Solvability of a Hadamard Fractional Boundary Value Problem at Resonance on Infinite Domain

Xingfang Feng and Yucheng Li

1Department of Mathematics, Hebei Normal University, Shijiazhuang 050024, China
2Shijiazhuang Branch, Army Engineering University of PLA, Shijiazhuang 050003, Hebei, China

Correspondence should be addressed to Yucheng Li; liyucheng@hebtu.edu.cn

Received 9 August 2023; Revised 17 November 2023; Accepted 3 January 2024; Published 23 January 2024

1. Introduction

In this paper, we study the following Hadamard fractional boundary value problem (BVP for short) on an infinite domain:

\[
\begin{align*}
&D^\alpha u(t) + f\left(t, u(t), D^{\alpha-2} u(t), D^{\alpha-1} u(t)\right) = 0, \, t \in (1, +\infty), \\
u(1) = 0, \, D^{\alpha-2} u(1) = 0, \, D^{\alpha-1} u(+\infty) = \sum_{i=1}^{m} \lambda_i I^{\beta_i} u(\eta),
\end{align*}
\]

where \(2 < \alpha \leq 3\), \(\lambda_i \geq 0, \eta \in (1, \infty)\), \(D^\alpha\) is the Hadamard fractional derivative of \(\alpha\), and \(I^{\beta_i}\) denotes the Hadamard fractional integral of \(\beta_i\), \(i = 1, 2, \ldots, m\).

In recent decades, due to the broad application of fractional calculus in many fields, such as chemical physics, electrical networks, signal and image processing, modeling for anomalous diffusion, and fluid flow, there has been significant development in both the theory and applications of fractional calculus [1–6]. There exist many types of fractional derivatives, such as Riemann-Liouville, Caputo, Hadamard, Grunwald-Letnikov, and Weyl. In contrast to Riemann-Liouville and Caputo derivatives, Hadamard involves logarithmic function with arbitrary exponent. Many researchers have studied the Hadamard and Caputo-Hadamard fractional differential equations; for more details, see [7–17].

In [15], the authors discussed a Hadamard fractional differential equation on infinite intervals:

\[
\begin{align*}
&D^\alpha u(t) + \bar{a}(t) f(u(t)) = 0, \, 1 < \alpha \leq 2, \, t \in (1, +\infty), \\
u(1) = 0, \, D^{\alpha-1} u(+\infty) = \sum_{i=1}^{m} \lambda_i I^{\beta_i} u(\eta),
\end{align*}
\]

where \(D^\alpha\) is the Hadamard fractional derivative of \(\alpha\) and \(I^{\beta_i}\) denotes the Hadamard fractional integral of \(\beta_i\), \(i = 1, 2, \ldots, m\).

In [14], by using monotone iterative technique, the authors obtained the existence of positive solutions for a Hadamard fractional differential equation on infinite intervals:

\[
\begin{align*}
&D^\alpha u(t) + a(t) f(u(t), D^{\alpha-2} u(t), D^{\alpha-1} u(t)) = 0, \, 1 < \alpha \leq 2, \, t \in (1, +\infty), \\
u(1) = 0, \, D^{\alpha-1} u(+\infty) = \sum_{i=1}^{m} \lambda_i I^{\beta_i} u(\eta),
\end{align*}
\]
where $^{H}D^α$ denotes the Hadamard fractional derivative of α, $η ∈ (1, +∞)$, and $I^r_{(\cdot)}$ is the Hadamard fractional integral. r, $β_i, λ_i ≥ 0 (i = 1, 2, ⋯, m)$ are given constants.

In [11], Li and Zhai obtained the existence and uniqueness of positive solutions to Hadamard fractional differential equations on infinite intervals by making use of a fixed point theorem for generalized concave operators:

\[
\begin{cases}
^{H}D^α x(t) + b(t)f(t, x(t)) + c(t) = 0, 1 < α ≤ 2, t ∈ [1, +∞), \\
x(1) = 0, ^{H}D^{α−1}x(1) = \sum_{i=1}^{m}λ_i I^{β_i}x(η),
\end{cases}
\]

(4)

where $^{H}D^α$ is the Hadamard fractional derivative of α and $I^{β_i}$ denotes the Hadamard fractional integral of $β_i$, and $η_i ≥ 0, η > 1, i = 1, 2, ⋯, m$.

The above three articles studied the solutions of Hadamard fractional differential equation at nonresonance, i.e., $Γ(α) - \sum_{i=1}^{m}(λ_iΓ(α)/Γ(α + β_i))(log η)^{α+β_i−1} > 0$. To the best of our knowledge, there are few papers that have investigated the boundary value problems of Hadamard fractional differential equations at resonance on infinite domain. Inspired by the excellent results in [18–21], we will discuss this problem by constructing two suitable Banach spaces, establishing an appropriate compactness criterion, defining appropriate operators and the coincidence degree theory due to Mawhin.

In this paper, we will assume that the following conditions hold.

(H1) $\sum_{i=1}^{m}(λ_i/Γ(α + β_i))(log η)^{α+β_i−1} = 1$.

(H2) There exists $h(t) ∈ L^1[1, +∞)$ such that $0 < \int_{t}^{∞}h(s)ds < +∞$, for $t ∈ [1, +∞)$, $h(t) ≠ 0$ and

\[
\int_{t}^{∞}h(s)ds = \sum_{i=1}^{m}\frac{λ_i}{Γ(α + β_i)}\int_{1}^{t}(log η - log s)^{α+β_i−1}h(s)ds ≠ 0.
\]

(H3) $f : [1, +∞) × R^3 → R$ satisfies the following conditions:

(i) For each $u ∈ R^3, f(t, u), f(t, u)/t$ is Lebesgue measurable

(ii) For a.e. $t ∈ [1, +∞)$, $f(t, u)$ is continuous

(iii) For each $r > 0$, there exists $φ_r(t) ∈ L^1[1, +∞)$ such that $|f(t, u, v, w)| ≤ φ_r(t)$ for all $|u|/(1 + (log t)^{α−1}), |v|/(1 + log t), |w| ∈ [0, r, a.e. t ∈ [1, +∞))$

2. Preliminaries and Lemmas

For convenience, we introduce some definitions and fundamental results of fractional calculus theory [22].

Definition 1. The Hadamard fractional integral of order $q > 0$ for a function $g : [1, +∞) → R$ is defined as

\[
^{H}I^q g(t) = \frac{1}{Γ(q)} \int_{1}^{t} (log t - log s)^{q−1} g(s) \frac{ds}{s},
\]

(6)

provided that the integral exists and $log (.) = log_e(.)$.

Definition 2. The Hadamard fractional derivative of order $q > 0$ for a function $g : [1, +∞) → R$ is given by

\[
^{H}D^q g(t) = \frac{1}{Γ(n−q)} \int_{1}^{t} (log t - log s)^{n−q−1} g(s) \frac{ds}{s},
\]

(7)

where $n = [q] + 1$ and $[q]$ denotes the integral part of number q.

Lemma 3 (see [22], Property 2.24). If $α, β > 0$, then

\[
\left(^{H}D^α_{a^+}(log \frac{t}{a})^{β-1} \right)(x) = \frac{Γ(β)}{Γ(β−α)} \left(log \frac{x^α}{a} \right)^{β−α−1}.
\]

(8)

Lemma 4. Let $q > 0$ and $u ∈ C[1, +∞) \cap L^1[1, +∞)$, and then, the Hadamard fractional differential equation $^{H}D^q u(t) = 0$ has the solution

\[
u(t) = \sum_{i=1}^{n} c_i (log t)^{q−i},
\]

(9)

and the following formula holds:

\[
^{H}D^q^{H}D^q u(t) = u(t) + \sum_{i=1}^{n} c_i (log t)^{q−i},
\]

(10)

where $c_i ∈ R, i = 1, 2, ⋯, n$ and $n − 1 < q < n$.

The following notations and a theorem can be found in [23].

Let X and Z be real Banach spaces, $L : dom(L) ⊂ X → Z$ be a Fredholm operator with index zero, and $P : X → X, Q : Z → Z$ be projectors such that

\[
\begin{align*}
Im P &= Ker L, \\
Ker Q &= Im L, \\
X &= Ker L ⊕ Ker P, \\
Z &= Im L ⊕ Im Q, \\
L|_{dom L∩Ker P} &= Im L
\end{align*}
\]

is invertible, denoting its inverse by K_p.

Assume $Ω$ is an open bounded subset of X, $dom L ∩ Ω ≠ ∅$. The map $N : X → Z$ is said to be L-compact on $Ω$ if $QN(Ω)$ is bounded and $K_p(I - Q)N : Ω → X$ is compact.
Theorem 5 (see [23]). Let $\Omega \subset X$ be open and bounded, let $L : \text{dom} \ L \subset X \longrightarrow Z$ be a Fredholm operator of index zero, and let $N : X \longrightarrow Z$ be L-compact on $\bar{\Omega}$. Assume that the following conditions are satisfied:

1. $Lu \neq \lambda Nu$ for every $(u, \lambda) \in \{(\text{dom} \ L \setminus \text{Ker} \ L) \cap \partial \Omega \} \times (0,1)$

2. $Nu \notin \text{Im} \ L$ for every $u \in \text{Ker} \ L \cap \partial \Omega$

3. $\deg (QN|_{\text{Ker} \ L}, \text{Ker} \ L \cap \partial \Omega, 0) \neq 0$, where $Q : Z \longrightarrow Z$ is a projection such that $\text{Ker} \ Q = \text{Im} \ L$

Then, the equation $Lu = Nu$ has at least one solution in $\text{dom} \ L \cap \bar{\Omega}$.

Define the spaces

$$X = \left\{ u(t) : \text{dom} \ L \ni u(t), H^2 \text{Dom}^{-1} u(t), (u(t) \in C[1, +\infty), \frac{u(t)}{1 + (\log t)^{-1}} \in \mathbb{C}\right\},$$

with the norm

$$\|u\|_X = \max \left\{ \left\| \frac{u(t)}{1 + (\log t)^{-1}} \right\|_{\mathbb{C}}, \left\| H^2 \text{Dom}^{-1} u(t) \right\|_{\mathbb{C}}, \left\| H^2 \text{Dom}^{-1} u(t) \right\|_{\mathbb{C}} \right\},$$

(12)

where $\|u\|_{\mathbb{C}} = \sup_{t \in [1, +\infty)} |u(t)|$.

Similar to the proof of Lemma 2.4 in [20], we can prove that $(X, \|\cdot\|_X)$ and $(X, \|\cdot\|_{\mathbb{C}})$ are Banach spaces.

Let $Z = \{y(t) : y(t), (y(t)/t \in L^1[1, +\infty)\}$ with the norm

$$\|y\|_Z = \|y(t)\|_1 + \|\frac{y(t)}{t}\|_1 = \int_1^\infty |y(t)| dt + \int_1^\infty \frac{|y(t)|}{t} dt.$$

(14)

Then, it is easy for us to prove that $(Z, \|\cdot\|_Z)$ is a Banach space.

We define the operator $L : \text{dom} \ L \subset X \longrightarrow Z$ by

$Lu = H^2 \text{Dom}^{-1} u(t), u \in \text{dom} \ L$,

(15)

where

$$\text{dom} \ L = \left\{ u(t) : u(1) = 0, H^2 \text{Dom}^{-1} u(t), H^2 \text{Dom}^{-1} u(t) \in C[1, +\infty) \in \sum_{i=1}^{m} \lambda_i \text{Dom}^{-1} u(t) \right\},$$

(16)

and we define $N : X \longrightarrow Z$ by

$$Nu(t) = f(t, u(t), H^2 \text{Dom}^{-1} u(t), H^2 \text{Dom}^{-1} u(t)).$$

(17)

Then, BVP (1) can be written as $Lu = Nu$.

Next, similar to the compactness criterion in [15, 20], we establish the following criterion, and it can be proved in a similar way.

Lemma 6. Assume V is bounded in X, and then, V is relatively compact in X if the following conditions hold:

i) For any $u(t) \in V$, $u(t)(1 + (\log t)^{\alpha-1})$, $H^2 \text{Dom}^{-1} u(t)$, $(1 + (\log t)^{\alpha})$, and $H^2 \text{Dom}^{-1} u(t)$ are equicontinuous on any compact interval of $[1, +\infty)$

$$\left| \frac{u(t_1)}{1 + (\log t_1)^{\alpha-1}} - \frac{u(t_2)}{1 + (\log t_2)^{\alpha-1}} \right| < \epsilon, \quad (18)$$

(ii) For any $\epsilon > 0$, there exists a constant $T = T(\epsilon) > 1$ such that

$$\left| \frac{H^2 \text{Dom}^{-1} u(t_1)}{1 + (\log t_1)^{\alpha-1}} - \frac{H^2 \text{Dom}^{-1} u(t_2)}{1 + (\log t_2)^{\alpha-1}} \right| < \epsilon, \quad (18)$$

for any $u(t) \in V$ and $t_1, t_2 \geq T$.

3. The Main Results

For convenience, for $y \in Z$, we define the operator A by

$$Ay(t) = \int_1^\infty y(s) \frac{ds}{s} - \sum_{i=1}^{m} \frac{\lambda_i}{1 + (\alpha + \beta_i)} \int_1^\infty (\log t - \log s)^{\alpha \beta_i - 1} y(s) \frac{ds}{s}.\quad (19)$$

Lemma 7. If (H_α) holds, then

1. Ker $L = \{ u \in \text{dom} \ L : u(t) = c(\log t)^{\alpha-1}, c \in \mathbb{R} \}$

2. Im $L = \{ y \in Z : Ay(t) = 0 \}$

Proof. We can easily obtain that

$$\text{Ker} \ L = \{ u \in \text{dom} \ L : u(t) = c(\log t)^{\alpha-1}, c \in \mathbb{R} \}.$$ (20)

Now, we show that Im $L = \{ y \in Z : Ay(t) = 0 \}$.

Let

$$H^2 \text{Dom}^{-1} u(t) = y(t),$$ (21)

have a solution $u(t)$ that satisfies the conditions in BVP (1). From Lemma 4, we have

$$u(t) = \frac{H^2 \text{Dom}^{-1} y(t) + c_1 (\log t)^{\alpha-1} + c_2 (\log t)^{\alpha-2} + c_3 (\log t)^{\alpha-3}}{1 + (\log t)^{\alpha-1}}$$

(22)

$$+ c_2 (\log t)^{\alpha-2} + c_3 (\log t)^{\alpha-3},$$

where $c_1, c_2,$ and $c_4 \in \mathbb{R}$. By $u(1) = 0$, we get $c_5 = 0$. By Lemma 3, we get

$$H D^{a-2} u(t) = H I^y y(t) + c_1 I^{(a)}(\log t + c_2 I^{(a - 1)}).$$

(23)

From $H D^{a-2} u(1) = 0$, we obtain $c_2 = 0$. Hence,

$$u(t) = H I^y y(t) + c_1 (\log t)^{a-1},$$

(24)

$$H D^{a-1} u(t) = H I y(t) + c_1 I^{(a)} = \int_1^t y(s) \frac{ds}{s} + c_1 I^{(a)}(\alpha).$$

By $H D^{a-1} u(+\infty) = \sum_{i=1}^m \lambda_i H I^{\beta_i} y(\eta)$ and (H1), we conclude

$$\int_1^\infty y(s) \frac{ds}{s} + c_1 I^{(a)}(\alpha)$$

$$= \sum_{i=1}^m \lambda_i \left(H I^{a+\beta_i} y(\eta) + H I^{\beta_i} c_1 (\log \eta)^{a-1} \right)$$

$$= \sum_{i=1}^m \lambda_i \int_1^\eta \left(\log \eta - \log s \right)^{a+\beta_i-1} y(s) \frac{ds}{s} + \sum_{i=1}^m \lambda_i c_1 \int_1^\eta \left(\log \eta \right)^{a-1} \frac{ds}{s}$$

$$= \sum_{i=1}^m \lambda_i \int_1^\eta \left(\log \eta - \log s \right)^{a+\beta_i-1} y(s) \frac{ds}{s} + \sum_{i=1}^m \lambda_i c_1 \left(\log \eta \right)^{a-1}$$

$$= \sum_{i=1}^m \lambda_i \int_1^\eta \left(\log \eta - \log s \right)^{a+\beta_i-1} y(s) \frac{ds}{s} + \sum_{i=1}^m \lambda_i c_1 I^{(a)}(\alpha)$$

(25)

where $B(\beta_i, \alpha)$ is the beta-function. Thus,

$$\int_1^\infty y(s) \frac{ds}{s} - \sum_{i=1}^m \lambda_i \int_1^\eta \left(\log \eta - \log s \right)^{a+\beta_i-1} y(s) \frac{ds}{s} = 0.$$

(26)

On the other hand, if (26) holds, setting

$$u(t) = b (\log t)^{a-1} + \frac{1}{I^{(a)}} \int_1^t (\log t - \log s)^{a-1} y(s) \frac{ds}{s},$$

(27)

where b is an arbitrary constant, then $u(t)$ is solution of (21).

\[\square \]

Lemma 8. If (H_1) and (H_2) hold, then $L : \text{dom} L \subset X \rightarrow Z$ is a Fredholm operator of index zero, and the linear continuous projectors $P : X \rightarrow X$ and $Q : Y \rightarrow Y$ can be defined as

$$Pu(t) = \frac{H D^{a-1} u(I)}{I^{(a)}} (\log t)^{a-1},$$

(28)

$$Qy(t) = \frac{A y}{Ah},$$

respectively, and the linear operator $K_p : \text{Im} L \rightarrow \text{dom} L \cap \text{Ker} P$ can be given by

$$K_p y(t) = H I^y y(t).$$

(29)

Proof. We can easily get $P^2 u = Pu, u \in X,$ and $Q^2 y = Qy, y \in Z,$ which imply that P, Q are projectors. Clearly, $\text{Im} P = \text{Ker} L,$ and $\text{Im} L = \text{Ker} Q.$ For $y \in Z$, we have $y = (y - Qy) + Qy$. Thus, $Z = \text{Ker} Q + \text{Im} Q = \text{Im} L + \text{Im} Q$.

Let $y \in \text{Im} L \cap \text{Im} Q$. Since $y \in \text{Im} Q$, then there exists $b \in R$ such that $y(t) = bh(t), t \in [1, +\infty)$. Since $y \in \text{Im} L$, we get

$$Ay(t) = b \left(\int_1^\infty h(t) \frac{ds}{s} - \sum_{i=1}^m \lambda_i \right) \int_1^\eta \left(\log \eta - \log s \right)^{a+\beta_i-1} h(s) \frac{ds}{s} = 0.$$

(30)

From (H3), we obtain $b = 0$ and $y(t) = 0$. So $\text{Im} L \cap \text{Im} Q = \{0\}$ and $Z = \text{Im} L \oplus \text{Im} Q.$ Obviously, $\dim \text{Ker} L = \dim \text{Im} Q = 1$; this means that L is a Fredholm operator of index zero. Similarly, we can get $X = \text{Ker} L \oplus \text{Ker} P$.

For $y \in \text{Im} L$, we have

$$(LK_p) y(t) = H D^{aH} y(t) = y(t).$$

(31)

And for $u \in \text{dom} L \cap \text{Ker} P$, by Lemma 4 and $K_p L u \in \text{dom} L$, we get

$$(K_p L) u(t) = H I^{aH} D^{aH} u(t) = u(t) + c (\log t)^{a-1}.$$

(32)

It follows from $u \in \text{Ker} P$ that $H D^{a-1} u(1) = 0$. This, together with $K_p L u \in \text{Ker} P$, means that $c = 0$. So, $(K_p L) u(t) = u(t).$ This shows that $K_p = (I |_{\text{dom} L \cap \text{Ker} P})^{-1}$.

\[\square \]

Lemma 9. Suppose that (H_1)–$(H_3) hold, then N is L-compact.
Proof. Let $\Omega \subseteq X$ be bounded; i.e., there exists $r > 0$ such that $\|u\|_X \leq r$, $u \in \bar{\Omega}$. By (H$_3$), we get
\[
|Nu(t)| = \left| \int f(u, t, u, \theta, \eta) du \right| \leq \varphi(t), t \in [1, +\infty), u \in \Omega.
\]
\[
|ANu| = \int_1^\infty |(\log a - \log s)^{\alpha+1}| Nu(s) ds \leq \int_1^\infty \frac{\varphi(t)}{s} \left(\frac{1}{1 + \log t} \right) \left(\frac{1}{1 + \log s} \right) Nu(s) ds.
\]
\[
|\nu_1(t)| = \int_1^\infty \frac{|\nu_1(s)|}{s} ds \leq \int_1^\infty \frac{\varphi(t)}{s} \left(\frac{1}{1 + \log t} \right) \left(\frac{1}{1 + \log s} \right) \nu(s) ds.
\]
Hence, $\nu_1(t)$ is Lebesgue integrable.

Secondly, for $u \in \bar{\Omega}$, we get
\[
K_p(I - Q)N\bar{\Omega} = \int_1^\infty \frac{\varphi(t)}{s} \left(\frac{1}{1 + \log t} \right) \left(\frac{1}{1 + \log s} \right) Nu(s) ds.
\]

Thus, $K_p(I - Q)N\bar{\Omega}$ is bounded.

Secondly, for $u \in \bar{\Omega}$ and any $1 < T_0 < +\infty, 1 \leq t_1 < t_2 \leq T_0$,
\[
K_p(I - Q)Nu(t_2) - K_p(I - Q)Nu(t_1) \leq \frac{1}{T_{(a)}} \left(\int_1^\infty \frac{\varphi(t)}{s} \left(\frac{1}{1 + \log t} \right) \left(\frac{1}{1 + \log s} \right) Nu(s) ds \right) s.
\]

This shows that $(K_p(I - Q)Nu(t))/(1 + \log t)^{\alpha+1}$, $(H^D-K_p(I - Q)Nu(t))/(1 + \log t)$, and $H^D-1K_p(I - Q)Nu(t)$ are equicontinuous on $[1, T_0]$.

Next, we prove that for any $u(t) \in \bar{\Omega}$, $(K_p(I - Q)Nu(t))/(1 + \log t)^{\alpha+1}$, $(H^D-K_p(I - Q)Nu(t))/(1 + \log t)$, and $H^D-1K_p(I - Q)Nu(t)$ satisfy the condition (ii) of Lemma 6.

Since $\nu_1(t) + 2\|\nu_1\|_1/|Ah|\|\nu(s)\|_1$ is Lebesgue integrable on $[1, +\infty)$, for any $\varepsilon > 0$, there exists a constant $M > 1$ such that for any $t_1, t_2 \geq M$,
\[
\int_{M}^{\infty} \left(\varphi_{1}(s) + 2 \left\| \frac{\varphi_{1}}{s} \right\|_{1} \frac{1}{|Ah|} |h(s)| \right) \, ds < \varepsilon. \tag{36}
\]

In addition, due to \(\lim_{t \to \infty} \left(((\log t - \log s)^{-1})/(1 + (\log t)^{-1}) \right) = 1 \) and \(\lim_{t \to \infty} \left(((\log t - \log s))/(1 + \log t) \right) = 1 \), there exists a constant \(T > M > 1 \) so that for any \(t_1, t_2 \geq T \),

\[
\left| \frac{\log t_2 - \log s}{1 + (\log t_2)^{-1}} - \frac{\log t_1 - \log s}{1 + (\log t_1)^{-1}} \right| \leq \left| 1 - \frac{\log t_2 - \log s}{1 + \log t_2} + \frac{1 - \log t_1 - \log s}{1 + \log t_1} \right| \leq \frac{\Gamma(\alpha)}{\varepsilon} \frac{\log t_2 - \log s}{1 + \log t_2} - \frac{\log t_1 - \log s}{1 + \log t_1} \tag{37}
\]

Then, for any \(t_1, t_2 \geq T \), by (36)–(38), we can get

\[
\frac{K_{p}(I - Q)Nu(t_2)}{1 + (\log t_2)^{-1}} - \frac{K_{p}(I - Q)Nu(t_1)}{1 + (\log t_1)^{-1}} \leq \frac{1}{\Gamma(\alpha)} \int_{1}^{t_1} \left(\varphi_{1}(s) + 2 \left\| \frac{\varphi_{1}}{s} \right\|_{1} \frac{1}{|Ah|} |h(s)| \right) \, ds < \varepsilon, \tag{39}
\]

By Lemma 6, we obtain that \(K_{p}(I - Q) : \Omega \rightarrow X \) is compact. The proof is complete. \(\Box \)

To obtain the existence of the solution for BVP (1), we give the following conditions:

(\(H_{0} \)) There exists a constant \(M_{0} > 0 \) such that \(\frac{\|H_{0}\|}{1 + (\log t)^{-1}} u(t) > M_{0} \), for \(u \in \text{dom} \, L \setminus \text{Ker} \), \(t \in [1, +\infty) \), then \(ANu \neq 0 \).

(\(H_{1} \)) There exist functions \(a(t)/t, b(t)/t, c(t)/t, \) and \(d(t)/t \) \(t \in L^{1}([1, +\infty)) \) with \(c_{0} + 2b_{0} < 1 \) and \(2a_{0}/(1 - c_{0} - 2b_{0}) < \frac{1}{\Gamma(\alpha)} \) such that

\[
|f(t, x, y, z)| \leq a(t) \frac{|x(t)|}{1 + (\log t)^{-1}} + b(t) \frac{|y(t)|}{1 + \log t} + c(t) |z(t)| + d(t), \tag{40}
\]

where \(a_{0} = \|a(t)/t\|_{1}, \; b_{0} = \|b(t)/t\|_{1}, \; c_{0} = \|c(t)/t\|_{1}, \) and \(d_{0} = \|d(t)/t\|_{1} \).

(\(H_{2} \)) There exists a constant \(k > 0 \) such that for any \(u(t) = c(\log t)^{-1} \) with \(c > k \), we have either \(cAN(\log t)^{-1} > 0 \) or \(cAN(\log t)^{-1} < 0 \).
Lemma 10. Assume \((H_1)-(H_2)\) hold, and then,
\[
\Omega_1 = \{ u \in \text{dom } L \setminus \text{Ker } L : Lu = \lambda Nu, \lambda \in (0, 1) \}
\] (41)
is bounded.

Proof. Taking \(u \in \Omega_1\), by \(Lu = \lambda Nu\), we have
\[
u(t) = \frac{\lambda}{T(\alpha)} \int_1^t (\log t - \log s)^{-1} Nu(s) \frac{ds}{s} + c(\log t)^{\alpha - 1}. \tag{42}
\]

So,
\[
H^{\alpha - 1} u(t) = \frac{\lambda}{T(\alpha)} \int_1^t (\log t - \log s)^{-1} Nu(s) \frac{ds}{s} + c(\log t)^{\alpha - 1}. \tag{43}
\]

From \(Nu \in \text{Im } L\) and Lemma 7, we get \(ANu = 0\). Thus, by \((H_4)\), there exists \(t_0 \in [1, +\infty)\) such that
\[
\left| H^{\alpha - 1} u(t_0) \right| \leq M_0. \tag{44}
\]

By (44), we obtain
\[
H^{\alpha - 1} u(t) = \frac{\lambda}{T(\alpha)} \int_1^t (\log t - \log s)^{-1} Nu(s) \frac{ds}{s} + H^{\alpha - 1} u(t_0). \tag{46}
\]

It follows from \((H_5)\) that
\[
\left| H^{\alpha - 1} u(t) \right| \leq \frac{1}{1 - c_0} \left| \left| \frac{\lambda}{T(\alpha)} \int_1^t (\log t - \log s)^{-1} Nu(s) \frac{ds}{s} \right|\right|_{\infty} + \left| \left| \frac{a_0 u}{1 + (\log t)^{\alpha - 1}} \right|\right|_{\infty} + b_0 \left| \left| H^{\alpha - 1} u \right|\right|_{\infty} + d_0 + M_0. \tag{47}
\]

Hence,
\[
\left| H^{\alpha - 1} u \right|_{\infty} \leq \frac{1}{1 - c_0} \left(a_0 \left| \left| \frac{\lambda}{T(\alpha)} \int_1^t (\log t - \log s)^{-1} Nu(s) \frac{ds}{s} \right| \right|_{\infty} + \left| \left| \frac{a_0 u}{1 + (\log t)^{\alpha - 1}} \right| \right|_{\infty} + b_0 \right) + d_0 + M_0. \tag{48}
\]

From (45) and \((H_4)\), we get
\[
\left| \frac{u(t)}{1 + (\log t)^{\alpha - 1}} \right|_{\infty} \leq \frac{1}{\Gamma(\alpha)} \left(\int_1^\infty |Nu(s)| \frac{ds}{s} + M_0 \right) \leq \frac{2}{\Gamma(\alpha)} \left(a_0 \left| \left| \frac{\lambda}{T(\alpha)} \int_1^t (\log t - \log s)^{-1} Nu(s) \frac{ds}{s} \right| \right|_{\infty} + \left| \left| \frac{a_0 u}{1 + (\log t)^{\alpha - 1}} \right| \right|_{\infty} + b_0 \right) + d_0 + M_0. \tag{49}
\]

Thus,
\[
\left| H^{\alpha - 1} u(t) \right|_{\infty} \leq \frac{2}{\Gamma(\alpha)} \left(a_0 \left| \left| \frac{\lambda}{T(\alpha)} \int_1^t (\log t - \log s)^{-1} Nu(s) \frac{ds}{s} \right| \right|_{\infty} + \left| \left| \frac{a_0 u}{1 + (\log t)^{\alpha - 1}} \right| \right|_{\infty} + b_0 \right) + d_0 + M_0. \tag{50}
\]

Substituting (48) into (51) and (52), we yield
\[
\left| \frac{u}{1 + (\log t)^{\alpha - 1}} \right|_{\infty} \leq \frac{2}{\Gamma(\alpha)(1 - c_0) - 2a_0} \left(\left(a_0 \left| \left| \frac{\lambda}{T(\alpha)} \int_1^t (\log t - \log s)^{-1} Nu(s) \frac{ds}{s} \right| \right|_{\infty} + \left| \left| \frac{a_0 u}{1 + (\log t)^{\alpha - 1}} \right| \right|_{\infty} + b_0 \right) + d_0 + M_0 \right). \tag{53}
\]
From \((H_3)\), we have
\[
\left\| \frac{u}{1 + (\log t)^{\alpha-1}} \right\|_{\infty} \leq \frac{2d_0 + M_0{(1 + c_0)}}{\Gamma(\alpha)(1 - c_0 - 2b_0) - 2a_0},
\]
(54)
and
\[
\left\| \frac{H^{\alpha-2}u}{1 + \log t} \right\|_{\infty} \leq \frac{(2d_0 + M_0{(1 + c_0)})\Gamma(\alpha)}{\Gamma(\alpha)(1 - c_0 - 2b_0) - 2a_0}.
\]
(55)

By (48), (54), and (55), we can deduce that \(\|H^{\alpha-1}u\|_{\infty}\)
is bounded. Therefore, \(\Omega_1\) is bounded.

Lemma 11. Assume \((H_1)-(H_3)\) and \((H_6)\) hold, and then,
\[
\Omega_2 = \{ u \in Ker L : Nu \in Im L \}
\]
is bounded.

Proof. For \(u \in \Omega_2\), we have \(u(t) = c(\log t)^{\alpha-1}\) and \(ANu = 0\).

From \((H_6)\), we obtain that \(|c| \leq k\). Thus,
\[
\|u\|_\infty = \max \left\{ \left\| \frac{c(\log t)^{\alpha-1}}{1 + (\log t)^{\alpha-1}} \right\|_{\infty}, \left\| \frac{c\Gamma(\alpha) \log t}{1 + \log t} \right\|_{\infty}, \left\| c\Gamma(\alpha) \right\|_{\infty} \right\}
\]
is bounded, which means that \(\Omega_2\) is bounded.

Lemma 12. Assume \((H_1)-(H_3)\) and \((H_6)\) hold, and then,
\[
\Omega_3 = \{ u \in Ker L : JNu + (1 - \lambda)\theta QNu = 0, \lambda \in [0,1] \}
\]
is bounded, where \(J : Ker L \rightarrow Im Q\) is a linear isomorphism given by
\[
J(c(\log t)^{\alpha-1}) = \frac{c}{\log t} h(t), \forall c \in R, t \in [1,\infty),
\]
for every \(c \in R\), \(t \in [1,\infty)\), \(h(t) \equiv 1\), if \(cAN{(c(\log t)^{\alpha-1}) > 0,}\)
\[
\theta = \begin{cases} 1, & \text{if } cAN{(c(\log t)^{\alpha-1}) > 0}, \\ -1, & \text{if } cAN{(c(\log t)^{\alpha-1}) < 0}. \end{cases}
\]
(59)

Proof. For \(u \in \Omega_3\), we have \(u(t) = c(\log t)^{\alpha-1}\), and then, there exists \(\lambda \in [0,1] \) such that
\[
\lambda J\left(c(\log t)^{\alpha-1}\right) = -(1 - \lambda)\theta QN\left(c(\log t)^{\alpha-1}\right),
\]
(60)
that is,
\[
\lambda c = -(1 - \lambda)\theta AN\left(c(\log t)^{\alpha-1}\right).
\]
(61)

If \(\lambda = 0\), then \(AN\left(c(\log t)^{\alpha-1}\right) = 0\), and by \((H_6)\), we have \(|c| \leq k\).

If \(\lambda = 1\), then \(c = 0\). For \(\lambda \in (0,1)\), if \(|c| > k\), we have \(\lambda c^2 = -(1 - \lambda)\theta AN\left(c(\log t)^{\alpha-1}\right) < 0\), which is a contradiction. Hence, \(\Omega_3\) is bounded.

Theorem 13. If \((H_1)-(H_6)\) hold, then BVP (1) has at least one solution.

Proof. Let \(\Omega\) be a bounded open subset of \(X\) such that \(\bigcup_{i=1}^{n} \Omega_i \subset \Omega\). It follows from Lemma 9 that \(N\) is \(L\)-compact on \(\Omega\). From Lemmas 10 and 11, we obtain
\[
(1) \ Lu \neq \lambda Nu \text{ for every } (u, \lambda) \in \{ \text{dom } L \setminus \text{Ker } L \cap \partial \Omega \} \times (0, 1)
\]
(2) \(Nu \notin Im L\) for every \(u \in Ker L \cap \partial \Omega\)
We need to verify the third condition.
(3) \(deg \left\{ QNu |_{Ker L}, Ker L \cap \Omega, 0 \right\} \neq 0\)
Define
\[
H(u, \lambda) = \lambda Ju + (1 - \lambda)\theta QNu.
\]
(62)

According to Lemma 12, we know \(H(u, \lambda) \neq 0\), for \(u \in \partial \Omega \cap Ker L\). By the homotopy of degree, we have
\[
\deg \left\{ QNu |_{Ker L}, \Omega \cap Ker L, 0 \right\} = \deg \left(\theta H(\cdot, 0), \Omega \cap Ker L, 0 \right) = \deg \left(\theta H(\cdot, 1), \Omega \cap Ker L, 0 \right) = \deg \left(\theta, \Omega \cap Ker L, 0 \right) \neq 0.
\]
(63)

We conclude from Theorem 5 that \(Lu = Nu\) has at least one solution in \(\text{dom } L \cap \Omega\); i.e., BVP (1) has at least one solution in \(X\). The proof is complete.

4. Example

Now, we provide an example to illustrate the usefulness of our result.

Example 1. Consider the following BVP:
\[
\begin{aligned}
u(t) &= \frac{\sin \theta}{(\log t + \eta)^2}, \\
u(\infty) &= 0, u(0) = 0, \quad \frac{\partial^\alpha{\nu}}{\partial t^\alpha} = \frac{\partial^\beta}{\partial t^\beta}, \\
\frac{\partial^\gamma}{\partial t^\gamma} &= \frac{\sin \theta}{(\log t + \eta)^2} + \frac{\sin \theta}{(\log t + \eta)^2} + \frac{\sin \theta}{(\log t + \eta)^2} + \frac{\sin \theta}{(\log t + \eta)^2}.
\end{aligned}
\]
(64)

where \(\alpha = 5/2, \lambda_1 = 1, \lambda_2 = 3/2, \lambda_3 = 3, \beta_1 = 1/2, \beta_2 = 3/2, \beta_3 = 5/2, \eta = \epsilon\), and
\[
f(t, u(t), H^{\beta-1}\nu(t), H^{\alpha-1}\nu(t))
\]
\[
= \frac{\left| u(t) \right|}{(log t + 6)^2 \left(1 + log t^2\right)} + \frac{\left| H^{\beta-1}\nu(t) \right|}{(log t + 4)^2 \left(1 + log t^2\right)} + \frac{\left| \sin \theta \right|}{(log t + 5)^2 \left(1 + log t^2\right)}
\]
(65)

Then, \(\sum_{i=1}^{m} (\lambda_i / (\Gamma(\alpha + \beta_i))) (\log \eta)^{\alpha+\beta-1} = 1\). So, the condition \((H_1)\) holds.
Take \(h(t) = 1/t^2 \), and then,
\[
\int_1^\infty h(s) \frac{ds}{s} - \sum_{i=1}^{m} \frac{\lambda_i}{\Gamma(\alpha + \beta_i)} \int_1^\infty (\log s - \log t)^{\alpha + \beta_i - 1} h(s) \frac{ds}{s}
\]
\[
= \int_1^\infty \frac{1}{s^2} ds - \left(\frac{1}{\Gamma(3)} \right) \int_1^\infty (\log s)^2 \frac{ds}{s} + \frac{3}{2} \frac{1}{\Gamma(4)} \int_1^\infty (1 - \log s) \frac{ds}{s} + \frac{6}{\Gamma(5)} \int_1^\infty (1 - \log s) \frac{1}{s^2} \frac{ds}{s} \nabla \frac{1}{2} \left(\frac{1}{2} (1 - \nu)^2 e^{-2\nu} d\nu + \frac{1}{4} \int_0^1 (1 - \nu)^3 e^{-2\nu} d\nu + \frac{1}{4} \int_0^1 (1 - \nu)^4 e^{-2\nu} d\nu \right)
\]
\[
= \frac{1}{2} \left(\frac{1}{2} (1 - \nu)^2 e^{-2\nu} d\nu + \frac{1}{4} \int_0^1 (1 - \nu)^3 e^{-2\nu} d\nu + \frac{1}{4} \int_0^1 (1 - \nu)^4 e^{-2\nu} d\nu \right) = \frac{9 + 7\nu^2}{32} \neq 0.
\]
(66)

Thus, the condition \((H_3)\) is satisfied. Obviously, the condition \((H_4)\) holds. The condition \((H_5)\) can be estimated as follows:
\[
ANu = \int_1^\infty Nu(s) \frac{ds}{s} - \sum_{i=1}^{m} \frac{\lambda_i}{\Gamma(\alpha + \beta_i)} \int_1^\infty (\log s - \log t)^{\alpha + \beta_i - 1} Nu(s) \frac{ds}{s}
\]
\[
\cdot Nu(s) \frac{ds}{s} = \int_1^\infty Nu(s) \frac{ds}{s} - \left(\frac{1}{\Gamma(3)} \right) \int_1^\infty (1 - \log s)^2 Nu(s) \frac{ds}{s} + \frac{6}{\Gamma(5)} \int_1^\infty (1 - \log s)^4 Nu(s) \frac{ds}{s} \nabla \frac{1}{2} \left(\frac{1}{2} (1 - \nu)^2 e^{-2\nu} d\nu + \frac{1}{4} \int_0^1 (1 - \nu)^3 e^{-2\nu} d\nu + \frac{1}{4} \int_0^1 (1 - \nu)^4 e^{-2\nu} d\nu \right)
\]
\[
\leq \int_1^\infty Nu(s) \frac{ds}{s} + \int_1^\infty \left(\frac{1}{2} \right) (1 - \log s)^2 - \frac{1}{4} (1 - \log s)^2 Nu(s) \frac{ds}{s} \nabla \frac{1}{4} (1 - \log s)^2 Nu(s) \frac{ds}{s} \neq 0.
\]
(67)

Let \(a(t) = 1/(t^3) \), \(b(t) = 1/(t^2) \), \(c(t) = 1/(t^2) \), and \(d(t) = 1/(t^3) \), and then, \(a(t)/t, b(t)/t, c(t)/t, d(t)/t \in L^1(1, +\infty) \):
\[
|f(t, x, y, z)| \leq a(t) \frac{|x(t)|}{1 + \log^2 t} + b(t) \frac{|y(t)|}{1 + \log t} + c(t)|z(t)| + d(t).
\]
(68)
\[a_0 = 1/6, \ b_0 = 1/4, \ c_0 = 1/5, \text{ and } d_0 = 1/3, \text{ so } c_0 + 2b_0 < 1, \]
\[2a_0/(1 - c_0 - 2b_0) = 10/9 < \Gamma(5/2) = 3/4 \sqrt{\pi} \approx 1.3293. \text{ Thus, the condition } \(H_5\) \text{ holds.}

Using the same method as calculating in \((H_5)\), we can get \(ANu > 0\). So the condition \((H_4)\) holds. Hence, by Theorem 13, BVP (64) has at least one solution.

Data Availability
No data was used in this study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This work is supported by the National Natural Science Foundation of China (12171138).

References

