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This study examines the existence of mild solutions for nonlinear random impulsive integrodifferential inclusions with time-
varying delays under sufficient conditions. Our study is based on the Martelli fixed point theorem, Pachpatte’s inequality, and
the fixed point theorem due to Covitz and Nadler. Besides, we generalize, extend, and develop some well-known results in the
existing literature.

1. Introduction

Differential equations (DEs) with impulses are applied to
simulate processes that experience rapid changes at discrete
moments that is why the dynamics of impulsive DEs have
drawn the interest of many academicians in recent decades
(see [1–3]). Additionally, generally speaking, impulsive
effects emerge as prevalent occurrences in the realm of nat-
ural phenomena, induced by sudden disturbances that tran-
spire at precise instances, like in the case of different
threshold-based biological models, bursting explosive bio-
logical medicine models, and the optimal control model in
economics (for more details, see [4, 5]).

Real-world systems and natural events are virtually
always affected by stochastic disruptions. Mathematical rep-
resentations cannot disregard stochastic aspects due to a mix
of uncertainty and complexity. To encompass a variety of
abrupt incidents, incorporating impulsive occurrences, par-
tial DEs driven by stochastic processes or equations with
random impulses offer a natural and efficient approach.
Many researchers have thought about the study of integro-
DEs with random impulses, including those in [6–10]. Das-
sios explored the singular system within a category of DEs
with multiple delays in his work documented in [11]. Keten
et al., as referenced in [12], examined the conditions for the

existence and singularity of solutions for nonlinear DEs
incorporating the Caputo-Fabrizio operator in the Banach
spaces, leveraging the exponential decay principle. Sakar, in
[13], enhanced the homotopy analysis method by incorpo-
rating an optimally determined auxiliary parameter based
on the residual error function, applied to solve neutral
functional DEs with proportional delays. Shafqat et al.
[14] delved into the investigation of both local and global
existence as well as the singularity of mild solutions for
the Navier-Stokes equations involving the time fractional
differential operator. Recently, many new results related
to random impulsive DEs have been obtained. For exam-
ple, Yin et al. in [15] investigated existence and multiplic-
ity of mild solutions for first-order Hamilton random
impulsive DEs with the Dirichlet boundary conditions,
employing the generalized saddle point theorem. Another
notable contribution comes from Guo et al., as docu-
mented in [16], where they delved into the optimal control
problem associated with random impulsive DEs, utilizing
fundamental analytical techniques and theories related to
stochastic processes. The scholarly discourse also extends
to the study by Liu et al. in [17], which focuses on the
existence of positive solutions within a class of impulsive
fractional DEs involving ϕ-Hilfer fractional derivatives.
Moreover, Li et al., featured in [18], undertook an
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investigation into the existence of solutions for the Sturm-
Liouville DEs featuring random impulses and boundary
value problems, employing Dhage’s fixed point theorem
as a pivotal tool in their analysis. The existence, singular-
ity, and stability of the delay integro-DEs with random
impulse were established by [6, 7].

The existence of semilinear functional differential inclu-
sions accompanied by random impulses of a particular
nature was examined by Vinodkumar in [19] of the type

z′ κ ∈A κ z κ +H κ, zκ T ≥ κ ≥ μ, κ ≠ ζ℘,

z ζ℘ = a℘ μ℘ z ζ−℘ ,℘ = 1, 2,⋯,
zκ0 = υ

1

The existence of integrodifferential inclusions with
impulsive was examined by Kadam et al. in [9] of the type

z′ κ ∈A κ z κ +H κ, z κ ,
κ

κ0

g κ, ν h ν, z κ dκ T ≥ κ ≥ 0,

z κ = g zκ1 ,⋯, zκi = υ κ , i = 1, 2,⋯,
Δz T 1 = I1z T 1 , I1 = 1 1 m

2

Motivated by the above-mentioned works and to our
knowledge, no notable work yet that conducts that research
has been published on the nonlinear random impulsive inte-
grodifferential inclusions (NRIIDIns) with time-varying
delays under sufficient conditions; here, we consider NRII-
DIns with time-varying delays of the type

where A is the infinitesimal generator of strongly continu-
ous semigroup of linear operators U κ , κ ≤ 0 with D A

⊂X, the function H ℝμ ×C ⟶P X , g Δ ×C ⟶

P X ,P X is the family of all nonempty measurable sub-
sets of X, and σi κ0,T ⟶ κ0,T , i = 1, 2,⋯, n + 1 are
continuous functions with σi κ ≤ κ, i = 1, 2,⋯, n + 1. The
set of piecewise continuous functions is C =C −ρ, 0 ,X
which maps −ρ, 0 into X with some given ρ > 0, ζ0 = κ0,
and ζ℘ = ζ℘−1 + τ℘ for ℘ = 1, 2,⋯. Here, κ0 ∈ℝμ is an arbi-
trary real number. Obviously, κ0 = ζ0 < ζ1 < ζ2 <⋯ < lim

k⟶∞
ζ℘ =∞, a℘ D℘ ⟶ℝ is a matrix-valued function for all ℘

= 1, 2,⋯, z ζ−℘ = lim
κ↑ζq

z κ according to their paths with the

norm z κ = sup
κ−ρ≤ν≤κ

z ν for all κ fulfilling μ ≤ κ ≤T ,

μ,T ∈ℝ+ are given numbers, is any given norm in X,
and φ is a function defined from −ρ, 0 ⟶X; here, the
set κ, ν : 0 ≤ ν ≤ κ <∞ is denoted by Δ. Denote by Gκ
, κ ≥ 0 the simple counting process generated by ζn, that
is, Gκ ≥ n = ζn ≤ κ , and denote H κ the σ-algebra gener-
ated by Gκ, κ ≥ 0 . Then, Ω,P , H κ is a probability
space.

The basic idea behind this work is to extend the work of
Vinodkumar [19] and Kadam et al. [9]. At the same time,
our approach is smooth and depends on the Martelli fixed
point theorem, Pachpatte’s inequality, and the fixed point
theorem due to Covitz and Nadler. Moreover, we are achiev-
ing the same results with fewer hypotheses just by using
Pachpatte’s inequality to establish boundedness condition.

The structure of this article is as follows: Section 2 intro-
duces fundamental concepts and preliminary information.
In Section 3, we employ Martelli’s fixed point theorem for
condensing maps to explore the existence of NRIIDIns with
time-varying delays, specifically focusing on the convex case
of the multivalued function (MF). Our investigation delves
into the problems of existence while incorporating the Wint-
ner growth condition. In Section 4, we investigate the exis-
tence of RIFDIns in the non-convex case of the MF,
employing the fixed point theorem attributed to Covitz
and Nadler. Section 5 gives an illustrative example that effec-
tively applies the insights garnered from Section 3. Finally,
Section 6 provides the concluding remarks, along with
acknowledgments of the study.

2. Preliminaries

Consider a real separable Hilbert space X and a nonempty
set Ω. The random variable μq is defined from Ω to Dq

= def 0, dq for q = 1, 2,⋯, where 0 < dq <∞. Moreover, sup-
pose that μq follow the Erlang distribution, where q = 1, 2,⋯,
and let μi and μj be independent of each other as i ≠ j for i, j
= 1, 2⋯ . For simplification, we denote ℝτ = μ,∞ . Let £p =
£p Ω,H κ,X denote the Banach space of each H κ-measur-
able square integrable random variables in X. Suppose that
T > κ0 is any fixed time and G denotes the Banach space
G κ0 − ρ,T , £2 , which is the family of all H κ-measur-
able, C-valued random variables with the norm

z′ κ ∈A κ z κ +H κ, z σ1 κ ,⋯, z σn κ ,
κ

κ0

g κ, ν, z σn+1 ν dν , κ ≥ μ, κ ≠ ζ℘,

z ζ℘ = a℘ μ℘ z ζ−℘ ,℘ = 1, 2,⋯,
zκ0 = υ,

3
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ϕ G = sup
κ0≤κ≤T

E ϕ 2
κ

1/2

4

The family of all H 0-measurable, G-valued random var-
iable υ is denoted by £0p Ω,G .

We use the following notations: P cl X = W ∈P X ,
W closed , P bd X = W ∈P X ,W bounded , P cv X =
W ∈P X ,W convex , and P cp X = W ∈P X ,W
compact . In a Hilbert space X, a multivalued map F X

⟶P X is a convex (closed) valued, if F z is convex
(closed) ∀z ∈X F is bounded on bounded sets if F I = ∪z∈I
F z is bounded in X,∀I ∈P bd X that is

sup
x∈I

sup w : w ∈ F z <∞ 5

F is called upper semicontinuous (u.s.c.) on X, if ∀z0 ∈X.
The set F z0 is nonempty, closed subset of X, and if ∀ open
set I of X containing F z0 ∃ an open neighbourhood ℕ of
z0 s.t F M ⊂ I F is called completely continuous if F I is rel-
atively compact, ∀I ∈P bd X

Assuming the multivalued mapping denoted as F
exhibits complete continuity and has a nonempty compact
value, it can be deduced that F is u.s.c. ⇔F if its graph is
closed. A mapping F X⟶X is classified as condensing,
being u.s.c., when applied to any bounded subset I ⊂X s.t
the measure of noncompactness, denoted by β, satisfying β
F I < β I , where β is the Kuratowski measure of non-
compactness as defined in [20].

Remark 1 (see [21]). An utterly continuous multivalued
function stands as the simplest instance of a condensing
map. A fixed point for a function F emerges when an ele-
ment z exists within X such that z resides in the range of
F X . The collection of fixed points for the multivalued
operator F shall be referred to as the set fix F.

Define the function T P bd,cl X ×P bd,cl X ⟶ℝ+

defined by

T E,G =max sup d e,G
e∈E

, sup d E, g
g∈G

, 6

where d E, b = inf e − g p, e ∈ E and d e,G = inf
e − g p, g ∈G The function T is called a Hausdorff met-

ric on P bd,cl X .
The multivalued map ℤ μ,T ⟶P bd,cl X is called

measurable if for all z ∈X the function W μ,T ⟶ℝ+

defined by

W κ = d z,ℤ κ = inf z − y p, y ∈ℤ κ is measurable
7

Definition 2. A multivalued operator ℤ μ,T ⟶P cl X

is said to be

(a) contraction ⇔∃η > 0 such that

ℍ ℤ z ,ℤ w < η z −w p, for each z,w ∈Xwith η < 1
8

(b) ℤ has a fixed point if ∃z ∈X s.t z ∈ℤ z

For additional information about multivalued maps,
consult references [21–23]. Our results regarding existence
are rooted in the fixed point theorems of Martelli [24] and
the work of Covitz and Nadler [25].

Theorem 3 (see [24]). Let X be a Hilbert space and ℤ X

⟶P bd,cl,cv X a u.s.c. and condensing map. If the set

S = s ∈X λs ∈ℤ κ , for some λ > 1 is bounded, 9

then ℤ has a fixed point.

Theorem 4 (see [25]). Let X be a Banach space. If ℤ X

⟶P cl X is a contraction, then fix ℤ ≠ ϕ.

Definition 5. A map H ℝτ ×C ⟶P X and g Δ ×C

⟶P X are given functions. Moreover, σi κ0,T
⟶ κ0,T , i = 1, 2,⋯, n + 1, are continuous functions
with σi κ ≤ κ, i = 1, 2,⋯, n + 1. We assume the following.

(1) κ⟶H κ, z1,⋯, zn+1 is measurable for each z1,
⋯, zn ∈C

(2) Each z1,⋯, zn+1 ⟶H κ, z1,⋯, zn+1 is continuous
for almost all κ ∈ μ,T

(3) ∀m > 0 (m is positive integer), ∃αm ∈ £p μ,T ,ℝ+

s.t

H t, z1,⋯, zn+1 p ≔ sup
z p≤m

E h p h ∈H κ, z1,⋯, zn+1 ≤ αm κ ,

10

for κ ∈ μ, T . ∀z ∈ £p X define the set of selections of H by

SH ,z = h ∈ £p X : h κ ∈H κ, zκ1 ,⋯, zκn+1 for κ ∈ μ,T
11

Lemma 6 (see [26]). Consider a compact interval denoted as
J and let X represent a Hilbert space. Let H be an Lp-
Carathéodory multivalued map with SH ,x = ϕ and β be a
linear continuous mapping from β ∘SH C J ,X ⟶
P bd,cl,co C J ,X , x↦ β ∘SH z = β SH ,z , which is a
closed graph operator in C J ,X × C J ,X .
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Definition 7 (see [8]). A semigroup U κ , κ ≥ 0 is said to
be uniformly bounded if ∃K ≥ 1 (K is constant) s.t

U κ ≤ K , for κ > 0 12

The following Pachpatte’s inequalities play the crucial
role in our analysis.

Lemma 8 (see [27], p. 33). Let z, ϑ, and ψ be nonnegative
continuous functions defined on ℝ+, for which the inequality

z t ≤ z0 +
t

0
ϑ s z s ds +

t

0
ϑ s

s

0
ψ r z r dr ds, t ∈ℝ+,

13

holds, where z0 is nonnegative constant. Then,

z t ≤ z0 1 +
t

0
ϑ s exp

s

0
ϑ s + ψ r dr ds , t ∈ℝ+

14

Definition 9. For a given T ∈ κ0,+∞ , a stochastic process
z κ ∈G, κ0 − ρ ≤ κ ≤T is said to be a solution to equa-
tion (3) in Ω,P , H κ , if

(1) z κ ∈ℝn is H κ-adapted for κ ≥ κ0

(2) z κ0 + ν = υ ν ∈ £02 Ω,H when ν ∈ −ρ, 0

z κ = 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0 + 〠

℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U κ − ν h ν dν +
κ

ζ℘

U κ − ν h ν dν

I ζ℘ ,ζ℘+1 κ , h ∈UH ,z , κ ∈ κ0,T ,

15

where ℘
j=iaj μj = a℘ μ℘ a℘−1 μ℘−1 ,⋯ai μi and IA is

the index function

3. Existence Result: Convex Case

Here, we list the following assumptions for our convenience.
A1. There exists a continuous function ρ1 κ0,T ⟶

0,+∞ such that

H κ, z1,⋯, zn+1 p = sup
z p≤m

E h p h ∈H κ, z1,⋯, zn+1

≤ ρ1 κ W z1
p
ν+⋯+ zn+1

p
ν ,

16

zi ∈C , i = 1, 2,⋯, n + 1, where W ℝ+ ⟶ 0,+∞ is a
continuous increasing function satisfying W η κ z ≤ η κ
W z .

A2. There exists a continuous function ρ2 κ0,T ⟶
0,+∞ such that

E
t

κ0

g κ, ν, z ds

p

≤ ρ2 κ E z p
σ, κ, σ ≥ 0, z ∈X 17

A3. νi κ0,T ⟶ κ0,T , i = 1, 2,⋯, n + 1, are contin-
uous functions with νi κ ≤ κ, i = 1, 2,⋯, n + 1.

A4. E max
i,q

q
j=i aι τj is uniformly bounded if there

is a constant C > 0 such that

E max
i,q

k

j=i
aj μj ≤ C for each μ j ∈D j, j = 1, 2, ⋯

18

A5. A D A ⊂X⟶X is the infinitesimal generator
of strongly continuous U κ inX.

A6. H ℝμ ×C ⟶P X is a compact convex Lp-
Carathéodory multivalued function.

Theorem 10. Under the assumptions A1-A6, problem (3) has
at least one mild solution defined on κ0,T provided that the
following estimate is fulfilled:

T

κ0

M∗ ν dν <
∞

c0

dν
W ν

, 19

where M∗ ν = 2p−1Kp max 1, C T − κ0 ϱ1 κ n + ϱ2 κ ,
c0 = 2p−1KpCpE υ p, and KpCp ≥ 1/2p−1.

Proof. Let T be an arbitrary number κ0 <T <∞ fulfilling
(19). We transform the system (3) into a fixed point prob-
lem. We consider the operator ℤ G⟶G defined as

ℤ z = f ∈G f κ

=

υ κ − κ0 , κ ∈ κ0 − ρ, κ0 ,

〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0 + 〠

℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U κ − ν h ν dν,

+
κ

ζ℘

U κ − ν h ν dν I ζ℘ ,ζ℘+1 κ , h ∈UH ,z , κ ∈ κ0,T

20

We will demonstrate that the operator ℤ satisfies all the
conditions outlined in Theorem 3. The proof is presented
through the following sequence of steps.

Step 1. To prove ℤ is convex, ∀y ∈G. Since H has con-
vex values, it follows that UH ,z is convex, so that h1, h2 ∈
SH ,z ; then, μh1 + 1 − μ h2 ∈ SH ,z , 0 ≤ μ ≤ 1, which implies
clearly that ϕ is convex.

Step 2. To prove ℤ is bounded on G.
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Let Gm = z ∈G z p
G ≤m ,m ≥ 0, be a bounded subset

of G. We prove that ℤ Gm is a bounded subset of G. ∀
z ∈Gm, let f ∈ℤ z . Then, ∃h ∈SH ,z s.t ∀κ ∈ κ0,T , we get

f κ p ≤ 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U κ − ν h ν dν

+
κ

ζ℘

U κ − ν h ν dν I ζ℘ ,ζ℘+1 κ

p

≤ 2p−1 max
℘

℘

i=1
ai μi

p U κ − κ0
p υ 0 p

+ 2p−1 max
i,℘

1,
q

j=i
aj μj

p

U κ − ν p
κ

κ0

h ν dν

p

,

f p
κ ≤ 2p−1 max

℘

℘

i=1
ai μi

p U κ − κ0
p υ 0 p

+ 2p−1 max
i,℘

1,
℘

j=i
aj τj

p

U κ − ν p T − κ0
p−1

κ

κ0

h ν pdν

21

Then,

E f p
κ ≤ 2p−1CpKpE υ p + 2p−1 max 1, Cp T − κ0

p−1

κ

κ0

E h ν p dν ≤ 2p−1CpKpE υ p

+ 2p−1Kpepν T −κ0 max 1, Cp T − κ0
p−1

×
κ

κ0

ϱ1 ν W E z σ1 ν p+⋯+E z σn ν p

+ ϱ2 ν E z σn+1 r pdr dν ≤ 2p−1KpCpE υ p

+ 2p−1Kp max 1, Cp T − κ0
p−1

κ

κ0

ϱ1 ν n + ϱ2 ν sup
κ0≤ν≤κ

W E z p
ν dν

22

Hence, ∀f ∈ ϕ Gm , we get

f p
G ≤ 2p−1KpCpE υ p + 2p−1Kp max 1, Cp T − κ0

p−1

κ

κ0

ϱ1 ν n + ϱ2 ν sup
κ0≤ν≤κ

W E z p
ν dν = £

23

Then, ∀f ∈ℤ z , we get f p
G ≤ £.

Step 3. ℤ sends bounded sets into equicontinuous sets
of G.

Let z ∈Gm be a bounded set in G and κ1, κ2 ∈ κ0,T . If
κ0 < κ1 < κ2 <T , f ∈ℤ z ,∃ a function h ∈SH ,z s.t ∀
κ ∈ κ0,T , we get

f κ1 − f κ2 = 〠
∞

℘=0

℘

i=1
ai μi U κ1 − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U κ1 − ν h ν dν

+
κ1

ζ℘

U κ1 − ν h ν dν I ζ℘ ,ζ℘+1 κ1

− 〠
∞

℘=0

℘

i=1
ai μi U κ2 − t0 υ 0

+ 〠
℘

j=1

℘

j=i
aj μj

ζi

ζi−1

U κ2 − ν h ν dν

+
κ2

ζ℘

U κ2 − ν h ν dν I ζ℘ ,ζ℘+1 t2

24

Thus,

f κ1 − f κ2 = 〠
∞

℘=0

℘

i=1
ai μi U κ1 − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μ j

ζi

ζi−1

U κ1 − ν h ν dν

+
κ1

ζ℘

U κ1 − ν h ν dν

I ζ℘ ,ζ℘+1 κ1 − I ζ℘ ,ζ℘+1 t2

+ 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 −U κ2 − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μ j

ζi

ζi−1

U κ − κ0

−U κ2 − κ0 h ν dν +
κ1

ζi

U κ − κ0

−U κ2 − κ0 h ν dν

+
κ2

κ1

U κ2 − κ0 h ν dν I ζ℘ ,ζ℘+1 κ2

25

Then,

E ϕz κ1 − ϕz κ2
p ≤ 2p−1E I1

p + 2p−1E I2
p, 26

5Journal of Function Spaces



where

I1 = 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μ j

ζi

ζi−1

U κ − ν h ν dν

+
κ1

ζ℘

U κ − ν h ν dν I ζ℘ ,ζ℘+1 κ1 − I ζ℘ ,ζ℘+1 κ2 ,

27

I2 = 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 −U κ2 − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U κ − κ0 −U κ2 − κ0 h σ dσ

+
κ1

ζi

U κ − κ0 −U κ2 − κ0 h ν dν

+
κ2

κ1

U κ2 − κ0 h ν dν I ζq ,ζ℘+1 κ2 ,

28

E I1
p ≤ 2p−1CpKpE υ 0 pE I ζ℘ ,ζ℘+1 κ1 − I ζ℘ ,ζ℘+1 κ2

+ 2p−1Kp max 1, Cp κ1 − κ0 E
κ1

κ0

h ν pdνE I ζ℘ ,ζq+1 κ1 − I ζ℘ ,ζ℘+1 κ2

≤ 2p−1KpCpE υ 0 pE I ζq ,ζ℘+1 κ1 − I ζ℘ ,ζq+1 κ2

+ 2p−1Kp max 1, Cp κ1 − κ0

×
κ1

κ0

ϱ1 σ W nE z p
ν +

ν

κ0

ϱ2 ν E z p
ν

dνE I ζq ,ζq+1 κ1 − I ζ℘ ,ζq+1 κ2

≤ 2p−1KpCpE υ 0 pE I ζq ,ζq+1 κ1 − I ζ℘ ,ζq+1 κ2

+ 2p−1Kp max 1, Cp κ1 − κ0

×
κ1

κ0

M1W E z p
ν dνE I ζ℘ ,ζ℘+1 κ1 − I ζ℘ ,ζ℘+1 κ2

⟶ 0 as κ2 ⟶ κ1,
29

where M1 = sup ρ1 κ n + ρ2 κ ,

E I2
p ≤ KpCp κ2 − κ1 E

κ2

κ1

h ν pdν

≤ KpCp κ2 − κ1
κ2

κ1

M1ρ1 ν W nE z p
ν +

ν

κ0

ρ2 ν E z p
νbig dν

⟶ 0 as κ2 ⟶ κ1

30

Equations (29) and (30) are independent of z ∈Gm. This
demonstrates that as κ2 approaches κ1, the right-hand side of
equation (26) approaches zero. The compact nature of
U κ − κ0 for κ0 < κ implies continuity within the uniform
operator topology.

Step 4. ℤ maps bounded sets into relatively compact sets
in G.

Let κ0 < κ ≤T be fixed and ε a real number fulfilling ε
∈ 0, κ − κ0 . For z ∈Gm. We define a function f ε by

f ε κ = 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj τj

ζi

ζi−1

U κ − ν h ν dν

+
κ−ε

ζ℘

U κ − ν h ν dν I ζ℘ ,ζ℘+1 κ ,

κ ∈ κ0, κ − ε , h ∈UH ,z , h ∈SH ,z

31

Since U κ − κ0 is a compact operator, the set Wε κ =
f ε κ : f ε ∈ ϕ z is relatively compact in G, ∀

ε ∈ 0, κ0 − κ . Additionally, ∀f ∈ℤ z , we get

f κ − f κε = 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U κ − ν h ν dν

+
κ

ζ℘

U κ − ν h ν dν I ζ℘ ,ζq+1 κ

− 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U κ − ν h ν dν

+
κ−ε

ζ℘

U κ1 − ν h ν dν I ζ℘ ,ζ℘+1 κ

32

Using A1–A6, we get

E f − f εz
p
κ ≤ Kp max 1, Cp T − κ0

p−1
t

κ−ε
M1W m ds

33

Hence, there exist precompact sets that can be brought
arbitrarily close to the collection ℤz κ : z ∈Gm . The col-
lection ℤ z : z ∈Gm is itself precompact within the space
G. By combining the outcomes of steps 1 to 4 and invoking
the Ascoli-Arzela theorem, it follows that ℤ qualifies as a
compact multivalued map, consequently establishing its
character as a condensing map.
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Step 5. ℤ has a closed graph.
Let z n ⟶ z∗ and f n ∈ℤ z n with f n ⟶ f ∗. We

shall show that f ∗ ∈ℤ z∗ . There exists h n ∈SH ,z n , such
that

f n κ = 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0

+ 〠
℘

i=1

℘

j=i
aj μ j

ζi

ζi−1

U κ − ν h n ν dν

+
κ

ζ℘

U κ − ν h n ν dν I ζ℘ ,ζ℘+1 κ

34

Now, we prove that ∃h∗ ∈SH ,z∗ , s.t

f ∗ κ = 〠
∞

q=0

℘

i=1
ai τi U κ − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj τj

ζi

ζi−1

U κ − ν h∗ σ dσ

+
κ

ζ℘

U κ − ν h∗ ν dσ I ζ℘ ,ζ℘+1 κ ,

35

where h∗ σ =H ν, z∗ σ1 ν ,⋯, z∗ σn ν , ν
κ0
g ν, r, z∗

σn+1 r dr
Take into account the linear continuous operator Γ £p

X ⟶G defined by

Γz κ = 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μ j

ζi

ζi−1

U κ − ν h ν dν

+
κ

ζ℘

U κ − ν h ν dν I ζ℘ ,ζ℘+1 κ

36

Then, we get

f n κ − 〠
∞

℘=0

℘

i=1
ai τi U κ − κ0 υ 0 I ζ℘ ,ζ℘+1 κ

− f ∗ κ − 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0 I ζ℘ ,ζ℘+1 κ

p

⟶ 0 as n⟶∞
37

From Lemma 6, it becomes evident that the composite
operator Γ ∘SH possesses a closed graph. This observation
aligns with the definition of Γ, which yields the following
relationship:

f n κ − 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0 I ζ℘ ,ζ℘+1 κ ∈ Γ ∘UH ,z n

38

As z n ⟶ z∗ and f n ⟶ f ∗, ∃h∗ ∈UH ,z∗ , s.t

f ∗ κ − 〠
∞

℘=0

℘

i=1
ai τi U κ − κ0 υ 0 I ζ℘ ,ζ℘+1 κ

= 〠
℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U t − σ h∗ ν dν

+
κ

ζ℘

U κ − ν h∗ ν dν I ζ℘ ,ζ℘+1 κ

39

∀κ ∈ κ0,T Hence, f ∗ ∈ℤ z∗ , which follows that the
graph ℤ is closed.

Step 6. A priori bounds.
Here, it remains to show that the set

U ℤ = z ∈G ηz ∈ℤ z for some 0 < η < 1 is bounded
40

Let z ∈U ; then for η > 1, z ∈ℤ z and there exists h ∈
SH ,z s.t

z κ = η〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μ j

ζi

ζi−1

U κ − ν h ν dν

+
κ1

ζ℘

U κ − ν h ν dν I ζ℘ ,ζ℘+1 κ1 , κ ∈ κ0,T ,

41

where

h ν =H ν, z σ1 ν ,⋯, z σn ν ,
ν

κ0

g ν, r, z σn+1 r dr

42
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Then, by A1-A6, we have

z κ p ≤ ηp 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U κ, ν h ν dν

+
κ

ζq

U κ, ν h ν dν I ζ℘ ,ζ℘+1 κ

p

43

Observing that the right-hand side’s final term in the
inequality above increases in κ and selecting KpCp ≥ 1/2p−1,
we arrive at the conclusion that

z p
t ≤ 2p−1 max

℘

℘

i=1
ai μi

p U κ − κ0
p υ 0 p

+ 2p−1 max
i,℘

1,
℘

j=i
aj μj

p

× U κ, ν p T − κ0
κ

κ0

H ν, z σ1 ν ,⋯, z σn ν ,

ν

κ0

g ν, r, z σn+1 r dr

p

dν

44

Then,

E z p
κ ≤ 2p−1CpKpE υ p + 2p−1 max 1, Cp

× T − κ0
κ

κ0

E H σ, z σ1 σ ,⋯, z σn ν ,

ν

κ0

g ν, r, z σn+1 r dr

p

dσ

≤ 2p−1CpKpE υ p + 2p−1Kp max 1, Cp

× T − κ0
κ

κ0

ϱ1 ν W E z σ1 σ p

+⋯+E z σn ν p + ϱ2 ν E z σn+1 r pdr dν

≤ 2p−1CpKpE υ p + 2p−1Kp max 1, Cp T − κ0
p−1

κ

κ0

ϱ1 ν n + ϱ2 ν W E z p
ν dν

45

From the above inequality, the last term of the right side
increases in κ, we would obtain

sup
κ0≤ν≤κ

E z p
ν ≤ 2p−1KpCpE υ p + 2p−1Kp max 1, Cp

T − κ0
p−1

κ

κ0

ϱ1 ν n + ϱ2 ν W E z p
ν dν

≤ 2p−1KpCpE υ p + 2p−1Kp max 1, Cp

T − κ0
p−1

κ

κ0

ϱ1 ν n + ϱ2 σ

sup
κ0≤ν≤κ

W E z p
ν dν

46

Let us define the function £ t as follows:

£ κ = sup
κ0≤ν≤κ

E z p
ν , κ ∈ κ0,T 47

From the above inequality (47), the right side is denoted
by ρ κ , we get

£ t ≤ ρ κ , κ ∈ κ0,T , ρ κ0 = 2p−1KpCpE υ p = c0,

ρ′ κ = 2p−1Kp max 1, Cp T − κ0 ϱ1 ν n + ϱ2 σ W £ κ

≤ 2p−1Kp max 1, Cp T − κ0 ϱ1 ν n + ϱ2 ν W ρ ν ,

ρ′ κ
W ρ κ

≤ ρ∗ κ , κ ∈ κ0,T 48

This implies

ρ κ

ρ κ0

dν
W ν

≤
T

κ0

M∗ nu dν <
∞

c0

dν
W ν

, κ ∈ κ0,T , 49

where the last inequality is obtained by (19). From (57) and
applying the mean value theorem, it can be deduced that
there exists a constant η1 such that ρ κ ≤ η1 and here £ κ
≤ η1. Since £ κ = sup

κ0≤ν≤κ
E z p

ν holds for every κ ∈ κ0,T ,

we have η1 ≥ sup
κ0≤ν≤T

E z p
ν , where η1 depends only on T

and the functions ρ and W.

η1 ≥ sup
κ0≤ν≤T

E z p
ν = E z p

G 50

U is bounded, as evidenced by this. Theorem 3 leads us
to conclude that ℤ has a fixed point z defined on −ρ ;T ,
which is a solution of (3).
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Theorem 11. Assume that there exists continuous functions
ϱ1, ϱ2 κ0,T ⟶ 0,+∞ such that

E H κ, z1,⋯, zn+1 p ≤ ϱ1 κ E z1
p
s+⋯+ zn+1

p
s ,

zi ∈ℝ
n, i = 1, 2,⋯, n + 1,

E g κ, s, z ds p ≤ ϱ2 κ E z p
s , κ, s ≥ 0, z ∈ℝn

51

Under the assumptions A3-A6, system (3) has a solution
z κ defined on κ0,T .

Proof. Similar to steps 1-5, in Theorem 10, we can prove
steps 1-5. In the following, we prove step 6.

Step 6. A priori bounds.
Here, it remains to show that the set

U ℤ = z ∈G ηz ∈ℤ z for some 0 < η < 1 is bounded,

E z p
κ ≤ 2p−1CpKpE υ p + 2p−1 max 1, Cp T − κ0

κ

κ0

E H s, z σ1 s ,⋯, z σn s ,
s

κ0

g s, r, z σn+1 r dr

p

ds

≤ 2p−1CpKpE υ p + 2p−1Kp max 1, Cp

× T − κ0
κ

t0

ϱ1 s E z σ1 s p+⋯+E z σn s p

+
s

κ0

ϱ2 r E z σn+1 r pdr ds ≤ 2p−1CpKpE υ p

+ 2p−1Kp max 1, Cp × T − κ0
κ

κ0

ϱ1 s E z s p

+⋯+E z s p +
s

κ0

ϱ2 r E z r pdr ds

≤ 2p−1CpKpE υ p + 2p−1Kp max 1, Cp T − κ0
κ

κ0

ϱ1 s nE z p
s +

s

κ0

ϱ2 r drE z p
s ds

52

We note that from the above inequality, the last term of
the right side increases in κ, we would obtain

sup
t0≤ν≤κ

E z p
ν ≤ 2p−1KpCpE υ p + 2p−1Kp max 1, Cp T − κ0

κ

κ0

ϱ1 s nE z p
s +

s

κ0

ϱ2 r E z p
s dr ds

≤ 2p−1KpCpE υ p + 2p−1Kp max 1, Cp T − κ0
κ

κ0

ϱ1 s n sup
κ0≤ν≤t

E z p
ν +

s

κ0

ϱ2 r dr sup
t0≤ν≤κ

E z p
ν ds

53

Let us define the function £ κ as follows:

£ κ = sup
κ0≤ν≤κ

E z p
ν , κ ∈ κ0,T 54

Then, for any κ ∈ κ0,T , it follows that

£ κ ≤ 2p−1KpCpE υ p + 2p−1Kp max 1, Cp T − κ0
κ

t0

ϱ1 s n£ s +
s

κ0

ϱ2 r £ r dr ds,

55

£ κ ≤ 2p−1KpCpE υ p + 2p−1Kp max 1, Cp T − κ0
κ

κ0

nϱ1 s £ s ds +
κ

κ0

ϱ1 s
s

κ0

ϱ2 r £ r drds ,

56

£ κ ≤ c1 +
κ

κ0

c2nρ1 s £ s ds +
κ

κ0

c2ρ1 s
s

κ0

ρ2 r £ r drds,

57

where c0 = 2p−1KpCpE υ p . Let N κ = sup M∗ and
N∗ t = sup N κ : κ ∈ κ0,T ; then from eqn (57), we
have

£ κ ≤ c0 +
κ

κ0

N s £ s ds +
κ

κ0

N s
s

κ0

N r £ r drds 58

Applying Lemma 8 to inequality (58), we get

£ κ ≤ c0 1 +
κ

κ0

ϑ s exp
s

κ0

N r +N r dr ds

≤ c0 1 +N∗ exp 2N∗ T − κ0 T − κ0 =A

59

We now provide another existence result for problem
(3). In the following theorem, the Wintner-type growth con-
dition is used to relax the multivalued H .

Theorem 12. Suppose that A4-A6 and the following condi-
tion hold:

A7. ∃ some function ℓ1 ∈ £p κ0,T ,ℝ+ s.t

F H κ, z1,⋯, zn+1 ,H κ,w1,⋯,wn+1
≤ ℓ1 κ z1 −w1

p
ν+⋯+ zn+1 −wn+1

p
ν ,∀κ ∈ κ0,T ,

zi,wi ∈C , i = 1, 2,⋯, n + 1,F 0,H κ, 0,⋯, 0
≤ ℓ1 κ , for a e κ ∈ κ0,T

60

A8. ∃ some function ℓ2 s.t F
κ
κ0
g κ, σ, z dσ ≤ ℓ2 κ

z p
ν, z ∈C ,

F 0, g κ, ν, 0 ≤ ℓ2 κ , for a e κ ∈ κ0,T , 61
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where T

κ0
M∗ κ dν <∞,

M1∗ κ = 2p−1CpKpE υ p + 2p−1Kp max 1, Cp

T − κ0
p−1

κ

κ0

ℓ1 ν n + ℓ2 ν dν,

M2∗ κ = 2p−1CpKpE υ p + 2p−1Kp max 1, Cp T − κ0
p−1

62

Then, problem (3) has at least one mild solution on −ρ,T .

Proof. Let ℤ be defined as in Theorem 10. It is possible to
demonstrate that ℤ is upper semicontinuous and completely
continuous, as in the proof of Theorem 10. Here, we prove that

U = u ∈X λu ∈ℤ κ , for some λ > 1 is bounded 63

Let z ∈U; then, ∃h ∈UH ,z , κ ∈ κ0,T ,

z κ = η〠
∞

q=0

q

i=1
ai μi U κ − κ0 υ 0

+ 〠
q

i=1

q

ι=i
aι μι

ζi

ζi−1

U κ − ν h ν dν

+
κ

ζq

U κ − ν h ν dν I ζq ,ζq+1 κ , κ ∈ κ0,T

64

Thus, by A4-A8, we have

E z p
κ ≤ 2p−1CpKpE υ p + 2p−1 max 1, Cp

× T − κ0
p−1

κ

κ0

E H ν, z σ1 ν ,⋯, z σn ν ,

ν

κ0

g ν, r, z σn+1 r dr

p

dν

65

Observing that the right-hand side’s final term in the
inequality above increases in κ and selecting KpCp ≥ 1/2p−1,
we arrive at the conclusion that

E z p
κ ≤ 2p−1CpKpE υ p + 2p−1Kp max 1, Cp

T − κ0
p−1

κ

κ0

ℓ1 ν n + ℓ2 ν dν

+ 2p−1Kp max 1, Cp T − κ0
p−1

κ

κ0

ℓ1 ν n + ℓ2 ν E z p
νdν

66

By (47), we get

£ κ ≤M1∗ κ +M2∗ κ
κ

κ0

ℓ1 ν n + ℓ2 ν £ κ dν 67

Using the Gronwall inequality, we obtain

£ t ≤M1∗ κ exp M2∗ κ
κ

κ0

ℓ1 ν n + ℓ2 ν dν ,∀κ ∈ κ0,T

68

Therefore, ∃β2 > 0 s.t £ κ ≤ β2, ∀κ ∈ κ0,T ; this gives

z p
G ≤ β2 69

This demonstrates the bounded nature of the set U. By vir-
tue of Theorem 3, it can be inferred that U possesses a fixed
point, which corresponds to a mild solution of equation (3).

4. Existence Results: Nonconvex Case

Our study in this section is based on Covitz and Nadler’s
fixed point theorem for contraction multivalued operators.
We use additional assumption:

A9. FHcp : H μ,T ×C ⟶P cp X has the prop-
erty that H ,z1,⋯, zn+1 : μ,T ⟶P cp X is measurable
∀z ∈C .

Theorem 13. Suppose that hypotheses A4-A5 and A7-A9 are
fulfilled, then the IVP (3) has at least one mild solution on
−ρ ;T , provided

η = Kp max 1, Cp T − κ0
p−1

κ

κ0

ℓ1 ν n + ℓ2 ν dν < 1

70

Proof. Transform problem (3) into a fixed point problem.
Consider the multivalued operator ℤ as introduced in
Theorem 10. Our aim is to show that ℤ fulfills the
hypotheses of Theorem 11.

Step 1. To prove ℤ z ∈P cl ∈G, ∀z ∈ G.
Indeed, let zn n≥0 ∈ℤ z s.t zn ⟶ z in G. Then, z ∈G

and ∃hn ∈ SH ,z s.t ∀κ ∈ κ0,T ,

zn κ = 〠
∞

℘=0

q

i=1
ai μi U κ − κ0 υ 0

+ 〠
℘

i=1

q

j=i
aj μj

ζi

ζi−1

U κ, ν

H ν, zn σ1 ν ,⋯, zn σm ν ,
ν

κ0

g ν, r, zn σm+1 r dr dν +
κ

ζ℘

U κ, ν H

ν, zn σ1 ν ,⋯, zn σm ν
ν

κ0

g ν, r, zn σm+1 r dr dν I ζ℘ ,ζ℘+1 κ

71
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Using A7 and A8, H has compact values. If necessary,
we can pass to a subsequence to ensure that hn converges f
∈ £p μ,T ,ℤ , and hence, h ∈ SH ,z . Then, ∀κ ∈ κ0,T ,

zn κ ⟶ z κ = 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0 + 〠

℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U κ, ν H ν, zn σ1 ν ,⋯, zn σm ν ,

ν

κ0

g ν, r, zn σm+1 r dr dν

+
κ

ζq

U κ, ν H ν, zn σ1 ν ,⋯, zn σn ν

ν

κ0

g ν, r, zn σm+1 r dr dν I ζ℘ ,ζ℘+1 κ

72

So z ∈ℤ z
Step 2. Contraction.
Let z1, z2 ∈G and f 1 ∈ℤ z1 ; then, ∃f 1 κ ∈H κ, z1κ s.t

κ ∈ κ0,T ,

f 1 κ 〠
∞

℘=0

℘

i=1
ai τi U κ − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj μ j

ζi

ζi−1

U κ, ν h1 ν

+
κ

ζ℘

U κ, ν h1 ν I ζ℘ ,ζ℘+1 κ

73

From A7 and A8, we get

F H κ, z1i ,H κ, z2i ≤ ℓ1 κ z1i − z2i
p

κ
,

κ ∈ κ0,T , i = 1, 2,⋯,m + 1,

F
κ

κ0

g κ, ν, z1 dν ≤ ℓ2 κ z1
p

κ
, κ ∈ κ0,T 74

Hence, there is w ∈H κ, z2i , i = 1, 2,⋯,m + 1, s.t

h1 κ −w
p

κ
≤ ℓ1 κ m + ℓ2 κ z1 −w

p

κ
, κ ∈ κ0,T

75

Consider N κ0,T ⟶P cp X , given by

N κ = w ∈X h1 κ −w
p

κ

≤ ℓ1 κ m + ℓ2 κ z1 −w
p

κ
, κ ∈ κ0,T

76

Since N ∗ κ =N κ ∩H κ, zκi , i = 1, 2,⋯,m + 1 is
measurable, ∃f 2 κ a measurable selection for N ∗. So h2 κ
∈H κ, zκi , i = 1, 2,⋯,m + 1, and

h1 κ − h2 κ
p

κ
≤ ℓ1 κ n + ℓ2 κ z1 −w

p

κ
,∀κ ∈ κ0,T

77

Let us define ∀κ ∈ κ0,T ,

f 2 κ = 〠
∞

℘=0

℘

i=1
ai μi U κ − κ0 υ 0

+ 〠
℘

i=1

℘

j=i
aj τj

ζi

ζi−1

U κ, ν h2 ν

+
κ

ζ℘

U κ, ν h2 ν I ζ℘ ,ζ℘+1 κ

78

Then, we get

f 1 κ − f 2 κ = 〠
∞

℘=0
〠
℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U κ, σ h1 σ − h2 ν dν

+
κ

ζq

U κ, ν h1 ν − h2 ν dν I ζ℘ ,ζ℘+1 κ ,

f 1 κ − f 2 κ
p = 〠

∞

℘=0
〠
℘

i=1

℘

j=i
aj μj

ζi

ζi−1

U κ, σ h1 ν − h2 ν dν

+
κ

ζ℘

U κ, ν h1 ν − h2 ν dν I ζ℘ ,ζ℘+1 κ

p

+ max
i,℘

1,
℘

j=i
aj μj

p

U κ, ν p

T − κ0
p−1

κ

κ0

h1 ν − h2 ν
p
dν ,

E f 1 − f 2
p

κ
≤ Kp max 1, Cp T − κ0

p−1

E
κ

κ0

ℓ1 ν m + ℓ2 ν z1 − z2
p

ν
dν

≤ Kp max 1, Cp T − κ0
p−1

κ

κ0

ℓ1 σ m + ℓ2 σ

E z1 − z2
p

ν
dν

≤ Kp max 1, Cp T − κ0
p−1

κ

κ0

ℓ1 ν m + ℓ2 ν dνE z1 − z2
p

κ

79

Taking supremum over κ, we obtain

f 1 − f 2
p

G
≤ Kp max 1, Cp T − κ0

p−1

T

κ0

ℓ1 ν m + ℓ2 ν dν z1 − z2
p

G

80

11Journal of Function Spaces



From the equivalent relation, which is produced by
switching the role ofz1andz2, we get

F M z1 ,M z2 ≤ η z1 − z2
p

G
81

Using (70), we get 0 < η < 1 and hence ℤ is a contraction,
and by Theorem 3, we can say thatℤ has a fixed point z, which
is a mild solution of (3).

5. An Application

The considered partial integrodifferential inclusion with
time-varying delay is in the following form:

∂v z, κ
∂κ

∈
∂2v z, κ

∂2κ
+

κ0

−r

κ

κ0

H 1 κ, z, η H2 v κ + η, z dκdη,

0 < z < π, κ0 ≤ κ ≤T , κ ≠ ζ℘,

v z, ζ℘ = b℘ μ℘ v z, ζ−℘ , κ = ζ℘,

v 0, κ = v π, κ = 0,
v z, κ = υ z, κ ,−ρ ≤ κ ≤ 0, 0 ≤ z ≤ π

82

Let X = £p 0, π and A = ∂2/∂2κ with the domain

D A = v ∈X and ∂v
∂z

are absolutely continuous,

∂2v
∂2z

∈X, v 0 = v π = 0
83

Then,

Av = 〠
∞

m=1
m v, vm , v ∈D A , 84

where vν z = 2/ν sin νz , ν = 1, 2,⋯n is the orthogonal
set of eigenvectors in A . It is well known that A generates
a strongly continuous semigroup U κ which is compact,
analytic, and self-adjoint and

U κ ≤ K , for κ ≥ 0 85

Thus, U κ is uniformly bounded.

(1) The function H ≥ 0 is continuous in κ0,T × 0, π
× −ρ, 0 , with

0

−α
H 1 κ, z, η dη = u1 κ, z , u1 κ =

0

−α
u1 κ, z dz

1/p
<∞

86

For z κ + η ∈C, we consider the validity of the follow-
ing conditions:

(2) max
i,℘

℘
j=i bi δi ≤C∗ <∞

(3) The multifunction H 2 is an Lp-Carathéodory
multivalued function with compact and convex
values and

0 ≤
κ

κ0

H 2 v η, z dη ≤ ϱ v η, , η, z ∈ κ0,T × 0, π ,

87

where ϱ ℝ+ ⟶ℝ+ is continuous and nondecreasing
As conditions (1)–(3) satisfy, the problem presented by

equation (82) can be structured as abstract integrodifferen-
tial inclusions featuring a random impulse, as illustrated in
equation (3), with

κ

κ0

H κ, z κ =
κ0

−r

κ

κ0

H 1 κ, z, η H 2 v κ + η, z dκdη,

88

and a℘ μ℘ = a ℘ μ℘.

6. Conclusion

In this manuscript, we have established the existence of mild
solutions for the NRIIDIns with time-varying delays. This
accomplishment was achieved through the utilization of
the Martelli fixed point theorem, Pachpatte’s inequality,
and the fixed point theorem originally formulated by Covitz
and Nadler. A delightful extension of our findings would
involve exploring controllability aspects for a specific cate-
gory of NRIIDIns with time-varying delays in the future.
The investigation into the fractional order of NRIIDIns with
time-varying delays holds significant intrigue and will be a
primary area of emphasis in our upcoming research
endeavors.
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