝ by the functions in HReLUk ℝ ∩ Cc ℝ . More
precisely, if a function f ∈ Cc ℝ is contained in an interval
−a′, a and ε > 0, then there exists τ ∈HReLUk ℝ such that
supp τ ⊂ −a′, a and that τ − f L∞ ≤ Cε.

For the proof, we will use the following observation: if

f = 〠
N

j=1
ajReLUk−1 ·−t j , 20

then, by the definition of ReLUk,

t

−∞
f s ds = 〠

N

j=1

aj
k
ReLUk ·−t j 21

Proof. We induct on k. The base case k = 1 was proved
already [9]. Suppose that we have f ∈ Cc ℝ with supp f
⊂ −a′, a for a, a′ > 0. In fact, we can approximate f with
the functions in HReLUk ℝ supported in −a′, a . Let ε > 0
be given. By mollification and dilation, we may assume f ∈
C1 ℝ . By the induction assumption, there exists ψ ∈
HReLUk−1 ℝ such that

f ′ − ψ
L∞

< 1 + ℓ −1ε, supp ψ ⊂ −a′, a , 22

where ℓ = a + a′ = diam supp f . Note that

φ t =
t

−∞
ψ s ds  t ∈ℝ 23

is a function in HReLUk ℝ . Note that

φ t = 0 if t ≤ −a′, φ t =
ℝ
ψ s ds = φ a  if t ≥ a

24

Integrating estimate (22), we obtain

f t − φ t ≤
t

−a′
f ′ s − φ′ s ds

≤
a

−a′
f ′ s − φ′ s ds

≤
a + a′ ε

1 + ℓ
< ε,

25

for t ≥ −a′. In particular,

φ a = φ a − f a ∈ −ε, ε 26

Thus, f − φ L∞ < ε. Using Lemma 8, the dilation and
translation, we choose φ∗ ∈HReLUk ℝ , which depends on
k, a, and a′, such that supp φ∗ ⊂ −a′,∞ and that φ∗
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agrees with 1 over a,∞ . If t < −a′, then for τ = φ − φ a φ∗,

f t − τ t = f t − φ t ∈ −ε, ε 27

If −a′ < t < a, then

f t − τ t = f t − φ t + φ a φ∗ t

∈ − 1 + φ∗
L∞ ε, 1 + φ∗

L∞ ε
28

Finally, if t > a, then

f t − τ t = f t − φ t + φ a φ∗ t = f t − φ t + φ a = 0
29

Therefore, the function τ is a function in HReLUk ℝ
satisfying supp τ ⊂ −a′, a and f − τ L∞ < Cε, where C
depends on k, a, and a′, that is, k and f .

We will prove Theorems 1 and 3.

Proof of Theorem 1. We identify Yk with BC ℝ as in
Lemma 7. We have to show that any finite Borel measure
μ in ℝ which annihilates HReLUk ℝ is zero. Since Cc ℝ is
contained in the closure of the space HReLUk ℝ as we have
seen in Lemma 9, μ is not supported on ℝ. Therefore, we
have only to show that μ ∞ = 0 and that μ −∞ = 0.
However, since we have shown that μ is not supported on
ℝ, this is a direct consequence of the following observations:

μ ∞ =
ℝ

ReLUk t

1 + t k
dμ t = 0,

μ −∞ = −1 k

ℝ

ReLUk −t
1 + t k

dμ t = 0
30

Thus, μ = 0.

Proof of Theorem 3. We identify Yk with BC ℝ as in
Lemma 7 once again. Then to show that

Hσ ℝ = Span σ ax − b

1 + x k
a, b ∈ℝ 31

is dense in BC ℝ under this identification, it suffices to
show that any finite measure μ over ℝ is zero if it annihilates
Hσ ℝ .

Assuming that μ annihilates Hσ ℝ , we see that

ℝ

σ ax − ab

1 + x k
dμ x = 0, 32

for any a ≠ 0 and b ∈ℝ. Since σ is k-sigmoidal,

sup
x∈ℝn

sup
a∈ℝ\ −1,1

σ ax − ab

ak 1 + x k
<∞, 33

for any fixed b ∈ℝ. Furthermore,

lim
a⟶∞

σ ax − ab

a k 1 + x k
= x − b k

+
1 + x k

,

lim
a⟶−∞

σ ax − ab

a k 1 + x k
= b − x k

+
1 + x k

34

Therefore, by the Lebesgue convergence theorem, letting
a⟶ ±∞ in (32), we have

ℝ

x − b k
+

1 + x k
dμ x =

ℝ

b − x k
+

1 + x k
dμ x = 0 35

This means that μ annihilates HReLUk ℝ . Thus, by
Theorem 1, μ = 0.

3. Proof of Theorem 4—Application of
Theorem 1

We show

HReLUk ℝ =ℂReLUk
+ +ℂReLUk

− + Cc ℝ
Yk 36

We have

HReLUk ℝ ⊃ Cc ℝ
Yk , 37

by Lemma 9. Hence,

HReLUk ℝ ⊃ℂReLUk
+ +ℂReLUk

− + Cc ℝ
Yk 38

Thus, we prove the opposite inclusion.
For any f ∈HReLUk ℝ , there exist β± ∈ℂ such that

g0 x = f x − β+ReLUk
+ x − β−ReLUk

− x is a polynomial
of degree k − 1 both on K ,∞ and on −∞, − K for
K ≫ 1. Fix R≫ K for the time being. Then, we have

g x = β+ReLUk
+ x + β−ReLUk

− x , 39

satisfying

sup
x∈ℝ\ −R,R

g0 x

1 + x k
= sup

x∈ℝ\ −R,R

f x − g x

1 + x k
= O R−1 40
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We define

F x =

−g0 R x − R + g0 R , R ≤ x ≤ R + 1,
g x , x ≤ R,
g0 −R x + R + g0 −R , −R − 1 ≤ x ≤ −R,
0, otherwise

41

By the use of Lemma 9, we choose a compactly supported
function

h ∈HReLUk ℝ ∩ Cc ℝ , 42

supported on −R − 2, R + 2 so that

sup
x∈ℝ

F x − h x = sup
x∈ −R−2,R+2

F x − h x ≤ R−1 43

Then, we have

sup
x∈ −R,R

f x − g x − h x

1 + x k
≤ CR−1,

sup
x∈ −R−2,R+2

f x − g x − h x ≤ C Rk−1
44

Then, we have

g0 − h
Yk

= sup
x∈ℝ

f x − g x − h x

1 + x k

≤ sup
x∈ −R,R

f x − g x − h x

1 + x k
+ sup

x∈ℝ\ −R−2,R+2

f x − g x

1 + x k
+ sup

x∈ −R−2,R+2 \ −R,R

f x − g x − h x

1 + x k
≤ sup

x∈ −R,R

f x − g x − h x

1 + x k
+ sup

x∈ℝ\ −R−2,R+2

f x − g x

1 + x k
+ C sup

x∈ −R−2,R+2 \ −R,R

Rk−1

1 + x k
= O R−1

45

Since g ∈ℂReLUk
+ +ℂReLUk

−, h ∈ Cc ℝ , and
f − h − g Yk

= g0 − h
Yk

< ε as long as R is large enough,

f − g ∈ Cc ℝ
Yk . Thus, we obtain (36).

From (36), we deduce

HReLUk Ω
Yk ⊂ℂ ReLUk

+ Ω +ℂ ReLUk Ω + Cc ℝ Ω
Yk

Yk

=ℂ ReLUk
+ Ω +ℂ ReLUk Ω + Cc ℝ Ω

Yk

46

Thus, the proof is complete if X =Yk. For general
Banach lattices X, we use a routine approximation proce-
dure. We prove

HReLUk Ω
· X Ω =ℂ ReLUk

+ Ω +ℂ ReLUk Ω + Cc ℝ Ω
· X Ω

47

Let f ∈HReLUk Ω
· X Ω and ε > 0. Then since f ∈

HReLUk Ω
· X Ω , there exists f0 ∈HReLUk such that

f − f0 Ω X Ω < ε 48

Since we know that

f0 ∈HReLUk ⊂ℂReLUk
+ +ℂReLUk

− + Cc
Yk , 49

there exist constants β± and h ∈ Cc ℝ such that
f0 − β+ReLUk

+ − β−ReLUk
− − h

Yk
< ε. Hence for such β±

and h ∈ Cc ℝ , we have f0 Ω − β+ReLUk
+ Ω − β−ReLUk

− Ω
− h Ω Yk Ω < ε. Since we assume thatYk Ω is continuously

embedded into X Ω , we have f − β+ReLUk
+ Ω − β−ReLUk

−
Ω − h Ω X Ω < Cε. Therefore, we have

HReLUk Ω
· X Ω ⊂ℂ ReLUk

+ Ω +ℂ ReLUk Ω + Cc ℝ Ω
· X Ω

50

4. Conclusion

We specified the closure of HReLUk ℝ under the norm · Yk
.

This is useful when we consider the approximation by func-
tions in the function space HReLUk ℝ . We illustrated this sit-
uation using Banach lattices. Our result contains the existing
result on the approximation by means of a variable exponent
Lebesgue space. It is also remarkable that our attempt can be
located as an attempt of understanding the neural network.
For example, Carroll and Dikinson used the Radon transform
[11], and other research employed some other topologies (see
[12, 13]).

Remark that this note is submitted as a preprint coded:
https://arxiv.org/abs/2212.13713.

5. Discussion

So far, we can manage to handle the case where k is a non-
negative integer. Our discussion heavily depended on the
algebraic relation such as Lemma 8. So, we do not know
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how to handle the case where k is not an integer. Even for
the case where k = 1/2, the problem is difficult.
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