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Let A,(n) be the class of functions f(z) given by f(z)
U. For f(z) €

satsfy 0,(0_f(2)) = 0_,(0,f(2)) = (z) and (0.

P +a,,
A,(n), new integral operators O_f(z) andZ@ f(z )(]: 0,1,2,--.
1% 0,)f(2)=(0; 0_;)f (z) = (f * f)(2) for the convolution * of O_f(z) and

W2+ Ay 2P 4+ ... which are analytic in the open unit disk
) are considered. The operators O_;f(z) and Of(z)

of (2). In the present paper, the dominants for both operators O_.f(z ) and O,f (z) and subordinations for O_f (z) and of (2)
are discussed. Also, new subclass 7 ,(y,,, 8, p;m, j) concerning with m different boundary points is defined and discussed.

Moreover, some interesting problems of I
examples for our results are considered.

1. Introduction

The study of operators in geometric function theory started
early. Many differential and integral operators began to be
studied and introduced around twentieth century by many
mathematicians like Alexander [1], Libera [2] (see also
[3]), and Bernardi [4] (see also [5]), and they used integral
operators early and are known in the GFT; moreover,
Ruscheweyh [6] and Salagean [7] used differential operators
which are also known in GFT. The Alexander integral oper-
ator [1] is an example of them, which was defined by
Alexander in 1915. The importance of studying operators
in geometric function theory highlights many geometric
properties of families of analytic functions such as convexity,
starlikeness, coeflicient estimates, distortion properties, and
subordination and superordination relations; also, [11-14] used
the Srivastava-Attiya operator; in addition, [15-17] used inte-
gral operators, and furthermore, [18-20] used linear operators.

The new operators we introduce in this paper are gener-
alizations of an extension of the Alexander and Libera inte-
gral operators [3].

» (Vo> 0, p3m, j) associated with Of(z) are obtained. Furthermore, some interesting

Let o/, (n) be the class of functions f(z) of the form

flz)=2"+ i @ sneN={1,23,}, (1)

k=p+n

that are analytic in the open unit disk U={z € C: |z| < 1}.
For f(z) € &,(n), we define

i (p+Dk

lf( ) P(k+ l)akz > (2)

th (t)dt =2+

k=p+n

651 (z) = ‘ilj:t(alﬂ

) p+1)k
7z )'dt=2 + Z F D) a2,

k=p+n
(3)
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@_Jf(z):’llj (O f(1) de=2" + Z

+1)
- P > a2,
p k=p+n

where je N and Oyf (z) = f(2).

The operator 0_,f(z) for p=1 is defined by Giiney and
Owa [3]. Also, see [21] for related operator of generalized
Libera operator in &/,(1).

For the above operator 0_,f(z) for f(z) € o/,(n), we
consider the following operators:

2 (tf (1)’ S plk+1
0,f(2) = p+1j (f(t))dtzzp+k;n‘l(7}§++l)lzakzk, (5)

@Lf(z)= LJ (t@Lf( )) dt =2 + i <p(k+1)>2akzk’

p+1 t Kot (p+1)k
(6)
_ P ( 1f( )) _ p(k+1)
@jf(Z)—p+1JO dt=2"+ k;ﬂ( > @25,
(7)
for jeN.
In view of (4) and (7), we have
0;(0_f(2)) = 0_;(0,f(2)) = f(2), (8)
forj=---,-2,-1,0,1,2, -

Let us consider f(z) € &/,(n) given by (1) and g(z) €
o ,(n) which is given by

g(z)=2"+ OZO: bkzk. (9)

k=p+n

Then, the convolution (or Hadamard product) of f(z)
and g(z) is defined by

Fra)@=@*NED=F+ > abd,  (10)

k=p+n

(see [22, 23]). This convolution shows that

=2+ Z aiz,

k=p+n
(11)

(@—jf * @jf) (2) = (@jf * @-jf)( )=(f*f)(z

for f(z) € o, (n).
The function f(z) € &/,(n) is said to be p-valently star-
like of order « in U if and only if

Re (ié?) >a (zel), (12)
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for some real a(0<a<p). We denote the class of such
p-valently starlike of order a in U by &,(a).

If f(2) € o ,(n) satisfies

Re <1+

for some real a(0 <« < p), then f(z) is said to be p-valently
convex of order a in U. We also denote by % ,(a) the class

of f(z) which are p-valently convex of order a in U.
With the above definitions for &, () and %, (), we see

that

zf"(2)
f'@)

> >a (zel), (13)

f2) e Sya) & pf)@ deF (@), (14)

f(2) e H,(a) & })zf’(z) €Sy (a). (15)

Furthermore, if f(z) € &/,(n) satisfies

Re <]:p(21)> >a (zel), (16)

for some real a(0 < a < p), then f(z) is said to be p-valently
close-to-convex of order « in U. Also, we write that f(z) €

©,(a) for such functions.

For the above classes, Owa [24] has shown the following
lemmas.

Lemma 1. If f(z) € o ,(n) satisfies

Y (k-a@)l<p-a (17)
k=p+n

for some a(0 < a<p), then f(z) € S, (a).

Lemma 2. If f(z) € o/ ,(n) satisfies

Y Kk wla <p(p-a), (18)
k=p+n

for some a(0 < a < p), then f(z) € F ,(a).

Lemma 3. If f(z) € o ,(n) satisfies

Z kla,|<p-a, (19)

k=p+n
for some a0 < a < p), then f(z) € €,(a).

With the above lemmas, we have the following remark.
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Remark 4. Let us consider a function f(z) € ,(n) given by
flz)=2 + Z a7z, (20)

with a; = |a;|e ™% (k=p+n,p+n+1,--). For such func-
tion f(z), we have

of'(2)\ (Pt T pkad
Re ( @ ) =Re (1 " ngwaksz)

0 k—p i
— Re p + Zkzp+ﬂk|ak‘|z| Pen (21)
L+ X penlarl 2 e
k=p
P = Xipenklar 2]
= - O({” = (zel).
Zk:p+n|ak||z|
If f(z) € S, (a), then
- okl
p Zk—p+n ‘ k|| L (Z € [U) (22)
1- Zzp+n|ak||zl ’
That is,
(0]
Y k-l <p-a (zeU).  (23)
k=p+n
Letting |z| — 17, we see
o0
Y. (k-a)lasp-a (24)
k=p+n

Conversely, if f(z) satisfies the coefficient inequality
(24), then f(z) satisfies

re (@) _ P~ T2 Ml
€ - o k-

&) ) T =5, a7

- o _ k=p

11— 1 p + Zk:([;m(k 1)|;’:1€HZ| (25)

1- Zk:p+n|ak||z| ?
_ (1 B OC) B (1 B “)Zizpmmk‘ _
1- Zﬁp+n|ak|

>1

]

which shows that f(z) € §;(a). Therefore, the coefficient

inequality (17) in Lemma 1 is necessary and sufficient condi-
tion for f(z)€S, (a) of f(z) given by (20).

Using the same manner, we have that the coefficient
inequality (18) in Lemma 2 is a necessary and sufficient condi-
tion for f(z) € # ,(«) of f(z) given by (20). Also, we see that
the coeflicient inequality (19) in Lemma 3 is a necessary and
sufficient condition for f(z) € €, (a) of f(z) given by (20).

In the next section, we have some interested results asso-
ciated with the dominants.

2. Dominants
Let us consider a function g(z) € &, (n) given by

g(z)=2"+ Z b2, (26)
k=p+n

with b, >0. If f(z) given by (1) and g(z) given by (26)
satisfy
lag| <be (k=p+np+n+1,-), (27)

then f(z) is said to be dominated by g(z) (or g(z) dom-
inants f(z)). We write this dominant by

f(2)<g(2)

It follows from the definition for the dominant that

(zel). (28)

f2) <O f(2) < < O_f(z) <+, (29)
<O (2) < - < 0,f(2) < f(2), (30)
for jeN.
We note that the function f(z) € &/,(1) given by
2
f(z)=m (O<a<p) (31)

is the function in the class &, («), which can be written as

0 k—p-1 p
flz)=2"+ kzzp;rl [Te=o ((kZ(_Pp)[ )+ & (32)

For the function f(z) in (31), we know that

74 tp—l

F(z)= J F(t)dt = medt

o k—p-1
— 5 P\ [0 C-a)+8) &
= k_%(k) k-pl  °

(33)

belongs to the class % ,(a).
Further, we consider a function f(z) € &/,(1) defined by

flz)= JztIH (2cx —-p+

0

2?_?>m (zeU),  (34)

with 0 < «a < p. This function satisfies

16 ey 200 (35)

zP1 1-z




Re (fzp(zl)> =2a-p+2(p—a)Re <1L—z> > a. (36)

Therefore, f(z) € €,(«) and
flz)=2"+ i 2(‘0 (37)
k=p+1

Now, we derive the following theorems concerning with
the coefficient inequalities for Of.

Theorem 5. If f(z) € o ,(1) satisfies

keped
ag| < (}21;1)1)) ((kZ(pp) 9+ (k=p+1p+2,-),
(38)

for some j=---,-1,0,1,2, -, then

P
0,f(z) < ﬁ (zel). (39)
Proof. Since

=2+ Z ((P+1 ) aZ, (40)

k=p+1

Yy §OSTC-@r0 .,

W k=p+1 (k_p)!
Therefore,
k -1
(42)

We have the dominant (39). This implies the proof of
theorem. O

Theorem 6. If f(z) €

i< (it ()

o, (1) satisfies

2 2(p-a)+ )

(k=p+Lp+2:---),

(k=p)!
(43)
for some j=---,-1,0,1,2, -, then
6 " 4 eu (44)
f(z2)<p| ———dt (zel). 44
@ <]t E€V)

Proof. Using (33), we obtain the dominant (44). O
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Theorem 7. If f(z) €

|ak|s(1g}z]:2])‘)]2(p;“) (k=p+Lp+2--) (45)

o ,(1) satisfies

for some j=---,-1,0,1,2,---, then

o 2
0f(z) < Lt" 1<20c—p+

Proof. 1t is clear using (34). O

Theorem 8. For f(z) € 4,(1),

0if(z) < (1%;@@ (zeU), (47)
if and only if
0,.f(2) < ppzl J tpgfi')’;;i‘fzt) dt (zeU), (48)
where j= -, ~1,0,1,2, and 0< a < p.

Proof. If f(z) satisfies the dominant (47), then

0, prl Zl‘( i )’dt
i1 f(2) < = JO (1= 2 )

_pr1[*P(p+(p-2a)1)
- sz et (2€U)

Conversely, if f(z) satisfies the dominant (48), then we
have

pz 2t (p+ (p-2a)t)
ol 0;_.1f(2) < Jo(l—t)wdt (zelU). (50)
This gives
2(p+(p-2a)z
A(0.f@) « LB ew. ()
(1-2)
That is, that
7 (p+ (p - 2a)1) 2k
@jf(z) < Jo (1- t)ZP—ZoH-l dt = (1- Z)Z(p—(x) (z€U)
(52)
This completes the proof of the theorem. O

Making j =0 in Theorem 8, we have the following.
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Corollary 9. For f(z) € o,(1),
(zel), (53)

if and only if

6.5 <<p+1r t(p+ (p—Zoc)t)dt

pz (1- t)2p—2a+1 (zel), (54)

0
where 0 < a < p.

Further taking p=1 in Corollary 9, we have the
following.

Corollary 10. For f(z) € o/,(1),

z
flz) < - Z)2<1-rx) (zel), (55)

if and only if
O_f(z) <h(z) (z€l), (56)

where 0<a <1, a# 1/2, and

C2(1-z) [2a-1 4o -3 1
h(z) = z { 2a _(Za—l)(l—z)+(1_z)2}

1

—m (zel).

(57)

Using the same manner of Theorem 8, we obtain the
following.

Theorem 11. For f(z) € o ,(1),

ZP
0if(z) < (IT)Z(P"“) (zel), (58)
if and only if
p (Ftl(p+1+(p-2a-1)1)
@j+1f(z) < P+l Jo (1- t)2p—20¢+1 dt (zel),
(59)

where j=---,-1,0,1,2, - and 0 < a < p.

Letting j=0 in Theorem 11, we have the following
theorem.

Corollary 12. For f(z) € o,(1),

(zel), (60)

if and only if

0,f(z) <

p J‘ZtP—l(p+1+(p—2¢x—1)t)dt (zeU),

p +1 0 (1 _ t)Zp—2a+1

(61)
where 0 < a < p.

Taking p=1 in Corollary 12, we get the following
corollary.

Corollary 13. For f(z) € o/ (1),

z
fz) < (IT)Z(I_“) (zel), (62)

if and only if
05O < st ( . jj;;;(f_v;) cev). (@)

where 0<a< 1 and a#+ 1/2.

Proof. We only need to check that
lr 2 - 2at dt_r o N l-a
2 0 (1 _ t)372(x 0 (1 _ t)Z*Z(X (1 _ t)3720¢
! « l-«a

du = 1 1_40(—1—20(2
C2(2a-1) (1-2)20 )

O

Applying the function f(z) given by (34), for operator
O,f, we have the following.

Theorem 14. For f(z) € /;(1),

O0if(z) <« (2a-1)z-2(1-a)log (1-z) (z€U), (65)
if and only if
@Hf(z)<<2¢x—3+(20¢—1)(1+z)—4(1—oc)710g(zl_z) (zeU),

(66)

where j=---,-1,0,1,2, .- and 0<a < 1.

Proof. We note that

JZ <2(x— 1+ 2<11__;x)>dt= (2a-1)z-2(1-a)log (1 -2z).
(67)



Therefore, if f(z) satisfies the dominant (65), then

0j1f(2) < ;Jzt(za— 1+ 2(11 ‘t“)>

cdt=20-3+ (20— 1)(1 +2) (68)
log (1-2)
z

-4(1-a) (zel).

Conversely, if f(z) satisfies the dominant (66), then

2(11 _t“))dt (zeU). (69)

;@j,lf(z) < Jzt(Z(x -1+

0

This implies that

2(1-a)
1

(0f(2)) < 2a—1+ (zeU).  (70)

That is, that

0if(z) < r <2(x -1+

0

2(11 _t“)>dt: (2a-1)z-2(1-a)

-log (1-2z) (zel).
(71)
This completes the proof of the theorem. O
Letting j =0 in Theorem 14, we see the following.
Corollary 15. For f(z) € &,(1),
fle)<(2a-1z-2(1-a)log(1-2z) (zeU), (72)

if and only if

O_f(z) <2a—=3+(2a-1)(1+2)—-4(1 —a)w (zel),

(73)
where 0<a < 1.
Similarly, we have the following.
Theorem 16. For f(z) € o/,(1),
O0if(z) < (2a-1)z-2(1-a)log (I1-z) (z€U), (74)

if and only if

@j+1f(z) <(2a-1)z-(1-a)log (1-2)-(1 704)J2w:it (zeU),

(75)

where j=---,-1,0,1,2, - and 0 < a < I.
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Proof. If f(z) satisfies the dominant (74), then

0;nf(z) < % r% (2(204— t-2(1-a)log (1-t)+2(1 -a) IL—t)
~dt=Q2a-1)z-(1-a)log (1-2)—-(1-«a)

_JZ log (tl—t) it

0

(zel).

(76)

Further, if f(z) satisfies the dominant (75), then we have

o} ! — _
(=04() <<2((20c—1)+ Lo« —(1—04)M) (zeU).
z 1-z z
(77)
That is,
20,f(z) <« (2a-1)2" =2(1-a)zlog (1 -2z) (z€U),
(78)
which is the same as the dominant (74). O
Making j =0 in Theorem 16, we have the following.
Corollary 17. For f(z) € #,(1),

fle)<(2a-1)z-2(1-a)log(1-2z) (zeU), (79)

if and only if

“ log (1-t)
0 t

O0,f(z2) < 2a-1)z-(1-a)log (I1-2)-(1- oc)J dt (zel),
where 0<a < 1.
Next, we have the following.

Theorem 18. For f(z) € &/,(1),

1+z

0if(z) < é log (12) (zel), (81)

if and only if

0;_1f(z) < é log <1 _122) (zel), (82)

where j=---,-1,0,1,2, ---.

Proof. Note that

z(@jf(z))’«%(l +L) (zeU).  (83)

1+z 1-z
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Therefore,

O1f(2) =~ J(]f()) dt«lr(lit %> 84
-dt=;10g(1_1zz> (zel). (84)

Conversely, if f(z) satisfies the dominant (82), then

@) 2 ey ey

That is, that

z (t0,_, ! z
0,f(z) = %JO (19, tf(t)) dt < Ll_ltzdt: J log G_Z>
(86)

Making j =0 in Theorem 18, we see the following.
Corollary 19 (see [3]). For f(z) € &/,(1),
fz) < é log (;—Z) (zeU), (87)
if and only if
O0_f(z) < ! log (%) (zel). (88)
z I1-z

Remark 20. The function f(z) given by

1+z < 1
:_1 — 2k-1
=3 o8 (12) ==+ ) e

(zeU) (89)

is convex in U. Also, this function maps U onto the strip
region with -7/4 < Imf (z) < m/4.

In the following section, we have some subordination
relations for functions associated with the operator O;f.

3. Subordinations

Let f(z) and F(z) belong to the class o/, (n). Then, f(z) is
said to be subordinate to F(z) if there exists a function
w(z) which is analytic in U with w(0) =0 and |w(z)| <1
(z € U) such that f(z) = F(w(z)). We denote this subordi-
nation by

f(z)<F(z) (zel). (90)
If F(z) e o,(1 1s univalent in U, then the subordina-

)
tion (90) for f(z) (1) is equivalent that f(0) = F(0)
and f(U) c F(U) (see Mlller and Mocanu [25]).

For subordinations, Miller and Mocanu [26] have given
the following.

Lemma 21. Let n be a positive integer, A >0, and let 3, =
By(A, n) be the root of the equation

P = gn—tan_l(n)tﬁ). (91)
Also, let
=a(f, A n)=+ ; tan'(nAB) (0<B<B,). (92)

If p(z) is analytic in U with p(0) = 1, then

p(z)+Azp' (2) < (;_ig (zeU) (93)
satisfies
1+2\F
p(z) < <1—z> (zel). (94)

Using the above lemma, we derive the following.

o ,(n) satisfies

1)@jf(z)} < (%i) (zeU),

Theorem 22. If f(z) €

é{/\z(@jf(z))’ —(p-

(95)
then
O.f(z 1 B
/@ (ﬂ) (zel), (96)
zP 1-z
where j=---,—-1,0,1,2,--- and o and P are defined in
Lemma 21.

Proof. We define a function g(z) by

_ @jf(z)

= j=-—=1,0,1,2,-
@)=—7— 0

-z €U). (97)
Then, g(z) is analytic in U and g(0) = 1. It follows that

9(5) + Az’ (2) = 5 {M=(0,/(@)) - Op-1)0(2)}

(98)



Therefore, using Lemma 21, we have

g9(z) = % < Cti)ﬁ (zel). (99)
O
Letting j =0 in Theorem 22, we see the following.
Corollary 23. If f(z) € &, (n) satisfies
;{/\zf'(z) (- 1)f(2)} < G:) (zeU), (100)
then
@) < (1+Z)/3 (zel), (101)
zP I-z
where a and [ are defined in Lemma 21.
If we take n=A=f=1 in Lemma 21, then a=«

(1,1,1)=3/2. For such n,A, 3, we know the following.

Corollary 24. If f(z) € & ,(n) satisfies

He0s@) - 0o} < (17) eeuy

1-z
(102)
then
Of(z) 1
ﬁ <2 (zel), (103)
zP 1-z
where j=---,-1,0,1,2, -+

If we consider n=A=a=1 in Lemma 21, then we see
B=0.638 --- . For such n, A, &, we have the following.

Corollary 25. If f(z) € o, (n) satisfies

{(]f( )= (p-104(2)} < —z (zeU), (104)
then
. B
@ < (g) (zel), (105)

where $=0.638--- and j=--,—-1,0,1,2, ---.

Taking p =1 in Corollary 24, we know the following.
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Corollary 26. If f(z) € of,(n) satisfies

(0f(2))" < (g)w (z€U), (106)
then
@jJ;(Z) <1¥ (zev) (107)
where j=-+,—1,0,1,2,

Remark 27. The function w=(1+2)/(1 —z) maps U onto
the domain such that Rew > 0. Therefore, a function w =
((1+2)/(1-2))”"* maps U onto the domain such that —(3/
) < argw < (3/4)m.

Letting A=1/(p+1) in Theorem 22, we see the
following.

Corollary 28. If f(z) € o, (n) satisfies

1 (20f(2))  [1+2\°
(204 () << +Z> (zeU), (108)
p+1 zF 1-2z
then
0. 1 B
/(@) < (j) (zel), (109)
zP 1-z
where j=---,—-1,0,1,2,--- and « and [3 are defined in
Lemma 21.

In the next section, we get some results for subclasses of
analytic functions concerning with m different boundary
points.

4. A Subclass concerning with m Different
Boundary Points

Now, we consider m different boundary points z,

(£=1,2,3,---,m) with |z,| = 1. For such boundary points z,,
we define
1 & 0if (2)
] .
Vi = — (j=--1,0,1,2,-), (110)
with y, € °0,f(U),y,, #1 and —/2 <8 <71/2.
With the above y,, if f(z) € o/,(n) satisfies
0 1z
“((0f@)/) -y ’“—1<p (zel), (111)

el — Ym

for some p >0, we say that f(z) € 7 ,(y,,, 0, psm, j).



Journal of Function Spaces

We see that the condition (111) for the class 7 ,(y,,, S,
p;m,j) is equivalent to
O0:f(z ‘
9@ <p)e‘5—ym‘ (z€U). (112)
zP
Noting that
=2' + < ) azk, (113)
k; (p+1)k

for j=--,-1,0,1,2, -,
(n) such that

if we consider a function f(z) € &,

then we have

@jf(z)
zP

ei‘s—ym‘ (zel).

“Vm

_ 1‘ =p 618
(115)

Now we introduce the following lemma by Miller and
Mocanu [25, 27] (also, due to Jack [28]).

Lemma 29. Let the function w(z) given by
w(z)=a,z" +a,,,; 2"+

(neN={1,2,3}) (116)

be analytic in U with w(0) = 0. If lw(z)| attains its maximum
value on the circle |z| = r at a point z, € U, then there exists a
real number k > n such that

ZOw,(ZO) =k

meA (117)
Re <1+ %) >k. (118)

Using the above lemma, we derive the following.

Theorem 30. If f(z) € o/ ,(n) satisfies

IO B OTC) (s )| < plas o] -y,,| (e )

(119)

for some y,, given by (110) with y, # 1 such that z, € 0U
(q=1,2,3,---,m) and for some real p > 1, then

0f() _
zP

(120)

e — ym’ (zel),

where j=---,-1,0,1,2,--- and a >0 and 3> 0. This implies
that f(z) € 7 ,(y,,» 6, p5sm, J)

Proof. Define a function w(z) by

e ((0£(2))12") = Vi

w(z) = oy -1
e o (pk+1)\ (121)
“a (2, (G +)
Then, w(z) is analytic in U and w(0) = 0. Since
0.
OFO) s (1)) (p+ Zg(g),
(123)
we know that
0, 0.f(z))
X gOE) (a+ﬁp)‘

= (1 - yme“"s)w(z) (

<plat+pp+n)

zw' (2) (124)
w(z)

-y, (ze),

by (119). Suppose that there exists a point z, € U such that

max {w(z); 2] < [zo]} = [w(z)| =p>1.  (125)

Then, applying Lemma 29, we write that w(z,) = pe”

(0<0<2n) and zyw'(z,) =kw(z,) (k=n). This shows
that
0.1 (20) (@'f(zo)),
a0 p 2~ (at )
0 29
= |e® ~ . |pla+ Blp+ k) = pla+ B(p-+ m))|e” -,
(126)
Since this contradicts our condition (119), we say that
there is no z,(0<|zy| < 1) such that |w(z,)|=p>1. Let-
ting |w(z)| < p for all z€ U, we obtain
12P) -1
)= (LD ey )
“VYm
This implies that f(z) € 7 ,(y,,, 6, p;m, j). O

Taking o =0 in Theorem 30, we have the following.
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Corollary 31. If f(z) € o, (n) satisfies

(0/)’
-1

—p| <plp+m)|e®-y,| (zev). (128)

for some y,, given by (110) with y, # 1 such that z, € oU

(q=1,2,3,---,m) and for some real p > 1, then
0if (2) s
‘ o e —ym‘ (zel), (129)
where j=---,-1,0,1,2,--, that is that f(z) € T ,(y,, 5, p;
m, j).
Example 1. Consider a function
f(z)=2"+a,,,2"". (130)

It follows that

(©f@)" || Plernsy | ppent1y
T T e e ey el GV
(131)
We consider five boundary points such that
2 i (a)) (132)
z,= ei(n—G arg (up+n>>/6n) (133)
Zy= ei(n—4 arg (ap+,,))/4ﬂ’ (134)
Z,= ei(n—3 arg (apm))/?m’ (135)
Zs= ei(n—z arg (apm))/Zn. (136)
For these points z,(¢£=1,2, 3,4, 5), we know that
W)\, (pornen) )
z‘l’ (p+1)(p+m)) Y
~ plp+n+1) Y/ \/_+ i
- (p+1)(p+n) [
j
=1+< p(p+n+1) >\/_1+z y (137)
(p+1)(p+n K
plp+n+1)\/ 1+ \/_l
=1+ +n
(p+1)(p+n) “
~ p(p+n+1)\/
_1+<(p+1(p+n e

Journal of Function Spaces

It follows from the above that

10 <3+\/§+\/§>(1+i) plp+n+1)Y/
R L i0 (G i) vk
(138)
Thus, we see that
ei‘s—ys’: \/i(3+\/§+\/§> <p(P+n+l) > 2y
10 (p+1)(p+n)) "F
(139)

with & = 0. Using such y, and § = 0, we consider p > 1 with

+n+1)
(;):L?MT|QPM|<P(P+”)€ _V5’ (140)
That is, that
pZ(P@+”+1) |3pin| _ 10 o1
(p+1)(p+n)) |e® -y ﬂ(3+ﬁ+ﬁ)
(141)

With the above y. and p, the function f(z) satisfies

2|« () ol

ei‘s—ysl (zel).

(142)
Taking j =0 in Theorem 30, we have the following.

Corollary 32. If f(z) € o ,(n) satisfies

1@, f'@)

a—zp +p i

- (a+ Bp)| < pla+ Blp+m)|e” =, | (zeU),

(143)

for some y, given by (110) with y, #1 such that z, € U
(q=1,2,3,-+-,m) and for some real p > 1, then

(144)

e — ym’ (zel),

where >0 and 3> 0.
Taking a = =1 in Theorem 30, we have the following.

Corollary 33. If f(z) € o ,(n) satisfies

(0/(2)’
2

-(p+1)|<plp+n+1I)

e’ —ym’ (zel),

(145)
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for some y,, given by (110) with y, # 1 such that z, € 0U
(q=1,2,3,---,m) and for some real p > 1, then

0if(2) i
‘ JJZCP -1 <pe‘s—ym’ (zel), (146)
where j=---,-1,0,1,2,--, that is, f(z) € T ,(y,,, 0, p;m, j).

Example 2. We consider a function f(z) € o/,(n) given by
(130). Then, f(z) satisfies

(204(2)" _ _Pernry?
CEE A D PES TR
j n 1j+1
<%’%M| (zeU).
(147)

We also consider five boundary points z,(£=1,2,3,4,5
), given by (132)-(136). Since

5 0. 3+v2+V3)(1+i) " j
lysl = é; {I(ZZ@) =1+ ( ) (p(p+ 1) > |ap+n|,

10 (p+1)(p+n)
(148)
we have
s V2BHVEEVE) i
|- 10 <<p+1><p+n>> [l

(149)

with § = 0. With the above y; and § =0, we consider p > 1
such that

j n j+1 '
%{ap+n|ﬁp(])+ﬂ+l) e"s—ysl. (150)
Then, p satisfies

p(p+n+1) Y {ap+n| _ 10
PZ((p+1)(p+n)) |ei5_y5‘ \/5(3+\/§+\/§) > 1.
(151)

Using y, and p, we have that

eié_Ysl (zel).

’@"f;z) - 1‘ < <(§(f :)’Zpili))j‘“pm’ <p
(152)

Next, our theorem is the following.
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Theorem 34. If f(z) € o/, (n) satisfies
2(0f()" _20f()  0fE) |1 - yul?
sz - @;f(z -p ]zP < ey (zeU),
(153)

for some y,, given by (110) with y,, # 1 such that z, € oU
(g=1,2,3,---,m) and for some real p > 1, then

O0f(z .
%—1 <p’e’8—ym‘ (zeU). (154)
This means that f(z) € T ,(y,,» 6, p; m, j).
Proof. Define a function w(z) by
B 1 o R (G T R
(155)

Then, w(z) is analytic in U,w(0) =0, and is given by
(121). Noting that

@jJZCP(Z) s (1 _yme—ié)w(z) (156)
—Z(@fgz)) =p+ (1 - yme’i5> (pw(z) + zw’(z)).
(157)
We know that
204(=)" _2(04() _ 0/
7 6 2 7
1=y, fle@a’ @) _ e -y,
(et i) ar@ople O
(158)

Consider that there exists a point z, € U such that
(159)

max {w(z)  |2] < [zo]} = [w(zo)| = p> 1.

Then, Lemma 29 gives us that w(z,) = pe” (0 <6 < 27m)
and zyw' (z,) = kw(z,)(k = n). It follows that
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|ZO(@jf(Z0))’ ) (0 (2))’ _p@jf(zo)
| Zﬁ @jf(zo) zg

|1 - e""sym}zpzk
|1+ (1-ey,,)pe?|

—p

_ |1y, [Pk
\/(1+|1—e*"5y ‘pcos@)2+(}1—e*i5ym‘psin9)2 (160)
[1-c "y, [Pk
\/1+ 1—ey }p2+2|1—e*’5y |p cos ¢

O L 2 Wl e P W
_1+|1—e‘i5ym|p_1+|e"5—ym|p’

where ¢=0+arg (1-e ™y, ). Since this contradicts our
condition (153), there is no z, € U such that |w(z,)| = p > 1.
This means that |w(z)| < p for all z € U. Thus, we have

e ((0f(2)12") =V _

161
g (161)

w(z)| =

li<p (zel).

This completes the proof of the theorem. O

Finally, we consider the coeflicient problem for the class
T Vs 05 p 5, j).
Theorem 35. Let f(z) €
(p+1 )k)j i 1
ag| < e - — |, (162
= (i) P mokeg)

fork=p+np+n+1,p+n+2,--; then,

.
2P

o ,(n) satisfies

(163)

®—y,| (zeU),

where y,, is given by (110) with y, # 1 and p> 1.

Proof. With a, defined by (162), we know that

5 (-3 ()

. -ym\( )
k=p+n 2 Z—p+n 1

e _ym‘k§n<2 €p+nl >
oot i)
(CREORES

(164)

o4z 1‘ )
zP

O

Journal of Function Spaces

Remark 36. From Theorem 35, we know that the function

f)=2Z+ ) ad,

k=p+n

(165)

with

_((p+ k)
%= (k+1)>

> 166
) o

) ei@
615 - ym‘ <
222 =p+n— 1(

fork=p+np+n+1l,p+n+2,--
T Y 05 p 511, j).

is a member of the class

5. Conclusion

In the present paper, we defined new integral operators 0
f(z) and Of(z) of analytic functions f(z) € A,(n). The
dominants for both operators 0_;f(z) and O;f(z ) and sub-
ordinations for O_;f(z) and Of(z) are discussed. Also,
new subclass 7 ,(y,,, 0, p; m, j) concerning with m different

boundary points is defined and discussed. Moreover, some
interesting problems of ,(y,,,0,p;m, j) associated with

0,f(z) are obtained. Furthermore, some interesting exam-
ples for our results are considered.
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