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In this paper, we employ a q-Noor integral operator to perform a q-analogue of certain fractional integral operator defined on an
open unit disc. Then, we make use of the Hadamard convolution product to discuss several related results. Also, we derive a class
of convex functions by utilizing the q-fractional integral operator and apply the inspired presented theory of the differential
subordination, to geometrically explore the most popular differential subordination properties of the aforementioned operator.
In addition, we discuss an exciting inclusion for the given convex class of functions. Over and above, we investigate the q
-fractional integral operator and obtain some applications for the differential subordination.

1. Introduction

The theory of quantum calculus and its applications has
been applied in several branches of mathematics, engineer-
ing sciences, and physics. Hence, many researchers have
used q-calculus to study discrete dynamical systems, discrete
stochastic processes, q-deformed super algebras, q-transform
analysis, and so on. In literature, differentiation and integra-
tion of function are formulated by using the quantum theory
of calculus (or q-calculus) [1–3]. The Jackson q-calculus is
also involved in various areas of science including fractional
q-calculus, optimal control, nonlinear integrodifferential
equations, q-difference, and q-integral equations [4–7].
Ismail et al. [8] are the first to employ the theory of q-cal-
culus for investigating the geometric function theory. Srivas-
tava in [9] points out some comprehensive reviews and
applications in the geometric function theory of q-calculus
and discusses many important applications of starlike func-
tions. Arif et al. in [10, 11] derive some properties of multi-
valent functions by using q-calculus. Authors in [12] discuss
q-calculus and the Salagean operator to obtain differential
subordination results. Aouf and Mostafa [13] used differen-

tial subordination to define a new subclass of analytic func-
tions with q-analogue fractional differential operator.
Mahmood and Sokół [14] apply properties of the Rusche-
weyh q-differential operator for a subclass of analytic func-
tions and study some of its applications. Kanas and
Raducanu [15] investigate q-analogues of the Ruscheweyh
operator by using the Hadamard product; see, for some
details, [14, 16] and [11, 17].

Let f be a real or complex value and D be unit disc
D = z, z < 1 , 0 < q < 1. Then, the q-difference operator
is defined by [1]

Dqf z = f z − f qz
z − qz

, z ∈D 1

The q-differentiation rules may be wrote as

Dq f z g z = g z Dqf z + f qz Dqg z , 2

Dq
f z
g z

=
g z Dqf z − f z Dqg z

g z g qz
3
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Let A a, n consist of analytic functions in the unit disc
D = z, z < 1 of the form f z = a + zn +∑∞

k=2ak+nz
k+n. For

a = 0 and n = 1, we use A =A 0, 1 . Therefore, the function
f ∈A has the expansion of the form

f z = z + 〠
∞

k=2
akz

k 4

Note that every function f ∈A is normalized by
f 0 = 0 and f ′ 0 = 1. The class of univalent functions
in A is denoted by S. In particular, S∗ is the class of starlike
functions, CV is the class of convex functions, and K is the
class of close-to-convex function [18, 19]. Recently, authors
in [20] used the convolution to introduce three new sub-
classes of starlike functions, convex functions, and close-
to-convex functions with the novel Borel distribution
operator.

Let f ∈A be given by (4) and g z = z +∑∞
k=2bkz

k. Then,
the convolution of f and g is denoted by f ∗ g, which is a
function in A given by

f ∗ g z = z + 〠
∞

k=2
akbkz

k, z ∈D 5

We say that the function f is subordinate to g in D and
write f z ≺ g z for z ∈D if there exists a Schwartz analytic
function w in D such that w 0 = 0 and w z < 1 z ∈D
and f z = g w z [21]. In particular, if the function g is
univalent in D, then f z ≺ g z if and only if

f 0 = g 0 ,
f D ⊆ g D

6

Ma and Minda [22] studied the class of starlike and
convex functions by using the principle of differential subor-
dination. Those differential subordinations provide interest-
ing results when they are used to study new sets of univalent
functions [23–25].

Making use of equations (4) and (1), we can easily obtain
that

Dqf z = 1 + 〠
∞

k=2
k qakz

k−1, k ∈ℕ, z ∈D, 7

where

k q =
1 − qk

1 − q
= 1 + 〠

k−1

i=1
qi, 0 q = 0 8

It is clear that 1 q = 1. For k ∈ℤ+, the q-factorial is given
by [3]

k q =
1, k = 0,
1 q 2 q ⋯ k q, k ∈ℕ

9

In addition, with t > 0, the q-Pochhammer symbol has
the form [3]

t q,k = t q k
=

1, k = 0,
t q t + 1 q ⋯ t + k − 1 q, k ∈ℕ

10

Note that t q,k = t k when q⟶ 1−.
For t > 0, the q-analogue of the gamma function is pre-

sented as

Γq t + 1 = t qΓq t ,

Γq 1 = 1
11

Now, we define a q-analogue Noor integral operator
Inq A ⟶A as follows:

Inq f z = Fn
q z ∗ f z , 12

where Fn
q is defined by the relation

Fn
q z ∗ h z = z

1 − qz 1 − z
, z ∈D ,

h z = z + 〠
∞

k=2

n + 1 q,k−1
k − 1 q

zk, z ∈D
13

Hence, f is of the form (4). Therefore,

Inq f z = z + 〠
∞

k=2

k − 1 q,2
n + 1 q,k−1

akz
k, z ∈D 14

This, by taking q⟶ 1−, shows that the operator Inq
defined in (14) reduces to the familiar Noor integral oper-
ator of [26, 27].

Now, by using the idea of Cho and Aouf [28], we intro-
duce the q-fractional Riemann-Liouville integral of order λ
(λ > 0) as follows.

Definition 1 (see [28]). The q-fractional Riemann-Liouville
integral of order λ (λ > 0) is defined for a function f by

D−λ
q,z f z = 1

Γq λ

z

0

f t

1 − qt 1−λ dqt, z ∈D, 15

where f is an analytic function in D.
Many other useful studies are introduced in the field of

analytic functions including the fractional integral operator
and its applications (see [29–31]).

In this paper, we introduce the q-fractional integral
operator by using the q-Noor integral operator. This opera-
tor is based on the q-fractional Riemann-Liouville integral of
order λ (λ > 0). Also, by using a newly defined q-fractional
integral operator, we introduce a subclass Sqn λ, δ of analytic
functions and prove that Sqn λ, δ is a convex set.
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Furthermore, several exciting subordination results of the
q-fractional integral operator are obtained.

2. Preliminary Lemmas

Lemma 2 ([19], Theorem 8.9, p. 254). Let f ∈ A and h be a
convex function. If f ≺ h, then

f ∗ g ≺ h ∗ g, 16

for all g ∈ K .

Lemma 3 ([32], Theorem 10, p. 259). Let f i, i = 1, 2, be the
analytic function in D from the following form:

f i z = 1 + bi1z + bi2z
2+⋯ , i = 1, 2, z ∈D 17

If Re f i z > βi, 0 ≤ βi < 1, then the function f1 ∗ f2 is an
analytic function that satisfies the inequality

Re f1 ∗ f2 > 1 − 2 1 − β1 1 − β2 18

Lemma 4 ([33], Lemma 2, p. 2, [34]). Let f be the analytic
function in D from the following form:

f z = 1 + b1z + b2z
2+⋯ , z ∈D 19

If Re f z > β, 0 ≤ β < 1, then

Re f z > 2β − 1 + 2 1 − β

1 + z
, z ∈D 20

3. Definition and Coefficient Bounds

We introduce a q-fractional integral of the operator Inq f z .

Definition 5. Let 0 < q ≤ 1, λ ≥ 0, and n ∈ℕ. The q-fractional
integral of the operator Inq f is defined by the following:

D−λ
q,zI

n
q f z = 1

Γq λ

z

0

Inq f t

1 − qt 1−λ dqt

= 1
Γq λ

z

0

t

1 − qt 1−λ dqt +
1

Γq λ
〠
∞

k=2

k − 1 q,2
n + 1 q,k−1

ak
z

0

tk

1 − qt 1−λ dqt =
1

Γq λ

Γq 2
Γq 2 + λ

z1+λ

+ 1
Γq λ

〠
∞

k=2

k − 1 q,2
n + 1 q,k−1

Γq k + 1
Γq k + λ + 1 akz

k+λ

21

We note that D−λ
q,zI

n
q f z ∈A 0, λ + 1 and D0

q,zI
n
q f z =

Inq f z .

Now, by taking q⟶ 1−, we have

D−λ
z In f z = 1

λ 2Γ
2 λ

z1+λ + 1
Γ2 λ

〠
∞

k=2

k − 1 2
n + 1 k−1

k
λ k+1

akz
k+λ

22

Now, we study the subclass of analytic function by using
the new operator.

Definition 6. Let the function f ∈A , 0 < q < 1, δ ∈ 0, 1 , and
λ ≥ 0. We define the subclass Sqn λ, δ of functions f which
satisfy the inequality

Re Dq D−λ
q,zI

n
q f z > δ 23

By allowing q⟶ 1− in Definition 6, the class Sqn λ, δ is
denoted by Sn λ, δ .

Example 1. In this example, we show that the set Sqn 0, δ is
nonempty.

Since Re 1 + 1 − 2δ z / 1 − z > 0, we can find a
function f z such that

Dq D0
q,zI

n
q f z = 1 + 1 − 2δ z

1 − z
24

By using assertion (21) for λ = 0, we have

D0
q,zI

n
q f z = z + 〠

∞

k=2

k − 1 q,2
n + 1 q,k−1

akz
k 25

So, we get

Dq D0
q,zI

n
q f z = 1 + 〠

∞

k=1

k q,2
n + 1 q,k

k + 1 qak+1z
k 26

From (24) and (26) and using the series expansion of
1 + 1 − 2δ z / 1 − z , we obtain that

k q,2
n + 1 q,k

k + 1 qak+1 = 2 1 − δ , k = 1, 2, 3,⋯ 27

This, indeed, implies that

ak+1 =
n + 1 q,k

2 1 − δ k q,2 k + 1 q

, k = 1, 2, 3,⋯ 28

Therefore, we obtain that the function

f z = z + 〠
∞

k=2

n + 1 q,k−1
2 1 − δ k − 1 q,2 k q

zk, 29

which is a member of the set Sqn 0, δ .
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Theorem 7. Let 0 < q < 1, δ ∈ 0, 1 , and λ > 0. Then, the class
Sqn λ, δ is convex.

Proof. Consider two functions f1 and f2 from Sqn λ, δ which
are given in the form

f1 z = z + 〠
∞

k=2
a1kz

k,

f2 z = z + 〠
∞

k=2
a2kz

k

30

It is sufficient to show that the function

h z = α1 f1 + α2 f2 31

with α1, α2 > 0, α1 + α2 = 1 belongs to Sqn λ, δ . Since h z =
z +∑∞

k=2 α1a1k + α2a2k zk, we get

D−λ
q,zI

n
qh z = 1

Γq λ

Γq 2
Γq 2 + λ

z1+λ

+ 1
Γq λ

〠
∞

k=2

k − 1 q,2
n + 1 q,k−1

Γq k + 1
Γq k + λ + 1 α1a1k + α2a2k zk+λ

32

By using the q-difference operator, we obtain

Dq D−λ
q,zI

n
qh z = 1

Γq λ

Γq 2
Γq 2 + λ

1 + λ qz
λ

+ 1
Γq λ

〠
∞

k=2

k − 1 q,2
n + 1 q,k−1

Γq k + 1
Γq k + λ + 1

k + λ q α1a1k + α2a2k zk+λ−1

33

So, we get

Re Dq D−λ
q,zI

n
qh z

= Re 1
Γq λ

Γq 2
Γq 2 + λ

1 + λ qz
λ

+ α1 Re
1

Γq λ
〠
∞

k=2

k − 1 q,2
n + 1 q,k−1

Γq k + 1
Γq k + λ + 1 k + λ qa1kz

k+λ−1

+ α2 Re
1

Γq λ
〠
∞

k=2

k − 1 q,2
n + 1 q,k−1

Γq k + 1
Γq k + λ + 1 k + λ qa2kz

k+λ−1 ,

34

which implies

Re Dq D−λ
q,zI

n
qh z = α1 Re Dq D−λ

q,zI
n
q f1 z

+ α2 Re Dq D−λ
q,zI

n
q f2 z

≥ α1δ + α2δ = δ

35

Thus, the desired results are obtained.

Taking q⟶ 1− into Theorem 7 leads to the following
corollary.

Corollary 8. Let δ ∈ 0, 1 and λ > 0. Then, the class Sn λ, δ
is convex.

Lemma 9. Let 0 < q < 1, h, s ∈ Snq λ, δ , h z = s z + qc/ c q

zDqs z , and c ∈ℕ such that

Λc
q z = z + 〠

∞

k=2

qc + c q

qc k q + c q

zk 36

be a convex function. If r, s ∈A with r 0 = s 0 = 0 and

r z + qcz
c q

Dqr z ≺ h z , 37

then

s z =
c q

zc

z

0
tc−1h t dqt, 38

r z ≺ s z 39

Proof. The differential equation

h z = s z + qc

c q

zDqs z 40

has a unique solution (38). Since r, s ∈A , then, in view of (4),
we have

r z = z + 〠
∞

k=2
rkz

k,

s z = z + 〠
∞

k=2
skz

k

41

So, the differential subordination (37) can be rewritten in
the form

〠
∞

k=1

qc k q

c q

+ 1 rkz
k ≺ 〠

∞

k=1

qc k q

c q

+ 1 skz
k 42
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Applying Lemma 2 gives

Λc
q z ∗ 〠

∞

k=1

qc k q

c q

+ 1 rkz
k ≺Λc

q z ∗ 〠
∞

k=1

qc k q

c q

+ 1 skz
k

43

This proves (39). The proof of Lemma 9 is completed.

Note that when q⟶ 1, then Λc
q z ⟶Λc z . For

example, we have

Λ1 z = −2
z

z + ln 1 − z ,

Λ2 z = −3
z2

z + z2

2 + ln 1 − z ,

Λ3 z = −4
z3

z + z2

2 + z3

3 + ln 1 − z ,

Λ4 z = −5
z4

z + z2

2 + z3

3 + z4

4 + ln 1 − z

44

Remark 10. Plots of the suggested functions Λ1 z , Λ2 z ,
Λ3 z , and Λ4 z in the unit disc D are illustrated in
Figures 1 and 2. These plots show that these suggested func-
tions are convex in the unit disc D.

An analytic function r in (37) is said to be a solution
of the differential subordination. The analytic function φ
is a dominant of the solution of the differential subordina-
tion (37), if r ≺ φ for all r satisfying (37).

A dominant φ is said to be the best dominant of (37) if it
satisfies φ ≺ φ for all dominants φ of (37). The best domi-
nant is unique up to the rotation of D.

Theorem 11. Let 0 < q < 1, r, h ∈ Sqn λ, δ with h z = s z +
qcz/ c q Dqs z , and c ∈ℕ such that Λc

q z defined in (36)

is a convex function. If zcF z = c q
z
0t

c−1 f t dqt, z ∈D, the
following differential subordination

D−λ
q,zI

n
q f z ≺ h z 45

implies

D−λ
q,zI

n
q F z ≺ s z 46

Proof. In view of the definition F, we have Dq zcF z =
c qz

c−1h z , z ∈D. Since the q-derivative rule in (2) holds,
we get

F z + qc

c q

zDqF z = h z , z ∈D 47

Now, by using the D−λ
q,zI

n
q , we for z ∈D can obtain the dif-

ferential equation as follows:

D−λ
q,zI

n
q F z + qc

c q

zDq D−λ
q,zI

n
q F z =D−λ

q,zI
n
q f z , z ∈D

48

From (45) and (48), we have

D−λ
q,zI

n
q F z + qc

c q

zDq D−λ
q,zI

n
q F z ≺ h z , z ∈D 49

By using the notation

r z =D−λ
q,zI

n
q F z , z ∈D, 50

we obtain r z ∈A . This implies that

r z + qc

c q

zDqr z ≺ s z + qc

c q

zDqs z , z ∈D 51

Now, applying Lemma 9, we obtain

r z ≺ s z , z ∈D 52

–1
–4

–3

–2

–1

0

1

2

3

4

0 1 2 3 4 5 6 7 8
–4

–3

–2

–1

0

1

2

3

4

0 2 4 6 8 10

Figure 1: Λ1 z = −2/z z + ln 1 − z and Λ2 z = −3/z2 z + z2/2 + ln 1 − z .
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This means that the differential subordination (46) is
established. This completes the proof of Theorem 11.

By using Remark 10, we can obtain the following
corollary.

Corollary 12. Let h ∈ Sn λ, δ with h z = s z + z/c s′ z . If
zcF z = c z

0t
c−1 f t dt, z ∈D, the following differential subor-

dination

D−λ
z In f z ≺ h z 53

implies

D−λ∗
z InF z ≺ s z , 54

where D−λ
z In f is given by (22) and c = 1, 2, 3, 4.

In the next theorem, we derive an exciting inclusion for
the class Sqn λ, δ .

Theorem 13. Let 0 < q < 1, z ∈D,δ ∈ 0, 1 and h z = 1 +
2δ − 1 z / 1 + qz , δ ∈ 0, 1 , and c ∈ℕ such that Λc

q z ,

defined in (36), is a convex function. If s z = Icqr z =
c q/zc

z
0t

c−1h t dqt is a convex function, then we have
the following inclusion:

Icq S
q
n λ, δ ⊆ Sqn λ, δ∗ , 55

where δ∗ = 1 + 2δ − 1 − q c q
1
0 tc/ 1 + qt dqt.

Proof. In view of Theorem 11, we obtain the following:

r z + qc

c q

zDqr z ≺ h z , 56

where r z =D−λ
q,z F z , z ∈D.

Now, by applying Lemma 9, we obtain r z ≺ s z .
Indeed,

D−λ
q,z F z ≺ s z , 57

where

s z =
c q

zc

z

0
tc−1

1 + 2δ − 1 z
1 + qz

dqt = 1

+
c q 2δ − 1 − q

zc

z

0

tc

1 + qt
dqt, z ∈D

58

From the convexity of s z and using the fact that s D is
symmetric with respect to the real axis, we have

Re D−λ
q,z F z ≥min

z =1
z = Re s 1

= 1 + c q 2δ − 1 − q
1

0

tc

1 + qt
dqt = δ∗, z ∈D

59

This completes the proof of Theorem 13.

By using Remark 10, we can obtain the following
corollaries.

Corollary 14. Let δ ∈ 0, 1 and h z = 1 + 2δ − 1 z / 1 + z ,
δ ∈ 0, 1 . If If z = 1/z z

0 f t dt, then we have the following
inclusion:

I Sn λ, δ ⊆ Sn λ, δ∗ , 60

where δ∗ = 1 − 2 1 − δ 1 − ln 2 .

Corollary 15. Let δ ∈ 0, 1 and h z = 1 + 2δ − 1 z / 1 + z ,
δ ∈ 0, 1 . If I2 f z = 2/z2 z

0t f t dt, then we have the

–4
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0

2

4

0 2 4 6 8 10 12

–4

–2

0

2

4

0 5 10 15

Figure 2: Λ3 z = −4/z3 z + z2/2 + z3/3 + ln 1 − z and Λ4 z = −5/z4 z + z2/2 + z3/3 + z4/4 + ln 1 − z .
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following inclusion:

I2 Sn λ, δ ⊆ Sn λ, δ∗ , 61

where δ∗ = 1 + 4 1 − δ 1/2 − ln 2 .

Corollary 16. Let δ ∈ 0, 1 and h z = 1 + 2δ − 1 z / 1 + z ,
δ ∈ 0, 1 . If I3 f z = 3/z3 z

0t
2 f t dt, then we have the follow-

ing inclusion:

I3 Sn λ, δ ⊆ Sn λ, δ∗ , 62

where δ∗ = 1 − 8 1 − δ 5/6 − ln 2 .

Corollary 17. Let δ ∈ 0, 1 and h z = 1 + 2δ − 1 z /
1 + z , δ ∈ 0, 1 . If I4 f z = 4/z4 z

0t
3 f t dt, then we have

the following inclusion:

I4 Sn λ, δ ⊆ Sn λ, δ∗ , 63

where δ∗ = 1 + 8 1 − δ 7/12 − ln 2 .

Theorem 18. Let 0 < q < 1, r z , h z ∈ Sqn λ, δ , z ∈D, with
h z = s z + qcz/ c q Dqs z , and c ∈ℕ such that Λc

q z ,
defined in (36), is a convex function. If f ∈A satisfies

z1−cDq D−λ
q,zI

n
q f z ≺ r z , 64

then we have the following result

c qD
−λ
q,zI

n
q f z

zc
≺ s z 65

Proof. Denoted by r z = c qD
−λ
q,zI

n
q f z /zc, we obtain

zc

c q

r z =D−λ
q,zI

n
q f z 66

By applying q-derivative and using rule (2), we derive

r z + qcz
c q

Dqr z = z1−cDq D−λ
q,zI

n
q f z 67

By applying Lemma 9, we get

r z ≺ s z 68

This implies the differential subordination (70). This
completes the proof of Theorem 18.

By using Remark 10, we can obtain the following
corollary.

Corollary 19. Let r z , h z ∈ Sn λ, δ , z ∈D, with h z =
s z + z/c s′ z . If f ∈A satisfies

D−λ
z In f z

zc−1
≺ r z , 69

then we have the following result:

cD−λ
z In f z
zc

≺ s z , 70

where c = 1, 2, 3, 4.

4. Applications

In this section, we obtain some interesting applications
involving the q-analogue differential subordination.

Theorem 20. Let 0 < q < 1, −1 ≤ B < A ≤ 1, and c ∈ℕ, such
that Λc

q z , defined in (36), is a convex function. If f ∈A
satisfies

Dq D1−c
q,z I

n
q f z ≺

1
Γq c − 1

Γq 2

Γq c
zc−1

1 + Az
1 + Bz

, 71

then we have the following result:

Re
c qD

1−c
q,z I

n
q f z

zc

1/n

> 1
Γq c − 1

Γq 2

Γq c

1

0
uc−1

1 − Au
1 − Bu

dqu

1/n

, n ≥ 1

72

Proof. Let r z = c qD
−λ
q,zI

n
q f z /zc, z ∈D. By putting λ =

c − 1 in the assertions (67) and using (82), we obtain

r z + qcz
c q

Dqr z ≺
1

Γq c − 1
Γq 2
Γq c

1 + Az
1 + Bz

73

By applying Theorem 18 and Lemma 9, we for z ∈D
derive

r z ≺ s z = 1
Γq c − 1

Γq 2
Γq c

c q

zc

z

0
tc−1

1 + At
1 + Bt

dqt 74

By using the principle of differential subordination,
we have

c qD
1−c
q,z I

n
q f z

zc
= 1
Γq c − 1

Γq 2
Γq c

c q

1

0
uc−1

1 + Auw z
1 + Buw z

dqu

75

Taking into account that −1 ≤ B < A ≤ 1, we write

Re
D1−c
q,z I

n
q f z

zc
> 1
Γq c − 1

Γq 2
Γq c

1

0
uc−1

1 − Au
1 − Bu

dqu

76
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Since Re w1/n ≥ Re w 1/n, for Re w > 0 and n ≥ 1,
we establish inequality (83).

To prove the sharpness of (83), we, for f ∈A , z ∈D,
define

D1−c
q,z I

n
q f z

zc
= 1
Γq c − 1

Γq 2
Γq c

1

0
uc−1

1 + Auz
1 + Buz

dqu 77

For this function, we have

Dq D1−c
q,z I

n
q f z = 1

Γq c − 1
Γq 2
Γq c

zc−1
1 + Az
1 + Bz

78

When z⟶ −1, we get

D1−c
q,z I

n
q f z

zc
⟶

1
Γq c − 1

Γq 2
Γq c

1

0
uc−1

1 − Au
1 − Bu

dqu 79

This completes the proof of Theorem 20.

We can obtain the following corollaries by using
Remark 10.

Corollary 21. Let −1 ≤ B < A ≤ 1. If f ∈A satisfies

D−1
z In f z ≺ z

1 + Az
1 + Bz

, 80

then we have the following result:

Re 2D−1
z In f z
z2

1/n
>

1

0
u
1 − Au
1 − Bu

du
1/n
, n ≥ 1 81

Corollary 22. Let −1 ≤ B < A ≤ 1. If f ∈A satisfies

D−3
z In f z ≺

1
12

z3
1 + Az
1 + Bz

, 82

then we have the following result:

Re 4D−3
z In f z
z4

1/n
> 1

12

1

0
u3

1 − Au
1 − Bu

du
1/n
, n ≥ 1

83

Theorem 23. Let 0 < q < 1, −1 ≤ B < A ≤ 1, and c ∈ℕ such
that Λc

q z , z ∈D, defined in (36), is a convex function. If
f ∈A satisfies

Dq D1−c
q,z I

n
q f z ≺

1
Γq c − 1

Γq 2

Γq c
zc−1

1 + qz
1 + z

, 84

then we have the following result:

Re
D1−c
q,z I

n
q f z

zc

1/n

> 1
Γq c − 1

Γq 2

Γq c
1
c q

+ q − 1
1

0

uc

1 + u
dqu

1/n

, n ≥ 1

85

Proof. Similar to the proof of Theorem 20, for r z =
c qD

1−c
q,z I

n
q f z /zc, the differential subordination (92)

is equivalent to

r z + qcz
c q

Dqr z ≺
1

Γq c − 1
Γq 2
Γq c

1 + qz
1 + z

86

Therefore,

Re
D1−c
q,z I

n
q f z

zc

1/n

> 1
Γq c − 1

Γq 2
Γq c

1

0
uc−1

1 + qu
1 + u

dqu

1/n

= 1
Γq c − 1

Γq 2
Γq c

1

0
uc−1 + q − 1 uc

1 − u
dqu

1/n

= 1
Γq c − 1

Γq 2
Γq c

1
c q

+ q − 1
1

0

uc

1 + u
dqu

1/n

, n ≥ 1

87

By using Remark 10, we can obtain the following
corollaries.

Corollary 24. Let −1 ≤ B < A ≤ 1. If f ∈A satisfies

D−1
z In f z ≺ z, 88

then we have the following result:

Re D−1
z In f z
z2

1/n
> 1

2

1/n
, n ≥ 1 89

Corollary 25. Let −1 ≤ B < A ≤ 1. If f ∈A satisfies

D−2
z In f z ≺

z2

2
, 90

then we have the following result:

Re D−2
z In f z
z3

1/n
> 1

4

1/n
, n ≥ 1 91

Corollary 26. Let −1 ≤ B < A ≤ 1. If f ∈A satisfies

D−3
z In f z ≺

z3

12
, 92

then we have the following result:

Re D−3
z In f z
z4

1/n
> 1

48

1/n
, n ≥ 1 93
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Theorem 27. Let 0 < q < 1, −1 ≤ Bi < Ai ≤ 1, i = 1, 2, and c ∈
ℕ such that Λc

q z , defined in (36), is a convex function. If
f ∈A satisfies

Dq D1−c
q,z I

n
q f i z ≺

1
Γq c − 1

Γq 2

Γq c
zc−1

1 + Aiz
1 + Biz

, i = 1, 2 ,

94

then we have the following result:

Dq D1−c
q,z I

n
q f1 ∗ f2 z ≺

1 + 1 − 2ζ z
1 + z

, n ≥ 1, 95

where

ζ = 1
Γq c − 1

Γq 2

Γq c
1 −

4 A1 − B1 A2 − B2

1 − B1 1 − B2
1 +

1

0

uc−1

1 + u
dqu

96

Proof. Let ri z = c qD
1−c
q,z I

n
q f i z /zc, i = 1, 2. Then, by using

the differential subordinations (67) for λ = c − 1 and (112),
we infer

ri z + qc

c q

Dqri z ≺
1

Γq c − 1
Γq 2
Γq c

1 + Aiz
1 + Biz

, i = 1, 2

97

By applying Theorem 18 and Lemma 9, we have

ri z ≺ si z = 1
Γq c − 1

Γq 2
Γq c

c q

zc

z

0
tc−1

1 + Ait
1 + Bit

dqt, i = 1, 2

98

Also, we define a function hi z , i = 1, 2 in the following
form:

ri z =
c q

Γq c − 1
Γq 2
Γq c

hi z , i = 1, 2, z ∈D 99

By using the differential subordination (112), we write

Re hi z > 1 − Ai

1 − Bi
, i = 1, 2 100

Similar to the proof of Theorem 20, we derive

c qD
1−c
q,z I

n
q f i z

zc
= 1
Γq c − 1

Γq 2
Γq c

c q

zc

z

0
tc−1hi t dqt,

c qD
1−c
q,z I

n
q f1 ∗ f2 z

zc
= 1
Γq c − 1

Γq 2
Γq c

c q

zc

z

0
tc−1h0 t dqt,

101

where

r0 z =
c qD

1−c
q,z I

n
q f1 ∗ f2 z

zc

= 1
Γq c − 1

Γq 2
Γq c

c q

zc

z

0
tc−1 h1 ∗ h2 t dqt

102

It is clear that

h1 ∗ h2 z = 1 + b1z + b2z
2 + b3z

3+⋯ 103

Therefore, by applying Lemma 3, we have

Re h1 ∗ h2 > 1 − 2 1 − β1 1 − β2 = β 104

By applying Lemma 4 and using the fact that 2 1 − β /
1 + u z > 2 1 − β / 1 + u , we calculate

Re r0 z = 1
Γq c − 1

Γq 2
Γq c

c q

1

0
uc−1 Re h1 ∗ h2 uz dqu

≥
1

Γq c − 1
Γq 2
Γq c

c q

1

0
uc−1 2β − 1 + 2 1 − β

1 + u z
dqu

≥
1

Γq c − 1
Γq 2
Γq c

c q

1

0
uc−1 2β − 1 + 2 1 − β

1 + u
dqu

= 1
Γq c − 1

Γq 2
Γq c

2β − 1 + 2 1 − β
1

0

uc−1

1 + u
dqu

105

By using inequality (104), we derive

2β − 1 = 1 − 4 1 − β1 1 − β2 = 1 − 4 A1 − B1 A2 − B2
1 − B1 1 − B2

,

106

2 1 − β = 4 1 − β1 1 − β2 = 4 A1 − B1 A2 − B2
1 − B1 1 − B2

107
By using assertions (106) and (107), we obtain

Re r0 z ≥
1

Γq c − 1
Γq 2
Γq c

1 − 4 A1 − B1 A2 − B2
1 − B1 1 − B2

+ 4 A1 − B1 A2 − B2
1 − B1 1 − B2

1

0

uc−1

1 + u
dqu

= 1
Γq c − 1

Γq 2
Γq c

1 − 4 A1 − B1 A2 − B2
1 − B1 1 − B2

1 +
1

0

uc−1

1 + u
dqu

108

This completes the proof of Theorem 27.

We can obtain the following corollaries by using
Remark 10.
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Corollary 28. Let −1 ≤ Bi < Ai ≤ 1, i = 1, 2. If f ∈A satisfies

D−1
z In f i z ≺ z

1 + Aiz
1 + Biz

, i = 1, 2 , 109

then we have the following result:

D−1
z In f1 ∗ f2 z ≺

1 + 1 − 2ζ z
1 + z

, n ≥ 1, 110

where

ζ = 1 −
4 A1 − B1 A2 − B2

1 − B1 1 − B2
2 − ln 2 111

Corollary 29. Let −1 ≤ Bi < Ai ≤ 1, i = 1, 2. If f ∈A satisfies

D−3
z In f i z ≺

z3

12
1 + Aiz
1 + Biz

, i = 1, 2 , 112

then we have the following result:

D−3
z In f1 ∗ f2 z ≺

1 + 1 − 2ζ z
1 + z

, n ≥ 1, 113

where

ζ = 1
12

1 −
4 A1 − B1 A2 − B2

1 − B1 1 − B2

11
6

− ln 2 114

5. Conclusions

In this paper, the topics related to applications in the geo-
metric function theory of q-calculus are presented. The
proposed q-differential operator was applied to introduce
a q-analogue of a fractional integral operator, and the geo-
metric behavior of the operator is also investigated using
the principle of differential subordination. Several interest-
ing results of the q-analogue fractional integral operator
are obtained here by following the differential subordina-
tion method. A new class of convex functions, Sqn λ, δ ,
are defined, and an inclusion for the class Sqn λ, δ is
obtained. The fractional integral operator D−λ

q,zI
n
q is defined

on open unit disc D, and some properties of differential
subordination are studied. Therefore, the results obtained
in this research could be further used for writing the dual
theory of differential subordination which is added to the
study of the q-fractional integral operator.

Data Availability

There is no data availability statement to be declared.

Conflicts of Interest

The authors declare no competing interests regarding the
publication of the article.

Authors’ Contributions

All authors contributed equally and significantly in writing
this paper. They read and approved the final manuscript.

References

[1] F. H. Jackson, “On q-definite integrals,” The Quarterly Journal
of Pure and Applied Mathematics, vol. 41, pp. 193–203, 1910.

[2] F. H. Jackson, “q-difference equations,” American Journal of
Mathematics, vol. 32, no. 4, pp. 305–341, 1910.

[3] M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and
Equations, Springer Publishing, 2012.

[4] K. R. Karthikeyan, S. Lakshmi, S. Varadharajan,
D. Mohankumar, and E. Umadevi, “Starlike functions of com-
plex order with respect to symmetric points defined using
higher order derivatives,” Fractal and Fractional, vol. 6,
no. 2, p. 116, 2022.

[5] A. M. A. El-Sayed and R. G. Ahmed, “Existence of solutions for
a functional integro-differential equation with infinite point
and integral conditions,” International Journal of Applied
and Computational Mathematics, vol. 5, no. 4, pp. 1–15, 2019.

[6] E. Amini, M. Fardi, S. Al-Omari, and K. Nonlaopon, “Results
on univalent functions defined by q-analogues of Salagean
and Ruscheweh operators,” Symmetry, vol. 14, no. 8, p. 1725,
2022.

[7] E. Amini, S. Al-Omari, K. Nonlaopon, and D. Baleanu, “Esti-
mates for coefficients of bi-univalent functions associated with
a fractional q-difference operator,” Symmetry, vol. 14, no. 5,
p. 879, 2022.

[8] M. E. H. Ismail, E. Merkes, and D. Styer, “A generalization of
starlike functions,” Complex Variables, Theory and Applica-
tion: An International Journal, vol. 14, no. 1-4, pp. 77–84,
1990.

[9] H. M. Srivastava, “Operators of basic (or q-) calculus and frac-
tional q-calculus and their applications in geometric function
theory of complex analysis,” Iranian Journal of Science and
Technology, Transactions A: Science, vol. 44, no. 1, pp. 327–
344, 2020.

[10] M. Arif and B. Ahmad, “New subfamily of meromorphic mul-
tivalent starlike functions in circular domain involving q-dif-
ferential operator,” Mathematica Slovaca, vol. 68, no. 5,
pp. 1049–1056, 2018.

[11] M. Arif, H. M. Srivastava, and S. Umar, “Some application of a
q-analogue of the Ruscheweyh type operator for multivalent
functions,” Revista de la Real Academia de Ciencias Exactas,
Físicas y Naturales. Serie A. Matemáticas, vol. 113, no. 2,
pp. 1211–1221, 2019.

[12] E. Amini, M. Fardi, S. Al-Omari, and R. Saadeh, “Certain dif-
ferential subordination results for univalent functions associ-
ated with q − Salagean operators,” AIMS Mathematics, vol. 8,
no. 7, pp. 15892–15906, 2023.

[13] M. K. Aouf and A. O. Mostafa, “Subordination results for ana-
lytic functions associated with fractional q-calculus operators
with complex order,” Afrika Matematika, vol. 31, no. 7-8,
pp. 1387–1396, 2020.

[14] S. Mahmood and J. Sokół, “New subclass of analytic functions
in conical domain associated with Ruscheweyh q-differential
operator,” Results in Mathematics, vol. 71, no. 3-4, pp. 1345–
1357, 2017.

10 Journal of Function Spaces



[15] S. Kanas and D. Raducanu, “Some class of analytic functions
related to conic domains,” Mathematica Slovaca, vol. 64,
no. 5, pp. 1183–1196, 2014.

[16] K. Ahmad, M. Arif, and J. L. Liu, “Convolution properties for a
family of analytic functions involving q-analogue of Rusche-
weyh differential operator,” Turkish Journal of Mathematics,
vol. 43, no. 3, pp. 1712–1720, 2019.

[17] E. Amini, S. Al-Omari, M. Fardi, and K. Nonlaopon, “Duality
on q-starlike functions associated with fractional q-integral
operators and applications,” Symmetry, vol. 14, no. 10,
p. 2076, 2022.

[18] I. Graham and G. Kohr, Geometric Function Theory in One
and Higher Dimensions (1ste Editie), Amsterdam University
Press, 2003.

[19] P. L. Duren, Univalent Functions, (Grundlehren der mathema-
tischen Wissenschaften 259), Springer, 1983rd edition, 2001.

[20] E. Amini, M. Fardi, M. A. Zaky, A. M. Lopes, and A. S. Hendy,
“Inclusion properties of p-valent functions associated with
Borel distribution functions,” Mathematics, vol. 11, no. 16,
p. 3511, 2023.

[21] S. S. Miller and P. T. Mocanu, Differential Subordinations:
Theory and Applications, Chapman & Hall/CRC Pure and
Applied Mathematics, CRC Press, 1st edition, 2000.

[22] W. C. Ma and D. Minda, “A unified treatment of some special
classes of univalent functions,” in Proceedings of the Confer-
ence on Complex Analysis, International Press, pp. 157–169,
Cambridge, MA, USA, 1992.

[23] R. K. Raina and J. Sokół, “On coefficient estimates for a certain
class of starlike functions,” Hacettepe Journal of Mathematics
and Statistics, vol. 6, no. 1081, pp. 1427–1433, 2015.

[24] N. E. Cho, V. Kumar, S. S. Kumar, and V. Ravichandran,
“Radius problems for starlike functions associated with the
sine function,” Bulletin of the Iranian Mathematical Society,
vol. 45, no. 1, pp. 213–232, 2019.

[25] S. Kanas and V. Soltani Masih, “Solution of the logarithmic
coefficients conjecture in some families of univalent func-
tions,” Complex Variables, vol. 13, pp. 1–15, 2020.

[26] K. I. Noor and M. A. Noor, “On integral operators,” Journal of
Mathematical Analysis and Applications, vol. 238, no. 2,
pp. 341–352, 1999.

[27] E. Amini, S. Al-Omari, and H. Rahmatan, “On geometric
properties of certain subclasses of univalent functions defined
by Noor integral operator,” Analysis, vol. 4, pp. 1–10, 2022.

[28] N. E. Cho and A. M. K. Aouf, “Some applications of fractional
calculus operators to a certain subclass of analytic functions
with negative coefficients,” Turkish Journal of Mathematics,
vol. 20, pp. 553–562, 1996.

[29] A. A. Lupas, “New applications of the fractional integral on
analytic functions,” Symmetry, vol. 13, no. 3, p. 423, 2021.

[30] A. A. Lupas and A. Catas, “An application of the principle of
differential subordination to analytic functions involving
Atangana-Baleanu fractional integral of Bessel functions,”
Symmetry, vol. 13, p. 971, 2021.

[31] R. W. Ibrahim, “On a class of analytic functions generated by
fractional integral operator,” Concrete Operators, vol. 4,
no. 1, pp. 1–6, 2017.

[32] J. Stankiewicz and Z. Stankiewicz, “Some application of the
Hadamard convolution in the theory of functions,” Annales
Universitatis Mariae Curie-Sklodowska, vol. 40, pp. 251–256,
1986.

[33] H. Aldweby and M. Darus, “Some subordination results onq-
analogue of Ruscheweyh differential operator,” Abstract and
Applied Analysis, vol. 2014, Article ID 958563, 6 pages, 2014.

[34] G. S. Rao and K. R. Chandrasekaran, “Characterization of ele-
ments of best co-approximation in normed linear spaces,”
Pure and Applied Mathematika Sciences, vol. 26, pp. 139–
147, 1987.

11Journal of Function Spaces


	On Certain Analogues of Noor Integral Operators Associated with Fractional Integrals
	1. Introduction
	2. Preliminary Lemmas
	3. Definition and Coefficient Bounds
	4. Applications
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Authors’ Contributions



