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We present and examine a new family of analytic functions that can be described by a g-Ruscheweyh differential operator. We
discuss several novel results, including coeflicient inequalities and other noteworthy properties such as partial sums and radii
of starlikeness. Moreover, coefficient estimates for the class of Janowski starlike functions associated with symmetric conic

domains are also discussed.

1. Introduction

Assume that the set of all analytical functions in the open
unit disc

U={ceC:[g|<1} (1)

is h € A, and that h € A has the series representation of the
form

A function h € A is said to be starlike class [1] of order

0 (0<o<1)if
m(%) >Q,¢eU (3)

and are denoted as S*(Q).

Assume that /1, and h, are two analytic functions in U.
Then, we say that the function £, is subordinate to the func-
tion h,, and we write

hy(6) <hi(s) (sel), (4)

if there exists a Schwarz function w(¢) with w(0)=0 and
|w({)] <1, such that

(ceU). (5)

Assume that hy, h, € A and h, be as in (2) and h,(¢) =¢
+ Y0 ,b,6"  ¢el, then the Hadamard product h, (¢) * h,
() is distinct as

hi() * hy()=¢+ i a,b,c". (6)

m=2

1.1. Basic Results in q-Derivative. One of the pioneers in the
use of g-calculus is Jackson [2, 3]. He presented the well-
known g-derivative and g-integral in a systematic and
structured manner. Since the early 1980s, geometric aspects
of g-analysis have been thoroughly discussed and scruti-
nized, particularly in relation to quantum groups. This
exploration has established a correlation between relevant
frameworks and the realm of g-analysis. We recall some nota-
tion of g-calculus referred in [2-5]. The g-derivative operator
is defined for values of h € A as follows:

Agh(s) = %,cefu (7)
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Consider

A" =[m, ql¢" ™,
0 0 (8)
Aq{ ) C} = Y mgla,e,
m=1 m=1
where m € N and ¢ € U. The subsequently
1—g™
To=m ©)
g—1 1-— q
gives the g-analogue of m.
1-g"
,q] = . (10)
mq)=

We comprise the g-factorial, as follows:

[m,q|[m—1,q] -+ [L,q], m=1,2,--,

[m,qw:{ (11)

1 m=0.

In works referenced as [6-8], the g-variant of the well-
known Baskakov-Durrmeyer operator was proposed, with its
foundations based on the g-beta function. The g-Picard inte-
gral operator and the g-Gauss—Weierstrass integral operator
(as mentioned in [8-10]) are two novel g-speculations con-
cerning complex operators. These operators underwent com-
prehensive investigation, with their geometric attributes
meticulously analyzed within select subsets of holomorphic
functions. As evident from [4, 11, 12], numerous operators
are presently under scholarly scrutiny concerning their g
-analogues. Citations [13-16] elucidate the g-symmetric
derivative operator and its diverse applications. Bounds for
coefficients of g-starlike functions in 2023 linked to the g-Ber-
noulli function are detailed in [17]. Recently, a new subclass of
k-Janowski starlike functions, defined within the framework of
the g-derivative operator and labeled as k — ST, [E, F], has

been detailed (refer to [18-20]). Resources discussing
Janowski functions and associated content are contained
within [21-23]. Special functions hold paramount importance
across diverse sectors of applied sciences and mathematics.
Several authors have investigated the geometric attributes of
exceptionally distinct special functions, as evidenced in a range
of studies (see [24-27]). Cotirla and Murugusundaramoorthy
explored the consequences of Fekete-Szeg6 functional prob-
lems on Janowski-type starlike functions [28]. An in-depth
examination of the relevant literature uncovers the incorpora-
tion of the g-variant of the well-known and heavily cited dif-
ferential operator (for details, refer [4, 12, 29-35]) and the
Ruscheweyh derivative operator [36].

We recall the g-Ruscheweyh derivative operator [37],
also defined by Aldweby and Darus [12] (see also [20]).
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For a function h(c) € A, the g-Ruscheweyh differential
operator is described by

Yih(s) =@(@v+156) x h(¢) =¢+ ) ¥, 1,6"c €L,

m=2
v>-—1,
(12)
where
PGV+156)=6+ ) Yy iays™, (13)
m=2
_ F‘Z(v+ I’l) _ [V + 1’q]m—1 =1
Vin-1 = [m— l,q]!l"q(v+ 1) B [m-1,q! (Vo =1),
(14)

where Pochhammer symbol is represented by [v + 1, 4],,_; as
below:

1, m=1,

[v+2,q][v+3,gq] - [v+m—-1,q], m=2,3,4---.

(15)

v+1l4,,= {

It is clear from (12) that
Yih(<) = h(c),
Y, h(s) =6A,h(c),

A7 (6" h())

Y"h(g) = , (i€ IN),
B T N
. S
1 bl 1; :7)
Jim (g, v +15¢) (g™
; v _ S
AT Yah() = Q) *

This demonstrates for ¢ — 17, the g-Ruscheweyh dif-
ferential operator reduces to the Ruscheweyh differential
operator D?(h(s)) [36]. The below expression is a clear
and often-used derivation from (12).

G4, YTh(c) = (1 + [”’v‘ﬂ> Y2 h(o) - g Ylh(c). (17)
If g — 17, which is simplified to
¢(Y h(5)) = (1 +v) Y h(g) = vYVh(c). (18)

Lately, making use of the g-Ruscheweyh differential
operator, Zainab et al. [38] defined the following class.
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Definition 1 (see [38]). The function p(c) € k- P_[E, F], if
and only if

p(c) < (3-4q) +E(1 +9)p(<) + ((3-q) ~E(1 +9))
(B-q)+ F(1+9))pi(s) +((3-9) — F(1 +9q))
(19)
where -1<F<E<1,k>0,9¢€(0,1) and
k=0,
1-
1+./5
7( g Q k=1,
pi(e) = smh [(% cos 1k> tan~ 1h\f] 0<k<l,
1 u(s)ve 1 1
1+ —5— — dx k>1.
+k2_1 (ZQ(S)JO \/l——_—;c—z- 1_(5x)2 )+k2_
(20)

The image of U is given by the function p,(¢) as a conic
region that is symmetric around the horizontal axis. Further
details, see [39, 40]. If p,(¢) =1 + 8¢ () + --+, then it is exhib-
ited in [40] that from (20), one can have

8 (cos‘lk) 2

712(1 —kz) ’

0<k<1,

Jk>1.

4(k = 1)\/s(1+5)Q(s)

The values of p(g) € k — P[E, F] are geometrically a part
of g-symmetric conic domain O ,[E, F],-1< F<E<1,k>
0 which is described by

£, 7= {9 R0 > iy =1} = (12220

Motivated by g-analogue theory and the symmetric
conic domain, we explore here the g-version of the Rusche-
weyh differential operator by applying it to the Noshiro-type
starlike functions that are associated with the symmetric
conic domain. In this work, a novel family of k-Janowski
starlike functions, formed by the generalized g-Ruscheweyh
derivative operator in U, is connected to the symmetric
conic domain as in Definition 2.

Definition 2. For the function h(g) € A defined in k- &
T nlB F,-1<F<E<1,k20, &

R

((9-3)+ F(1 +4)) (4, Yh(6)/(1 = n) Yyh(e) +16) + (3~ @) ~E(1+9))
(3= a) + F(1+4)) (4, Yyh(@)/(1 = n)Yh(e) + 1) = (3 - q>+E1+q>>}
I«
I«

)
9-3)+ F(1+9)) (<4, Yh(6)/(1 = ) Y;h(<) + 1) + (3~ q) ~ E(1 + )
)

>k ( ) -1},
3-q) + F(1+4)) (64, Y3h(6)/(1 =) Y;h(e) +1¢) = (3~ ) + E(1 + )
(23)
or equivalently
A, Y h
<4 Y4(S) € k- P[E, F). (24)

(L=n)Yyh(s) +7s

Fixing # =1, we state the following new class Noshiro-
type analytic functions denoted by k- ./, ,[E, F], which
has not been studied in association with the g-derivative
operator in a symmetric conic domain.

Example 3. For the function h(c) € A defined in k— 4 . [E,
F|,-1<F<E<1,k>0,&

% ((g=3)+ F(1+q))A,Y7h(c) +((3-q) - E(1+q))
(3=aq)+ F(1+49))A,Y7h(c) - ((3-q) +E(1+q))
o p|a=3)+ F(1+ )4, Yoh(s) +((3-9) - E(1+9)) .
(3-9q)+F(1+q))A Y h(s) - (3-q) +E(1+q)) |
(25)
or equivalently
A,Y'h(q) € k- P[E, F|. (26)

Remark 4. For function he A and k>0,-1<F<E<]I, by
fixing # = 0, it is observe that

k- STV [E F)=k-ST[E, F| (27)

and has been studied and discussed extensively in [20].

Remark 5. By v=0, we note in [20] further elaboration
on the aforementioned class of starlike functions, and it
is noteworthy that Noor and Malik [26] delineated the
class of the Janowski k-starlike function. Additionally, Sri-
vastava et al. [29] established the limit as g approaches
qllnr(k—é’gq’ﬂ[E, F])=k—-ST[E, F] the class of q - SF

and 0- 8T, [E, F] =S;[E, F|.
In the following sections, we discuss coeflicient
inequalities, partial sums results, and radii of starlikeness

for he k-8 ,,[E F].



2. Coefficient Bounds

Lemma 6 (see [22]). Let h(¢) =1+ Y ,v,,¢™ be subordinate
to H(¢)=1+Y, ,V,c¢"H(c) is univalent in U and H(U) is
convex, then

[Vl <|Vy|,m=1. (28)

The following theorem provides a sufficient condition for func-
tions to be in k - §T 7, [E, F|.

Theorem 7. A function h € A with the form (2) will belong to
the class k- ST, [E, F],-1< F <E< 1,k >0, provided that

it fulfills the following condition:

(&9

Y T E

m=2

|| <1, (29)

(I+q) |F E|

k

((4-3) + F(1+)) (¢A,Yyh()/(1 =) Yyh(c) +1¢) + (3~ q) ~ E(1 + q))
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where

Gn={29(3-q)(k+1)([m—1q/+n)+|((3—9)
+F(1+q))[mql-((3-q)+E(1+q)(I-n)}¥,,;

(30)
Here, v,,_, is defined in (13).

Proof. Considering that (29) is true, it is sufficient to demon-
strate that

[(a=3) + F+a) (saa¥avhar (1= ) Yhie) +16) + (=) - B +9))
(3= a)+ F(+ ) (s8,Yh(0)/ (1= n) Y3h(s) +16) - ((B-a) + B +a)) |
- 1:| <1

(31)
O

((4-3) + F(1+9)) (8, Y;h(@)/(1 ) Yyh(c) + 1) + (3~ q) ~ E(1 + )
((3=a)+ F(1+ ) (s4,Y3h(e)/(1 = n) V(<) + 1<) = (3~ ) + E(1 +4))

For our convenience, we assume

-1

-R

((3-4) + F(1+)) (¢4, Yyh()/(1 =) Yyh(c) +1¢) = (3~ 4) + E(1 +q))

((4-3) + F(1+)) (¢4, Yy h()/(1 = m)Yyh(c) +716) + (3~ 4) ~E(1 + q)

>

F(1+9))sA,Yyh(c) +((3 -

(3= ) + F(1+ ) (s4,Yyh(6)/(1 = m)Yh(s) +76) = (3~ ) + E(1 +q))

_1],

=+ F(1+q))sd, Yh(s) — (3=

=2(3-¢q)(k+1)

n)Yyh(s +;1c> —6A,Y7h(c)

() +ns
Q)(1=-n)Yyh(s)+ns |

-1

(
(1-
)

=2(3-q)(k+1) L ((1-

(3=q) + F(1+4q))sA, Yh(s) -

B [ > q])v]m—lamqm

>

(3-q) +E(1+q))(1

(32)

S(F-E)(1+4)+ Xin, (

4V ((1-

1)
(3-¢
(3-1q

n -

)+ F(1+q))[m,q]
)+E(1+q))(1-n)

- n)Yyh(s) +ng
+ F(
(
[ > ])I//m lamc

=2(3-¢q)(k+1)

S(F-E)(1+q)+ Zfﬁ’-z( ((((

29(3-q)(k+ )X, ([m

>Wm—lamcm
9
q) + F(1+q))[m.q]

9 +E1+q)(1 a))‘”””“'"c
1] + 1Y s ]

E
+

STF-E[(1+9) - 2o0/((3-q) + F(L+q))[m,

29(3 - q)(k+ D)X,

q) -
2([m

((3=q)+ E(L+ @) (1 =m)|¥,alan|

—L gl +n)|a,l

TF-E[(L+q) (1) -

Yol (3=q) + F(1+q))[m

4]~ ((3-q) +E(1+q)(1-n)||a,|
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If the final term exists, it can be bounded from above by 1.

gl

293 -q)(k+1) ) ([m~1,q] +n)la,|

<\1““——’3|(1+Q)W1_1 - i\((3—‘1>+F(1+‘1))[’”"ﬂ

-(3-q)+E(1+q))(1-n)la,l|
(33)

which reduces to

Y (2q(3- )+ 1)((m - 1. + )

"= (34)
+[((3-q)+ F(1+q))[mq]-((3-q)
+E(1+9))(1 =)}y, |au| <|F - E|(1+q).

The proof is complete.

Corollary 8. For a function, h € A holds the form (2) under
the class k— ST [E, F], -1 < F<E<1,k>0 if it fulfills the

criterion

Y {293 -q)(k+1)([m—1,q)) +|((3-9q)

m=2 (35)
+ F(1+q))[m, q]|}|a,| < |F - E|(1+q).

Theorem 9. Let h(c) k- 8T, [E, Fl,
holds the form (2), then

-1<F<E<Lk>0

- F)S,y; - 2(qDlj, q] + 1)y,

- .m>2, 36
F e TSR (36)

m=2 ’(E
< TT
=0
where y,,_, is defined in (13).
Proof. Since h(¢) € k— ST, [E, F], we have

qu Y;h(q)
(L=n)Ygh(c) +n¢

=p(s)s (37)

where

5
If p(¢) =1+8;6+ -+, then
(B-q)+E(1+q)pi(s) + ((3—q) —E(1 +q))
(3-4)+ F(1+q))p(c) + (3 -q) — F(1+4q))
=1+ %(E—F)(q+ 1)6,
+ 711 [(—iEq— 3E+ %Fq+ %F)((F+ 1)(1+q)+2-2q) 6i+--~
(39)

Now, if p(¢) =1+ Y, p™¢™, then by (28) and (39), we
arrived

1
Pl < 5 (E=F)(q+ 1|0, m=1. (40)
Now, from (37), we get
<A Y3h(6) =p(6) (1= MYh(c) + 1), (41)

and using p(¢) =1+ Y, p,,¢"> we arrived

[m, qly,, 126" = (1 + ) M””) ((1 -1) <<+ > wmflamc”“> +n<>,
m=1 m=2

[m,qly,,_,a,¢" = (1 + Z Pmcm> ((1 -n) z V’m—lamcm> =1

m=1 m=1

G+

itz

Mg

1

3
i

(42)

By simple computation, we get

M3

1

3
il

(I q) = (1= 1)1 @™ (mec ) ((1 -n Y wmlamc"“)-
m=1
(43)
Using the Cauchy product, we arrived

m—1

V18P 6"

gk
MS

(qm-1,q+n)y,,18,6" =(1-1n

3
)
3
I

1 j=1
(44)
Comparing the coeflicients of ¢™, we arrived
m—1

Yi14Pm-—j» (45)

=1

(qlm-1,9] +n)y,,a,, = (1~

.

which reduce that

(1-n) N
(qlm=1q]+mv, , 5

a, =

1//j—lajpm—j' (46)

By (40), we have

10, [(E=F)(g+1)(1-1n)"<

|a
4(qlm—1,q] +1) vfmq P

¥jilajl- (47)

ml <



Now, we prove

10,/(E=F)(g+1)(1-1)"&

. a.
4(qm-1.q)+ny,, S Viala
, (48)
_ 52| (E=F)(a+ Do, - 4Dalj.q] + |
o A(qlj+ 1, gl +m)wjy

by the induction method. For m = 2, from (47) and using
(36), we get

o« =Dl 10
’ 4(q[L, q] + My, = (49)
< 1OI(E~ F)(qﬂ)(l 0y =1
4qg+my,
Taking m = 3, from (47), we arrived
|a |< |6k|(E F q+l>(1
’ AqRa+ny, &
_B(E-F)(g+H(A-n) .
( [2 q}_'_q)ll/ (1/’0| 1|+1l’1| 2|)’ (50)
< S(E-F)(g+1)(1-n)
4(q[2q] + )y,
(1 |0k (B~ F) (g + 1)(1 *l)).
4(q[L. q] + n)y,

From (36), we have

B P@+ D -y - 4Dl q1+n)w]\
esl=11 Al L+ v,
_(E-F)(@+)(1-n)|3 ((E F)(@+ 1)[8i/y, +4(q[L. ] +'1)%>
4(q[L, q] +my, 4(q2, 9] + )y, '
_ Bl(a+ D(E-F)(1-7) <1+ <q+1><EfF>\6k|>
4(q[2. 9]+ )y, A(q[Lql+n) )

(51)

Assume that the hypothesis is valid for m = m + 1. From
(47), we have

I0,[(E~F)(g+1)(1-1)"<
a,,| < a (52)
R TP T W R ,:ZIW“M

From (36), we get

2| (B~ F)(q + D(1 )3y, ~ 40glia] +1)v;|
1:! 4(qlji+ L gl +n)y;

(53)
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Using induction principle,

w2 | (E=F)(q+ 1)(1 - n)8uw; - 4(Daj.a) + n)w;|
0 4(qli+ L gl +n)y;

(54)
|0k (E - F)(q+1)(
>
4(qlm -1, q] +n)y,,_, JZIW’ ol
Multiplying the term on both sides by (E—- F)(q+1)
(1 =)0kl +4(qlm =1, q] + )y, ,/4(q[m = 1,q] +n)

v, we arrived

w2 |(E~ F)(q+1)(1 - m)8yy; - 4(Daljra] + n)y;|

H 4(qlj+ Lql + )y,
o OE-F)(A-n)(g+ Dy, , +4(4g[m -1 g+ )y, ,
N 4(q[m, q] +n)y,,
y (E-F)(q+1)(1
<|8k‘ 4([m~1Lqlq +n)y,, ),le”m

_ [ (E=F)(q+1)(1-n)
4(g[m, q] +n)y,,

I8,/ (E~ F)(q+1)(1-7n)"& el
(Wml 4(q[m_1 q]+ Wml ]:lej—l|aj|+ ;W}'—JQA >

|8k|(E F)(g+1)(1-

m—1
) (Wm1|“m+ Z‘/’ﬂ!“j})’
=1

)
4(q[m, q] + )y,
_O(E-F)(g+1)(1-7) <
C A(glm g+ )y, j:zlw”!a"}‘
(55)
That is,
[0k|(E - F)(
2(q[m -1, q] +n) wm 1] Z% e
56
_ H‘ (- P)(1 =)y, ~2Dglj.q] + 1| 50
- =0 (q[]+l q] +71)V/]+1

Hence, the result is valid for m=m + 1. As a result, it
is concluded by the induction principle that (36) is true
for every m>2.

3. Bounds of the Partial Sums

Discussing the result of Silvia [16] and Silverman [27], we
analyze the division of a function represented as (2) by the
series of cumulative partial terms h,,(¢) =¢+ Zj"lzajqj . For
the functions h(c) € A of the class k— ST, [E, F], we ana-
lyze the lower bounds for h()/h,,(s)', h' (¢)/h.,(5)', h,(c)/
h(c), and K. (¢)/h(s).
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7
Theorem 10. For any h(¢) €ek— 8T [E, F|, then To verify the sharpness, the function arrived by (58)
when ¢ = re™™.
h() [
R >1- , 57 ‘ 7
{hm (C) G i1 ( ) h};((cc)) =1+ fﬁ] " =1+ fm e, =1- ;mﬂ qjg:ﬂ when r—1
where ©,,,, is stated by (30) and € = (1 + q)|F — E|. The func- (66D)
tion at its utmost extremity
0 Theorem 11. For any h(c) € k— 8T} [E, F], then
h(e) =+ o—" (58)
e m{hm (C)} ?mﬂ (67)
provides the exact result. h(s) G +1
Proof. Consider the function w() where G, is stated by (30) and €=(1+q)|F - E|. The
bound (67) is suitable for the function, explained in (58)
G | B(S) 14
w(s) = VEH [h -\ 1= @ ’ Proof. Again, we define a function w(c) as
m(c) m+1 (59)
= gm+1 ]’I(C) - gm+1 + 1, w( )_ ?mﬂ +e hm(q) _ ?mﬂ _ (?mﬂ +€)hm(c) _ gmﬂ
¢ h,(c) ¢ DT ) T Gt th(o) ¢
which reduces to (68)
o i1 This suggests that
Gn (1 i Zj:zdjdi ) Y1 1
w(S - +1, i
e(1e3pmaet) F (60) wig)= ot (1+3%ad") 5,
m j— (o8] j— £ ’
_ 1+ Zj:zajcj s (?m+1/e)z] m+1 ]C e(l " Zj:za'cj 1) (69)
I+ Zj:2ajcj ' _ 1+ Zjnizajcj_1 B (gm+1/€)21 m+1 JCJ !
- 1+ P ac] 1
Using this, one may have Z] 2
This drives us to the following:
w(e) +1 2‘22}22}“;| - m+1/€)z] et [] w(e) -1 _ ~(1+ (€1 /0)) X106
. W(e) + 1 2425580+ (1 (G /) S o0
ow,
(70)
w(g) -1
‘wgcg 1S L, (62)  which simplifies that
if ’w(C) - 1’ B (1+ (T ) X1 |9
w(c)+1 2_22;’12|aj|_ - gmﬂ/e))Z] m+1| ]|
Z<a]>+ m Y o<1 (63) (71)
Jj=m+1 N
ow,
It is adequate to prove that the upper bound of ) )
(€,/2)|a,, on the left side of (63), if ‘wgci _1 <1, (72)
w(g) +
Do+ % ¥l 3l
i j g
j=m+1 j=2
which prompts the accompanying expression Z|a]| + Zl}a | <1 (73)
j=m+
2G -1 S (8, -8
j j m+1
ZZ: . |aj| + ‘_Z (78 >|a]-‘ >0.  (65)
Jj= Jj=m+1

It is adequate to prove that the upper bound of Zfoz(
G,/)|a;|, on the left side of (73), if



m|<ce

zwaj|+ S Jaf= S a

j=m+1 j=2

which tends to the below form

S 3.5

j=2 Jj=m+1

1) |laj| =0.  (75)
That is,

> (7 -1)lal 0 79

2

Hence, equality possesses the function h(g), as repre-

sented in (58). O
Theorem 12. For any h(c) k- ST, [E, F], then
!
R h,(c) 21_(’,(m+1)’ (77)
hm(C) gmﬂ

where &, , is stated by (30) and £ = (1 + q)|F — E|. The bound
(77) is suitable for the given function, represented by (58).

Proof. Let us take a function w(s).

=gl [F0_

ol e

which becomes

R I
o(m + 1)(1 +z;12jajgf—l) g(m+1)

- T+ anlzjafcj_l + (G /t(m+ 1))Z§fm+1jajcj_1
- 1+ z;izjajgj—l

w(g) =

(79)
It reduces us to

= (G lt(m+ 1) Y2, jac™
24237 a6 + (G (M + 1)) T3, ja 6l
(80)

which tends to

< (?m+1/€(m+ 1) Z] m+1]|a]|
- 2_22j1w=2]|aj| - m+1/2(m+ 1) ZJ m+1]|a]|

(81)
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Now,
w(g) -1
‘w(C)H <1, (82)
if
ZJ| G+ T Zflaj|sl~ (83)

It is adequate to prove that the upper bound of Z;fz
(%;1t)]aj|, on the left side of (83), if

7
+1 Z]|a ZT

j=2

ZJI aj| +

(84)

which tends to the below form

2 ()l 3 (-

j=m+1

g +1
eém"jrl )}a| 0. (85)

O

Theorem 13. If h(s) € k— ST [E, F, then

m{hin(c)} > = ?mﬂ , (86)

h' (<) e+ E(m A1)

where &,,,, is stated in (30) and €= (1+q)|F-E|. The
bound (86) is suitable for the function represented by (58).

Proof. Let us consider a function w(c) as below:

w(C) — ?rrwl + 8(n/l + 1) [h;(c) gm+1

- , (87
e(m+1) ' () fﬁm+1+ﬂ(m+l)] (87)
equivalently
(G +Um+ 1) (1+ T2iac ) g

e(m+ 1)(1 +Zj”;2jajc;j*1) e(m+1)’

_ L+ 3756 = (G /U(m+ 1) X2, a6
Y jae

w(s) =

(88)
This yields

_ Xhjae T - E5jaie ™ = (G /lim+ 1) X5, e
2+ z;”:zja FOAIEE z;)ozjll{j*l — (grrﬂl/e(m + 1))z;fm+1jaj§j*1

1+(,,,,/8(m+1)))jae !

=@+ i

)m+1(
2+221 Ljae I+Z; e (1

(89)
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That is,
’w(c)—l - (1+(?m+1/€(m+1)))Z;Sm+lj‘aj|
w(e) + 1]~ 2-23"jla;| = (1= (Fppa/C(m + 1)) 22,0040
(90)
Now,
w(g) -1
FoE Y

if

Zflaﬂ NI (92)

j=m+1

The left part of (92) is bounded above by Y%, (%,/¢)|a;|
if

Z]|a]|+ Z J|“J’<Z (93)
j=m+1
which reduced as
0 ?j
Sital+ 3 jals S Palr 5 ol o9
j=m+l1 j=m+

which tends to the below form:

> (% 1)lale 3 (%

=2 j=m+1

) |aj| 0. (95)
Therefore,

> (% -i)lal 0. 99

=2

Radius of starlikeness for f € k- §T7, [E, F|.

In this section, we will discuss about the radius of starli-
keness [17, 41, 42] for k- §T7 , [E, F] of order . 0

Theorem 14. Let h() € k= ST [E, F), is a starlike function

containing the order of @ € [0, 1) which is defined in |¢| <1 =
r;(Q), where

TA®=<§ﬁg33Bﬁi)mwim=za~u (97)

(m-q)t

where &, is stated in (30) and €= (1 + q)|F — E|.

Proof. Let us consider a function h(c) €k— S [E, F] in
the form (2). Then, which gives

Z ’""’m La,| <1, (98)

m=2

where &, is stated in (30) and ¢=(1+gq)|F—E|. For
0€[0,1), and h(g) is starlike of order @, we know that

ch' ()

o)

<l-gq. (99)

Simple computation, we get

[ee]

m— -
Y = Ba, e < 1.
m=2 -Q

The above expression (100) is true if the condition
holds

(100)

[ee]
— B gm B
L2, |l < Y ¥, (10
m=2 Q m=2
Now, solving (101) for ||, we obtain
G.(1-
|c|m71 m( Q)I//mfl . (102)
(m-q)t
Setting |¢| =7(@) in (102), we get
?m(l —Q)l// l)l/m—l
r(Q) = [ ————-2= 103
- (e 1es)
as required. O

4. Conclusion

We have concentrated the g-version of the popular Rusche-
weyh differential operator and applied it to characterize and
concentrate a new class k— 87 [E, F] of g-starlike func-
tions connected with the symmetric conic domain and
covers certain coefficient inequalities for g-starlike functions
including coeflicient bounds and sufficient conditions. Uti-
lizing similar relationships in extraordinary cases, the results
related to partial sums for the functions of a class and the
radius of starlikeness for f € k— ST [E, F] are discussed
which have not been examined to date. Moreover, by fixing
n =1, one can state the results discussed in Theorems 12 to
14 for the class k- #7[E, F], as given in Example 3, which
are also new and not yet discussed so far. Additionally by fix-
ing =0, as in Remark 4, we have k— ST ([E, F|=k-&
T 4[E, F] which are acquired as a special case from our
results, as demonstrated in [38]. Also, to motivate further
research on the subject matter, we have chosen to draw the
attention of interested readers toward a considerably large
number of related recent publications (see, for example,
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[32-

35]) and developments in the area of mathematical

analysis. In conclusion, we choose to reiterate an important
observation, which was presented in the recently-published
review-cum-expository review chapter by Srivastava ([32],
p- 340), who pointed out the fact that the results for the
abovementioned or new g-analogues can easily (and possibly
trivially) be translated into the corresponding results for the
so-called (p;q)-analogues (with 0 < |g| <p < 1) by applying
some obvious parametric and argument variations with the
additional parameter p being redundant. Further, the study
can be extended by using the g-Srivastava—Attiya operator
discussed in [43].
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