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This article examines the norms of composition operators from the weighted harmonic Bloch space %}, (0 <A <00) to the

weighted harmonic Zygmund space Z’ g, (0 < B < 00). The critical norm is on the open unit disk. We first give necessary and

sufficient conditions where the composition operator between %}, and Zfl is bounded. Secondly, we will study the

compactness case of the composition operator between %}, and 242, Finally, we will estimate the essential norms of the

composition operator between B}, and Z ﬁ

1. Introduction

Operator theory for spaces of analytic functions has been
described in various settings, and there is a rich volume of
studies in the academic literature that focus on the operator
theory of spaces related to analytic functions on the unit
disk. These studies delve into diverse environments, and
the references will be highlighted below.

In [1], the second author discusses the essential norms of
Stevi¢-Sharma operators from general Banach spaces into
Zygmund-type spaces, and in [2], the authors characterize
the bounded and compact Stevi¢-Sharma operator from a
general class X of Banach function spaces into Zygmund-
type space. In [3], the authors show a new essential norm
estimate of composition operators from weighted Bloch
space into p-Bloch spaces. Cowen and MacCluer in [4]
investigated composition operators on spaces of analytic
functions. In [5], the necessary and sufficient conditions
for the compactness and boundedness of product operator
from H® to Zygmund spaces were characterized.

Yet, there is a noticeable lack of investigations that offer
a comprehensive look into the harmonic setting. We would

like to highlight several of these references below. Character-
ization composition operators on some Banach spaces of
harmonic mappings were discussed in [6]. Colonna in [7]
discussed the Bloch constant of bounded harmonic map-
pings. Lusky studied the weighted spaces of harmonic and
holomorphic functions in [8] and then in [9] determined
the isomorphism classes of weighted spaces of harmonic
and analytic functions. Characterization of the harmonic
Bloch space and the harmonic Besov spaces by an oscilla-
tion in [10]. Jord4 and Zarco studied the weighted Banach
spaces of harmonic functions and the isomorphisms on
weighted Banach spaces of harmonic and holomorphic
functions in [11, 12].

This paper is part of a series of works that address several
different properties of composition operators between
weighted Banach spaces of harmonic mappings. We dis-
cussed the boundedness, compactness, and the essential
norm of composition operators from the space of bounded
harmonic mappings #* into the harmonic Zygmund space
Zp; in [13]. Bakhit et al. in [14] discussed the boundedness,
compactness, and the essential norm of composition opera-
tors from harmonic Lipschitz space into Z .
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A harmonic mapping is a complex-valued function f
with simply connected domain Q such that

.
Af._4agag =0. (1)

Here, let Hol(U) be the space containing all analytic
functions on the unit disk U and #°(U) be the space of har-
monic mappings, while G be a compact subset of the unit
disk U. Further, let Z°5(U) be the space of all bounded
mappings f € % (U) equipped with the norm

1 llco = suplf(§)]- 2)
Eel

The harmonic mapping f always can invariably be repre-
sented in the form g + h, where both g, h € Hol(U). Up to an
additive constant, this representation attains uniqueness. For
the scope of our study, we will focus on harmonic mappings
with the domain U. Therefore,

feH# (U)o f=g+hVg, heHol(U)whereh(0)=0. (3)

See [15], as an excellent reference on the harmonic func-
tion theory.

The composition operator C,, induced by analytic self-
maps ¥ : U— U (or conjugate analytic self-maps) can be
expressed as

Cof =1 oy € 7(V). (4)

Surely, this operator preserves harmonicity (see [6]).

In this work, we begin with some preliminaries that we
use to derive the main results. We continue our research in
[13, 14] by focusing on the boundedness and the compact-

ness of C, from harmonic A-Bloch space B}, into the

weighted harmonic Zygmund space Z EI We conclude by

estimating the essential norm from %), into Z g

Let Q and W be two normed linear spaces. Then, the lin-
ear operator T : Q — W is bounded if there exists a posi-
tive constant C such that

ITfllw < CllflloVf € Q (5)

Further, the operator T : Q — W is compact if every
bounded set in Q whose closure is compact, while the
essential norm ||T||, of T: Q— W is its distance from
the compact operators in the operator norm. Then, the
essential norm of T : Q — W is given by [|T||, o = inf
{IT-€lq_w}> where € : Q— W is a compact operator.

1.1. The Harmonic A-Bloch Space B};. For A€ (0,00), the
harmonic A-Bloch space %J; contains all f € %(U) which

is defined such that

ean-e) (A PR
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If f € B}, is represented as f = g + h, with g, h € Hol(U),
the harmonic A-Bloch seminorm ﬁjﬁ can be characterized as

B =sup (1-&F) (jg' @+ I @) <00 @)
The quantity
11l = )] + ®)
gives a Banach space structure on %}, (see [16]).

The little harmonic A-Bloch space :%’;\{,O is considered as
the subspace of %}, consisting of f € % (U) such that

oo 0 (P18 0 o

05 ok
1.2. The Weighted Harmonic Zygmund Space SZ“Q For
B e (0,00), Z fl consists of all mappings f € #(U) such that

e (18 1 ) L
1. 5= sep (1~ 12P) <&(&%-M(QD< - (10)
Define
Hﬂ&gﬂﬂ%l’%() Zolam,

Obviously, ||. HI‘Z, is a norm on S’Z“g, and Z’g is a Banach

space. For B=1, Z}; is with the harmonic Zygmund space
Z 'y (see [13]).

Remark 1. Let f € Hol(U); then, 9f/0€ is simplified to f' and
3f /0 = 9> (/9" = 0. Thus, for all 0 < B < oo, the collection of

all f € Hol(U) in i?fg is the classical -Zygmund space Z¥,
and both norms are identical.

For 0 < A < 00, let f € #(U) be represented as f = g + h,
with g, h € Hol(U). For given n € N, let us define

B = (- 7)™ (

The following lemma will help to characterize the
boundedness of C,, : BY— F g Its proof is the proof of
Theorem 19 in [16].

g ®+[1"®)). 12

Lemma 2. Given n>2 and 0 < A < 0o, let f € 7 (U) be repre-
sented as f = g+ h, with g, h € Hol(U). Then,

(1) f € B}, if and only zfsupEGUBﬁn(f) <00

(2) f € B}y, if and only if limy By (f) =0
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Let x € U be a fixed point, and let « € {1, 2, 3}. For any
& € U, we consider the test functions Fy, defined as

0 I L
(I—J?E)MA_I + (1_x2)a+A—l ( )

Fro(§) =

Moreover, it is evident that ‘ l‘lm F’\ =0 uniformly on G
X|—

. Recall that the power series representation of Fﬁ)a is
oo (9}
= 1)
1—|x| “Zz“” 1{ xf ( E)J}

(e

axL(i+a+A-
1_
( |x| Z M+ A -

(14)

For all n € N and « € {1, 2, 3}, by direct calculations, we
know that

O"FL(E)  (a+A+n-2)! | x"(1-|x]*)" (15)
o&" a (a+A-2)! (1_x£)a+)t+n—1 i

O"Fia(§) _ (atA+n-2)! | ¥"(1- x*)" (16)
o&" (a+A-2)! (1 _XE)MM"*I '
Then, we have
0"Fl(x) (a+A+n-2) x"
o8 (a+A-2)! (1- |x|z)A+n—1’
(17)
0"Fl(x) (a+A+n-2) x"
agn - (0(+A— 2)] (1 _ |x|2)l+n—1 .
As before, for all £ € U,
o (1= )% 2(a+2)2h
= = A <
‘aEFxtx(E)‘ (“+ 1) (I—J_CE)‘HA s (1_|€|)/\
3 ‘ b(1-|xP)°| _ 2(a+1)2"
—F = A-1 .
‘af xa(g) ( + ) (1 xg)m-/l (1_|EDA
(18)
Then, we have
0 0 (a+A)24+2
RERC REENCIE 19)

Thus, it can be demonstrated that Fi,aE%ﬁ and
supHFiaHW <1, for every acNN.
xeU ' "

Throughout this article, the notation X<Y means that
X <CY, where C>0 is a constant. Therefore, the notation
X =Y means that X and Y are equivalent, when Y<X<Y.

2. Boundedness

In this section, we work on the boundedness of the operator
. g B
Cy: By — Zy.

Theorem 3. Let v :U— U and let 0< A, fB<oco. Then,
Cy: B, —> zﬁ is bounded if and only if

sup H it

ieN

(20)

W' +¥)|, <

Proof. Let the sequence p,(z) =i*"!(z' +7), for ze U and

i € Ny. The sequence {p;} is bounded in %}, with supre-
mum norms ||pi||@2{51 (the authors in Theorem 2.9 of [17]

have demonstrated that ||y’ + /|| @, <i'™).1f C, : B —

Zz ﬁ is bounded, then for each i >0 and 0 < 8 < 0o, we have

| )| =llCue: (21)
Therefore,
illﬂgui)"l(y/ +9') o < 0. (22)
Conversely, suppose that (20) holds and set
L= s'upHi"_1 (v' +v') , <00 (23)
ieN Zy
Since Cyp,=0¢€ L’Z"ﬂ, we see that
100125 = |Cyoll s <1. (24)

Forany& € Uand f € #(U) represented as f = g + h, with
g-h € Hol(U), note that [(C,f)(0)| = [f(y(0))] < ||fllg-
Therefore, because |y(0)| < 1, we see that

o(C o(C
o
a 1
\w’(0)|

+ 9" (w(0)¥' (0)]= 1



For any £ e U and f € #(U),

we note that

(26)

'.

O (Cf) | NP W@ [ 112, S W(E)

> (E)l— o GRS w(E)‘
<y @)L é‘;@)' @] 25,

O (Cof) | | WE) 1 12, W) i
worP fggz@))‘ N W”<E>I\af(;”§£))

Now, multiplying the above expressions (26) and (27) by

(1- E2)’, we have

*(C
(1—|£|2)’3< (agf) (5)‘ g;f)m)
e (P Re®)| | e
<(1 |f|)|w<f>|( d ‘ agz

+ (1-18) @l

By Lemma 2, we know that

B = (1-w@r) " (1n
By () = (1- w®F) (0"

)

(27)

af(w(&))‘ ‘Bf( ())D'
o0& &

(28)

D]+ 19" W@ )<l ey

E)| + 19" W) =1f -

(29)

Since f € #(U) can be expressed as f = g+ h, with g, h

€ Hol(U), we obtain

(- W( 7(Cf) (5)’ [P )
e &
< (1-16P) |y @F (Ja" wEn |+ 0" w®))
+ (1—|£|2)’;rw”<f ) (|9 (w©) + 1 ()]
ol P o LA PO
A+l A
(1-w@r) (1-w@r)

(L + L)1 fll gt »

(30)
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where Ly = (1= [6)/ Ty ()11~ p(©))"" and L,
(1 &P 1y @V~ [y()P)". To prove that C, : B

—Z g is a bounded operator, it suffices to show that both
quantities L, and L, are finite. For § € U since C,p, =y + ¥,

we have

FCp ()], T[Cpi ()]

agZ 822 =y /(£)+V’ I(E) (31)

B 1
ssup(l 1) @5 lCpll e <5 (32)
Moreover, we know that C,p, =y + ¢/,

0 2
Ty o) s 2vien e

0 2 _
[Cgé’;(m =2(¥'®) + 2w @)

(33)

For & € U since |w(&)| < 1, so we have

' 2<1 az[Cy/pz(E)] 62[ wpz(s)] 1
vl s Ol FEREIL g
(34)
Thus
2 i 2 1
sup (1= &) v/ )<  su p(1-1¢F)"
, ( O [c,p8)]] [ [cm(&)] D
o’ o (35)

B 1
+sup (1= ) v @] < g[Cvpal 4
1 L
+ 2 chle:z“f{ < 2

By the linearity of the test functions Fi(f), o in (14), for
a=1,2,3 and &£ € U, we have

(1= WOF) 2 W@ Coni] 521

i=0

A
HCwa(E)

(36)
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From (16), for a=1,2,3 and & € U, we obtain

o (wer)”
(A+a=1)[yE)y"(©)]
+ ) ’
(1-we@r)
7 [Cy Yy al®)] _(ra-Dd+a) 7' @) 2
o8 (1-wer)™
) (A+a-1) [W(E)w”—(f)}
iy
(1-weor)

Next, for a=1,2,3, we let
2 A 2
Qw(f)yvc: ’ [CWI;Z?)M(Q} + ’ [ afzf) (E)}
(ra-)pi+a) [w(f)w’<f>]2
(1-wor)™
(A+ra=1) [y©v"(©)]

(1-1we® )
)
)

+

(A+a—1)(

[w GIAGIN

+1

+

( w®F)"
(A +a=1) [y©)y"(©)]
(1-w®F)

By equation (38), for a=1,2, 3, we obtain

+

fpve] ool
M1

(-wr)" (- w©P)

+ Qe
Moreover,
o' ©] vy
+ (A+2)Q
(-wr) (1-wEp) '
(2A+ 3)Qw

w1~ 2Que)2

Thus, from (39), we obtain

2\A 2y
(1-17) WP @F <L up(1- )’

(1-wer) ™ e
(lowe

(HC

] 2 Qe +| Qo))

ﬁ+2Hc‘pF¢(E)2 y
ch v(©)3 Zf,) <L.
(41)
(37)
Moreover, from (40), we obtain
(1-16P) el ¢ ol 4
(“IW(E)IZ)A “ad <1 i > (AJ“Z)‘QWE)J
+ (21 +3) ‘Qw ‘ +(A+ 1))QW(5),3D
= (A;rZ) [cuEieal],0
(2A4+ k HC‘PF V@2 ”
" (AZI) HC‘/’F31(5)3 -
(38) - (m %)L

Now we let 0 <s< 1; then, if [y(&)] >s in (41), we have

NB 2
L (1-18F) 1v' ® L )

(-wr)™

Conversely, if we let ()| <s in (35), we have

() el a

L= - < o (44)
(1-wep)™

(39)
From (43) and (44), it follows that the quantity L, is

finite.
Similarly, for L,, we let 0 <s< 1. Then, if |y(§)|>s in

(42), we have

0=

| (40) _ 2 B I
®)2 b (1 - ) . )(5)‘ < (& + i)L. (45)

(1-wor)’



6
If we let |y(&)| < s in (32), we have
B
(1-1) el
)= T 54(1_52). (46)
(1-wer)
Therefore, the quantity L, is finite, and the proof is
complete. O

3. Compactness

In this section, we focus on discussing the compactness of
the operator C,, : BY— F g The proof of the following

lemma is a slight modification of the proof of Proposition
3.11 in [4] (the case of Banach spaces of analytic functions).

Lemma 4. Let T : B}, — zﬁ be bounded operator; then,
T: By — ?fﬁ is compact if and only if || Tf ||,

— 0 as
H

k— 0o, for any bounded sequence {fi},.\ in By con-
verges to zero uniformly on G.

The following theorem shows that the compactness of
Cy: %ﬁ—»?fﬁ can be characterized in terms of the
where p;(z)

sequence [|C,p,|| =z'+7, for zeU and

s
zh’
when i € N,

Theorem 5. Let C,, : %ﬁ%?fﬁ be bounded operator,
where y: U— U. Then, C, : By — sz, is compact if
and only if

lim Hi“ (' + ) Hzg =0. (47)

Jj—00

Proof. First, we consider the sequence p,(z) =i*"!(z' +Z'),
for z € U and i € N,,. Since the sequence {p,} is bounded in
7, and converges to zero uniformly on G, if Cy: B,
—Z EI is compact, then C, : By — F Q is a bounded
operator, and (47) holds by Lemma 4.

On the other hand, assume that C,, : By — F EI is a
bounded operator and

Y
H
Now, we define a sequence {h;} in %}, with M = sup jeN

”th@?, < 00, and h; — 0 uniformly on G, as i — oo.

By Lemma 4, to prove that C,, : 93}\{ — Z g is compact,
it is sufficient to show that

lim {|C,hy| s =0. (49)

i—00

Journal of Function Spaces

Next we suppose ||i*™! (v + 9|45 <L (L is an upper

H
bound for ||i*!
N eN such that

(V/i‘HV)Hgl:I)- For &>0, then there is

A i i .

Hl 1<V/+W!)H § :HCWP,»HZ;; <e, Vix=N. (50)
Zy H

For «a=1,2,3 and £cU, let us use (14) the power

series representation of the test function F? ; then, we

X, (X’
have

HCWF%) (1—Iw )le |||pr,||zﬁ]
+(1-wF) X W IC,el
<(1-Iy@©F)NL+e
(51)
Moreover,
Jevr }

2 (1-v@r) {i ) }iw(&)’”ﬂc,,p“ .
<(1-pep) T

<(1-weop) T

A
HCWFWE)SHZf

(52)

Next, for any £eU, let 0<s<1 be sufficiently close
to 1 such that |y(&)|>s; thus,

A
HCII/FW ]

5 <2¢fora=1,2,3. (53)
H

For «=1,2,3, since ¢ is arbitrary, so it follows that

P P
From (41), we know
p 2
(1—|E|2) v ()| o o -
max
AT 2 1ca3 || VT VO] op
(1-wep)™ v o
Further, from (42), we know
By
(1-1P) @] 2243
A
< 0] EE{| S Fv@e| s (56)

(1-wor)’
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Using (55), we obtain

o WO,
y&)|—1 (1_|w(£)|2)

Moreover, by (56), we obtain

lim (1_|E|2>ﬁ|w”(£)|—o (58)
Iy (&) —1 (1_|W(E)|2)A '

Thus, sufficiently close to 1 if |y(§)|>s, for any
0<s<1. Then,

(1) W' er
(1-w©r)™
(1- 1) v @)
(1-wor)’

For any meN and n>2, by using Lemma 2, if
f, € B}, then we have Bﬁ”(fk)ﬁﬂfk”@él. From (32)
and (35), we know

sup(l - |5|2)ﬁ< o [wak(m ' + i
Eel

~—

[Cufi(®)] D

afz agz
cons-) o1 ([P0 )
esup (1- ) o )| L [0

N\B 2 2 I
(1) @ (1-18F)lv"®)

<1fola -
T (ewer)” T (-wer)’

<eM.
(60)

From (32) and (35) in the proof of Theorem 2,
we know

sup (1 - BTG
- . . (61)
sup (1= &) v (©)]" < -

Eel

We know that from Cauchy’s estimates, all the sequences
{9f /OE}, {0f JOE}, {0%f, 1€}, and {0 k/aéz} are conver-

gent to zero on compact subsets G of the unit disk U. Thus,
using (61), for any 0 <s < 1 if |y(&)| <'s, we obtain

O 7)Y G S C)
(1-#7) i3 &
£<1_mz) v o (afkaE( ))'+ d k(w(f))D

oF’

e (1) u(g)‘(‘afk >>’ ‘afk(af( ))D
_L([PRe®)| | [PRu®)|, pru@)], v
(e P )

o ¢ ‘ ‘ )3
which implies that
az [Cu/f k (E)} +

Jim (1- |£|2>ﬁ< o8

L@,
o

(62)

P[Cof 1 (O)] D
oF

i kw(e»' (63)

oF’

< lim

k—00 k—00

of (¥(8))
kaf +

+ lim '
k—00

i OO g
k—s00 ok

Therefore, klim |C,.f(0)] =0 and klirn |8[wak](0)/a£|

= 0. Thus, we obtain

lim H Cw

k—00

il 7 =0. (64)
From Lemma 4, we verify that C, : %ﬁlﬁgg is
compact. O

4. Essential Norm

In this section, our emphasis shifts to a comprehensive
discussion regarding the essential norms of the operator

Cy,: B, —> Zﬁ First, we define

(1-168) 1w ®F
B, = limsup yyea
O (1= ly(@)F)

) (65)
(1-18P) v ®)
B, = hmsup —-
VO (1-©)P)
Theorem 6. For y:U-—U, let C,: %’ﬁ—»i“ﬁ be

bounded operator. Then,

lc

" e’t%ﬁézﬁzmax{lzmsupucw e )Hzﬁ}zmax {B}, B,}.
H

1<a<3

(66)



Proof. First, for «=1,2,3 and £ €U, by the test function
(13), we will prove that
L,

max
1<a<3 |x|—

Fix x €e U, since forall 1 £ a < 3, F;"“ € 95”}\1 and Fj}’a con-
verges uniformly to 0 on G. Then, for a compact operator
T 99}1{ — Z’f,, we have

(67)

v Viles),—zt

lim ||TF} =0, Va=1,2,3. 68
|x|—1 o " (68)
Thus,
ICy = Tl a8 >l1msupH (c, »
H
211msupHCV/ jom hmsupHFfF’\
Jx|—1 |x[—1

(69)
Hence, we obtain

HCwHe,@;ﬁzg =inf|[C, - 7|

1<a<3 v e

> max {hmsup H C,F

} (70)

V/He,@,ﬁﬁzﬁ > max {B;, B,}, we

Jx[—1

Next, to prove that ||C

define the sequence {w;} such that lim |y(w;)| =1, for
w e U. We also define
20 +3 A+l
Gi(E):Ff/\/(w,),l(E) 112 Fﬁz (£)+A+2FQ/ w,)3 5(8)
Ki(&) = Fa(w,),l(s) - ZFi(wl),z(f) + st(wl)ﬁ(g)‘
(71)
For all £ €U, it can be seen that G, K; € &}, and
lim G;= lim K;=0, (72)
[y (w;)|—1 [y(w;)|—1

uniformly on G. Moreover, by simple calculation, we have

u>>Ku>>
}w “G ww L)
A2 (1= y () )’
a2Gi(1//(wi)) _ IGy(y(wy)) -0
oE oF ’
OK,(y(wy)) _ K (y(w)) _
o0& FR ’
y&wmwzwmwwm% Ayw)
aEZ aEZ (1 _ |w(wi)|2)/\+1

(73)
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Since I : z%‘é, —Z I’i is a compact operator, by
Lemma 4, we have

Cy — 9‘H;%Q,ﬁzﬁ zlimsup’|CwGi||zﬁ ~limsup|| T G| .5
1—00 1—>00
> limsup (1 - \w,-|2)ﬁ
i—00

,{wﬁwwm%

f@wmmn

2(Gy) 2(G,)

{5 wan|+ P2 v}
. v (w)|y" (w,)]|
> limsup (1 - |w;] )ﬁi.
e (1-ly(w)P)

(74)
Similarly, we have

|Cy — s > limsup || C, K —limsup||?]K,—HZ§
i—00 i—00

OHW —Zh, Hzg

> limsup (1 - |w,-|2)ﬁ

P K@) | 9 (Kiw(w)
o¢? oF
=limsup (1~ )|y (w)
0*(K; *(K;
{ %Nwmw+%ﬁ<mﬂ}
. [y (wo) Py (wy)|
= limsup (1 - |w;| )ﬁ—+.
e (1= yw)) ™
(75)
Thus,
. . [ (w)[[v"" (w))]
o6 =1nf||C, = T|| = limsup (1 — |w;] ﬁi
viles),—zt g H v ” P, ( ) (1- y(w i)‘)/\
. [y (w)||y" (w)|
= limsup (1 - |w|? ﬁi =B,,
yw)|—1 ) (1-[yw)P)"
. . [yl ()|’
Cyll, g oe =inf||C, = T || = limsup (1 - |w,| ﬁiﬂ
H w” B —Zh T g H v H I_HDO( ) (1- [y (w,)| )/\
= limsup (1-|w ﬁszl.
i vl (1= yw)P)™
(76)

Hence, we obtain

HCWHE“%’?I—»ZI";:H‘/clfHCW_‘G/‘H = max {BI’BZ}- (77)
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Secondly, we prove that

c,F!

v oxa

||C 5 Smax {limsup

[——
y eBy—Zy  1<a<3 |x|—1

» } (78)

Now, we consider the operator 7, : #(U) — #(U),

for any 0 <y <1 such that

y :

(T W) =f,(w)=flyw), fexV). (79

Without a doubt, f, — f uniformly on G, as y — 1.

For any sequence {y;}C(0,1) such that y,—1 as
i—> 00, we obtain

Moreover, 7, is compact on %}, and || T

C By — F fl is compact,Vi € IN,. (80)

N

vy

But the definition of the essential norm says

C < lim sup |, - C,7,| . (81
| wHe,@Q{_‘zg e A o ] e (81)
Thus, we only need to demonstrate that
lims HC -C, T < max { limsup||C, F} .
o Iy T v Bzt " 150 qulp Vo xalgh
(82)

Let fe %), such that I fllg:, <15 then,

[(cv-c7,)1]., = o) —srwoni+ v o)

: { —a(f;;y') ¥ ;)(fa_;y") (v(0) ‘}
e (1)’
[[E[E 1) v®]| 2] -1) - v®)
o¢? oE’
(83)
It is clear that
. - Jo(r-1,) ,
Jim [f((0)) = f(viw(0))| = lim T(V/(O)) v (0)]
= lim @(w(on v/ ()| =0.
(84)

On the other hand, we consider

- i)’ { l (f—ff‘) v (&) 1}

2
‘ B

<limsup sup (1— €| )
00 [y (§)l<yy

1

B
+limsup sup (1—|£|2)
00 y(§)P>yy

. { 7[(f-£,)-v®) ‘ . ;62[(ffy,) w(f)]‘}

o8 oF
= Iw’ + ]w"

[ (£-1,) v
o&? "

@[(f-1,) - v®)]
o8

. ;az [ (f—le) ¥ (®)] ‘}

oF

(85)

Now, we let N€IN be large enough and y,>1/2,
for all i>N. Then,

B
I,;<limsup sup (1—|f|2> v"'(®)]

i—00 |y(§)[<yy

| { o[ (£-£,)w®)]

0§

+

+limsup sup (1—\5\2)ﬁ‘W,(5)‘2

i—0o Jy(§)|<yy
2[(r-1,) w®)] l }

| { o[ (£-1,) w@©)] ' .
o

o8&

(86)

Since C,, : ‘%j)ﬁl—>$€1 is bounded, from Theorem
2, we see that

NP1
ZSS(I_IEI) v (§)] < oo,

; (87)
2
sup(l— \E\z) |1//'({)| < 00.
EelU
Moreover, all the limits,
0
lim A = %’
i—00 ! a& af
’f, &f
lim (y,)? - = =,
i—00 aE af (88)
oy, _of
1*>ooyl ag ag,
0* 2
lim (y,)° 'iyfza];,
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are uniformly on G. Then, we have

o {25 S R
Py )| |

aZ
limsup sup ’ f (;U ) - 5
i—00 wl<yy ’ 0& o&

_of,w) 1o

o o

of, (w)
oF’

Pf(w)
oF’

Hence, by the above equations, we have

I,;=0. (90)
Next, assume |y(§)|>yy, and we have

B,y
Jy, <limsup  sup (1—|£|2> lv"' (&)

00 [y(§)>ry

. { [(F-1,) w@®)]

0§

+limsup sup (1—|E|2>ﬁ’1/’,(‘5)}2

=00 [y(§))>yy
) { 62[(f—fy,>(w(f))]‘+ *[(F-£,) we)] ‘}
oF’

082

. NP oW ©)|  [of (¥ (&)
<limsup su - -
Hoop\wf)\fm(l ) I (E)|{‘ % H 9% ’}
Ny
limsup sup (1-1¢ Oy,
' i“mp\w(f)\gﬂv< | |> ’w ( )h)
of vy (©)] . |9f (v (&)
[P P
2 B ’ 2
limsup sup (1-1¢ &
' Moop\wf)\?w( ) ')
e, [@ree
o0&’ o8
limsup sup (1-|¢ "(& : D’
+limsup eup (1-[8 ) m)
| [Prew®)|, Prowe)
oF oF
=R, +R, +R; +Ry.
(91)

To find estimates of the quantities R;,R,,R;, and
R,, we define

21 +3 A+1
Go(§) = L ()~ Soa Fla®) + T FL(0)

K.(&) = Fil(g) - 2Fi,2(5) + Fis(’f)

(92)
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Because ||f][g <1 and ﬁ’;"(f)5||f||@g, for all f e &},
and n > 2 and by Lemma 2, we have

sup (1—|E|2)ﬁ‘w”(§)‘{‘af(‘//“))‘ ‘af( ())
V) A O

(&) [>7y 9 oE

1
=—|f sup 4
1l (1-18

)
TGN (1 |y (E )|2)
< sup [|C, Gyl
[x|>yx f
201 +3 2
< sup HC upHC F
ol Tz SR 2l
1
+ sup HC F .
A+2 [x[>yy v ;;1
(93)
Consequently,
Rlﬁthsup CV,F,}:“ 5 (94)
a=1 |x|—1 Zy
Similarly, we see that
3
R252hmsup CV,FM o (95)
a=1 |[x[—1 H

By direct calculation, B*(f)<|f lgg1» for all ue B,

Because [|f]| g <1,

o (1o 62\ 1o 2 [T w@)| | 2% w®)
|w<£>\r>)yN(1 \fl) v (f)|{ 08 ‘ o8 ‘}
20y (&)

(1-1e8) ' @ F

X sup |[Cy K[| .o

[x>yw

2Nfllg,  sup
[w(©)>yn

3(1-w®r) ™

< sup HC . +2 supHC o
M B S AN i
+ sup HC
M
(96)
Thus, we obtain
3
R3$Zlimsup nyan oy (97)

a=1 |x|—1
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Similarly, we see that

3
R,x Z limsup
a=1 |x|—1

CV,FM

b

By the inequalities (94)-(98), we obtain

. } (99)

Hence, by applying (90) and (99), we determine that

1<a<3 x| —1

J i< max {hmsupHCw e

A
h,lisgopw C‘”gy*‘ B _>:zﬁ<1r£log{h?lil? CoF z,‘;}'
(100)
Finally, we prove that
HCWHe,(%QI—@flﬁmax {B;, B,}. (101)
Now, we only need to prove that
lllmsllopHC Cy Y,‘ o ah <max {B}, B,}. (102)
—> H H
From (93), we see that
. B ¢
R, = limsup (1 - |E\2) "' (&) LU =B,. (103)
(&) —1 (1 - W,(g)f)
Similarly,
R,<B, (104)
Further, for (96), we see that
, B 2 2w
R<timsup (1-(67) |y (O — O __ g
(&) —1 3(1 _ W,(g)f)
(105)
Similarly,
limsupR,<B;. (106)
Therefore, by the inequalities (103)-(106), we get
HCWHE,@;HzgﬁmaX {B,B,}. (107)

The proof now is complete. O
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Theorem 7. For y:U-—U, let C,: By — sz, be

bounded. Then,

||Cw||e)%21 . ~lzmsupH (v +9') ‘ : (108)
Proof. First, we prove that
1€y, > imsap [P 9|, (109)

Recall that the sequence p,(z)=i*"!(z +Z'), for zeU
and when i € N;. Then, ||pi\|%2 =1, and p; converges uni-

formly to 0 on G. Therefore, by Lemma 4, we see that

lim 75,4 =0. (110)
Hence,
1€y = Tl gy, = limsup][(C, = T)pi]| 5y = limsup||Cyp| 7 -
(111)
Therefore,
160l = msop o =i [ 99,
(112)
Next, we prove that
||C‘/’He,9§" zﬁ<11msupH 1;/+1//)Hzg. (113)

Since C,, : BY— F f, is bounded, then by Theorem 2

L= sup||i* (114)

i>0

T+ Hzg < 0.

Now assume the test function F},, with x € U in (14), for
a=1,2,3. By linearity of the composition operator, for any
fixed positive integer n > 2, we obtain

ey, = - S EE D el
< (1= ) Hz b ] e
<(1= ) L+ (1- [xP)° izgil%i”lx\ﬂc‘wi“zg
(1= ) L sup |7 (v + )|,

(115)
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Then, for all positive integer n>2 and a =1, 2, 3, we get

li ’C ity ’
A e e
(116)
<hmsupH 1//+1//)
Hence,
alsg{hmilfHCw e }<linjgp\\ NUSS I
(117)

Since C,, : BY— F g is bounded, then we have
B
” H} (118)

By (112) and (118), we fulfilled the desired result. O

C,Fh,

|x|[—1

H CwHe,gg;l_g <1f£1;1<)§ {hmsup

ssup [0 9

i—00
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