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The role of iterative algorithms is vital in exploring the diverse domains of science and has proven to be a powerful tool for solving
complex computational problems in the most trending branches of computer science. Taking motivation from this fact, we
develop and apply a modified four-step iterative algorithm to solve the fixed point problem in the Hadamard spaces using a
total asymptotic nonexpansive mapping. MATLAB R2018b is used for numerical experiments to ensure a better convergence
rate of the proposed iterative algorithm with existing results.

1. Introduction

Iterative algorithms and fixed point problems are key con-
cepts in numerical analysis and optimization that offer a
powerful and flexible framework for solving diverse mathe-
matical problems in computer science, engineering, and
industry. Their applications continue to grow and motivate
the development of new and more efficient algorithms and
techniques that can tackle emerging challenges and applica-
tions. Therefore, metric fixed point theory has become a vital
instrument for verifying procedures and algorithms using
iterative schemes and functional equations in current emerg-
ing sciences, such as the field of artificial intelligence [1] and
logic programming [2]. The subject has been studied for a
long time using different principles of contraction [3]. Its
usefulness mostly hinges on the availability of solutions to
mathematical problems generated from systems engineering
[4] and computer science [5]. Because of its novel develop-
ment as a confluence of analysis [6, 7] and geometry [8],
the theory of fixed points has also become a powerful and

vital instrument for the study of nonlinear problems [9].
As such, a choice between several distinct iteration
approaches must be made, taking important aspects into
account. For example, simplicity and convergence speed
are the two main factors that determine whether one itera-
tion approach is more effective than the others. In situations
like this, the following problems unavoidably come up:
Which iteration method is speeding up convergence among
these? It is thus shown in this article that our proposed iter-
ation scheme converges faster than modified Picard, Picard-
S, and Picard-Mann iterations.

One type of problem that can be addressed by iterative
algorithms is the fixed point problem, which involves find-
ing a point that remains unchanged when a mapping is
iteratively applied to it. Specifically, given a nonlinear
mapping ð Rn ⟶ Rn, we seek a fixed point x⋆ in Rn

such that x⋆ = ð x⋆ . If such a fixed point exists, it can
be found by running an iterative algorithm that generates
a sequence of points xk that converges to x⋆, for example,
by iterating the following updated rule: x k+1 = g xk , where
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g x = x − λð x for some scalar λ > 0. This description is
known as the fixed point iteration or the Picard iteration
method. Here and what follows, ℵ, d is a ℂAT 0 space,
C is nonempty closed convex subset of ℵ, d , Q = F̂ ð is
a set of fixed points of the mapping ð, and N̂ is a set of nat-
ural numbers. Therefore, the following points are important
for further development of this research. Let ð be a self-
mapping defined on C ; then, ð is said to be as follows:

(1) Nonexpansive, if d ðû, ðv̂ ≤ d û, v̂ , û, v̂ ∈C
(2) Asymptotically nonexpansive, if for the sequence

Pm ∈ 1,∞ with limm⟶∞Pm = 1 such that d ðmû,
ðmv̂ ≤ Pmd û, v̂ for all û, v̂ ∈C and for all integers
m ≥ 1

(3) Uniformly L-Lipschitzian, if for constant L̂ ≥ 0, d
ðmû, ðmv̂ ≤ L̂d û, v̂ ∀û, v̂ ∈C and m ≥ 1

(4) Total asymptotically nonexpansive [10], if there exist
non-negative sequences ζm , Qm , and m ≥ 1 with
ζm,Qm ⟶ 0, as m⟶∞ and strictly increasing
and continuous function ϕ 0,∞ ⟶ 0,∞ with
ϕ 0 = 0 such that

d ðmû, ðmv̂ ≤ d û, v̂ + ζmϕd û, v̂ +Qm ∀û, v̂ ∈C and m ≥ 1

1

The last condition (4) contained the aforementioned
conditions (1-3) such as ζm = Pm − 1 , Qm = 0 , ∀m ≥ 1,
and ϕ t = t, t ≥ 0. Additionally, every asymptotically nonex-
pansive mapping is an L-Lipschitzation mapping with L̂ =
supm∈N̂ Pm .

Mann [11], Ishikawa [12], and Halpern [13] are the fun-
damental iterative algorithms to approximate the fixed
points of nonexpansive mappings. Following them, several
new iterative algorithms were developed by Noor [14], Agar-
wal et al. [15], Garodia et al. [16], Abbas and Nazir [17], and
Garodia and Uddin [18]. More specifically, the following
iterative algorithm was defined using total asymptotically
nonexpansive mappings in [19]:

ℏ1 ∈C , 2

gm = 1 − σm ℏm ⊕ σmð
mℏm, 3

ℏm+1 = ðmam∀m ≥ 1, 4

where C is a nonempty bounded closed and convex subset in
a complete space and ηm ∈ 0, 1 . For further development in
this direction, we refer the interested reader to [20–22].

The modified Picard-S hybrid iterative process ℏm
introduced in [23] is defined as follows:

ℏ1 ∈C , 5

gm = 1 − σm ℏm ⊕ σmð
mℏm, 6

am = 1 − ζm ℏm ⊕ ζmð
mgm, 7

ℏm+1 = ðmam σm ; ζm ∈ 0, 1 8

Another such iterative scheme introduced in [24] is
stated as follows:

ℏ1 ∈C , 9

gm = ðm 1 − σm ℏm ⊕ σmð
mℏm, 10

am = ðm 1 − ζm ℏm ⊕ ζmð
mgm, 11

ℏm+1 = ðmam ; σm ; ζm ∈ 0, 1 12

All of the aforementioned researchers focused on achiev-
ing a better convergence rate by minimizing the time needed
to run their proposed iteration scheme. Taking motivation
from the above discussion, we propose a novel modified
four-step iterative algorithm as follows:

ℏ1 ∈C , 13

gm = ðm 1 − σm ℏm ⊕ σmð
mℏm , 14

jm = ðm ðmgm , 15

am = ðm jm , 16

ℏm+1 = ðmam ; m ≥ 1 ; σm ∈ 0, 1 17

2. Preliminaries and Lemmas

This section contains some well-known concepts and results
that are often used in this article.

Note: throughout the article, we use ℵ for nonempty set,
ℵ, d for metric space, and N̂ for set of natural numbers.

Lemma 1 (see [25]). Let û, v̂,w ∈ ℵ, d and t̂ ∈ 0, 1 ; then,

d t̂û ⊕ 1 − t̂ v̂,w ≤ t̂d û,w + 1 − t̂ d v̂,w 18

Consider a bounded sequence ûm in ℵ, d and for
û ∈ ℵ, d

r̂ û, ûm = lim
n⟶∞

sup d û, ûm 19

Then, the asymptotic radius r̂ ûm is defined as

r̂ û, ûm = inf r̂ û, ûm : û ∈ ℵ, d , 20

and the asymptotic center A ûm of ûm is given by

A ûm = û ∈ℵ r̂ û, ûm = r̂ ûm 21

Note that A ûm has exactly one point in ℵ, d .
If û is the distinct asymptotic center for each subse-

quence ẑm of ûm in ℵ, d , then this sequence Δ-con-
verges to û ∈ ℵ, d .

Lemma 2 (see [26]). Consider the bounded sequence ûm ∈
ℵ, d . If A ûm = p and ẑm is a subsequence of ûm such
that A ẑm = ẑ and d ûm, ẑ converges, then p = ẑ.
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Karapinar et al. [27] demonstrated that the above result
can be derived using the fixed point existence theorem and
demiclosedness principle for those satisfying in ℵ, d .

Lemma 3 (see [27]). Let C ⊂ ℵ, d and self-mapping ð C

⟶C be a total asymptotically nonexpansive and uniformly
continuous mapping. Moreover, if the set of fixed points F̂ ð
is convex and closed, then ð has a fixed point.

Lemma 4 (see [27]). Consider a self-mapping ð on a complete
metric space ℵ, d and let ð C ⟶C be a total asymptot-
ically nonexpansive mapping that is uniformly continuous.
Then, it follows that limm⟶∞d ℏm, ðℏm = 0 and limm⟶∞
ℏm = q imply that ðq = q.

Lemma 5 (see [28]). Let ℵ, d be a metric space and ℏ ∈
ℵ, d , where ℏm , v̂m are sequences in ℵ, d and
assume that t̂m is a sequence in b̂, ĉ for some b̂, ĉ ∈ 0, 1
such that limsupm⟶∞d ℏm, ℏ ≤ r̂, limsupm⟶∞d v̂m, ℏ ≤ r̂,
and limsupm⟶∞d 1 − t̂m ℏm ⊕ t̂mv̂m, ℏ = r̂ for some r̂ ≥ 0.
Then,

lim
m⟶∞

d ℏm, v̂m = 0 22

Lemma 6 (see [29]). Let the positive number sequences αm ,

βm , and γm be such that

αm+1 ≤ 1 + βm αm + γm,∀m ≥ 1 23

If ∑∞
m=1βm <∞ and ∑∞

m=1γm <∞, then limm⟶∞αm
exists. However, if there exists a subsequence αmn

⊆ αm

such that αmn
⟶ 0 as n⟶∞, then limm⟶∞αm = 0.

3. Main Result

Theorem 7. Let C be a closed convex and bounded subset of
ℵ, d . Consider ð C ⟶C be a total asymptotically non-
expansive, which is uniformly L-Lipschitzian. Moreover, let
Im , Ψm , and m ≥ 1 be non-negative sequences with
Im,Ψm ⟶ 0, as m⟶∞ and strictly increasing continu-
ous function ϕ 0,∞ ⟶ 0,∞ with ϕ 0 = 0 satisfying
the following conditions:

A1. ∑∞
m=1Im <∞and ∑∞

m=1Ψm <∞
A2. For constants n̂, m̂, with 0 < m̂ ≤ σm ≤ n̂ < 1 for each

n̂ ∈ N̂
A3. ϕ μ ≤ R1μ for each μ ≥ 0 and R1 is a constant
Then, the sequence ℏm generated by (13) Δ-converges to

an element of ℵ.

Proof. Let us use Lemma 3, which implies that F̂ ð ≠∅.
Here, on the first hand, we will prove that limm⟶∞d ℏm, p
exists for any p ∈ F̂ ð , where ℏm is defined by (13), and
let p ∈ F̂ ð ; then, we have

d gm, p = d ðm 1 − σm ℏm ⊕ σmð
mℏm , p

≤ d 1 − σm ℏm ⊕ σmð
mℏm , p

+Imϕd 1 − σm ℏm ⊕ σmð
mℏm , p

+Ψm ≤ 1 +ImR1 d 1 − σm ℏm ⊕ σmð
mℏm , p

+Ψm ≤ 1 +ImR1 1 − σm d ℏm, p ⊕ σmð
md ℏm, p

+Ψm ≤ 1 +ImR1 1 +ImR1 d ℏm, p +Ψm

+Ψm ≤ 1 +ImR1
2d ℏm, p + 2 +ImR1 Ψm

24

Moreover, for each m ∈ N̂, we have

d jm, p = d ðm ðmgm , p ≤ d ðmgm, p + unϕd ðngn, p
+Qn ≤ d ðmgm, p +Imϕ d ðmgm, p
+Ψm ≤ 1 +ImR1 d ðmgm, p +Ψm

≤ 1 +ImR1 d gm, p +Imϕd gm, p +Ψm

+Ψm ≤ 1 +ImR1
2d gm, p + 2 +ImR1 Ψm

≤ 1 +ImR1
2 1 +ImR1

2d ℏm, p + 2 +ImR1 Ψm

+ 2 +ImR1 Ψm ≤ 1 +ImR1
4d ℏm, p

+ 1 + 1 +ImR1
2 2 +ImR1 Ψm

25

Similarly,

d am, p = d ðmjm, p ≤ d jm, p +Imϕd jm, P +Ψm

≤ 1 +ImR1 1 +ImR1
4d ℏm, p

+ 1 + 1 +ImR1
2 2 +ImR1 Ψm +Ψm

≤ 1 +ImR1
5d ℏm, p + 1 +ImR1

2 1 +ImR1

2 +ImR1 Ψm +Ψm ≤ 1 +ImR1
5d ℏm, p

+ 1 + 1 + 1 +ImR1
2 1 +ImR1 2 +ImR1 Ψm

26

Finally, we obtain

d ℏm+1, p = d ðmam, p ≤ d am, p +Imϕ am, p +Ψm

≤ 1 +ImR1 d am, p +Ψm 1 +ImR1

2 +ImR1 Ψm +Ψm ≤ 1 +ImR1
6d ℏm, p

+ 1 + 1 + 1 +ImR1
2 1 +ImR1

2 2 +ImR1 Ψm,
27

where

ϱm = 1 +ImR1
6,

γm = 1 + 1 + 1 +ImR1
2 1 +ImR1

2 2 +ImR1 ,
28
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and as stated earlier

〠
∞

m=1
ϱm <∞,

〠
∞

m=1
γm <∞

29

Also, using Lemma 6 as well as the inequalities (26) and
(27), we compute that the limit limm⟶∞d ℏm, p exists.

Further, we will show that limm⟶∞d ℏm, ðℏm = 0;
therefore, we consider

lim
m⟶∞

d ℏm, p = J ≥ 0, 30

and from (24), we have

lim
m⟶∞

sup d gm, p ≤ J 31

According to the definition of ð, we get [24].

d ðmgm, p ≤ d gm, p +Imϕd gm, p +Ψm

≤ 1 +ImR1 d gm, p +Ψm

32

Then, from (30) and (31), we obtain

lim
m⟶∞

sup d ðmgm, p ≤ J 33

Similarly, we compute

lim
m⟶∞

sup d ðmℏm, p ≤ J 34

Since

d ℏm+1, p ≤ 1 +ImR1
6d ℏm, p

+ 1 + 1 + 1 +ImR1
2 1 +ImR1

2 2 +ImR1 Ψm,
35

therefore, by taking limm⟶∞ inf on both sides, we
obtain

J ≤ lim
m⟶∞

inf d gm, p 36

Continuing in this way, we obtain the following from
expressions (30) and (34):

J = lim
m⟶∞

sup d gm, p = lim
m⟶∞

sup d ðm 1 − σm ℏm ⊕ σmð
mℏm, p ,

37

d ðm 1 − σm ℏm ⊕ σmð
mℏm , p

≤ 1 +ImR1 d 1 − σm ℏm ⊕ σmð
mℏm, p +Ψm

38

Next, applying limm⟶∞ sup on both sides, we get

J ≤ limm⟶∞ sup d 1 − σm ℏm ⊕ σmð
mℏm, p 39

Similarly, using (29) and (33), we obtain

d 1 − σm ℏm ⊕ σmð
mℏm, p ≤ 1 − σm d ℏm, p ⊕ σmd ðmℏm, p

40

Then, applying lim sup

lim
m⟶∞

sup d 1 − σm ℏm ⊕ σmð
mℏm, p ≤ J, 41

as well as using (36) and (37), we get

lim
m⟶∞

sup d 1 − σm ℏm ⊕ σmð
mℏm, p = J 42

Next, by making use of (29), (33), (41), and Lemma 5, we
obtain

lim
m⟶∞

d ℏm, ðmℏm = 0 43

Similarly, by making use of (24)–(26), we obtain

d ℏm+1, p ≤ 1 +ImR1 d am, p +Ψm ≤ 1 +ImR1 d jm, p +Ψm

44

Next, by applying the lim inf on both sides

J ≤ lim
m⟶∞

inf d jm, p , 45

and using (24), we obtain

d jm, p ≤ 1 +ImR1
4d ℏm, p + 2 +ImR1 1 + 1 +ImR1

2 Ψm

46

Continuing in this way, we apply limm⟶∞ sup on the
both sides

lim
m⟶∞

sup d jm, p ≤ J, 47

and we use (42) and (43) to get

J = lim
m⟶∞

sup d jm, p = lim
m⟶∞

sup d ðm ðmgm, p ,

d ðm ðmgm, p ≤ d ðmdm, p +ImR1d ðmgm, p +Ψm

≤ 1 +ImR1 d ðmgm, p +Ψm

≤ 1 +ImR1 d gm, p +ImR1d gm, p +Ψm +Ψm

≤ 1 +ImR1 1 +ImR1 d gm, p +Ψm +Ψm

≤ 1 +ImR1
2d gm, p + 2 +ImR1 Ψm

48

In the next step, we apply lim sup

lim
m⟶∞

sup d ðm ðmgm, p ≤ lim
m⟶∞

sup d gm, p , 49
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and use

d gm, p = d 1 − σm ℏm ⊕ σmð
mℏm

≤ d 1 − σm d ℏm, p ⊕ σmd ðmℏm, p ,
lim sup d 1 − σm ℏm ⊕ σmð

mℏm ≤ J

50

By applying Lemma 5, we obtain

lim
m⟶∞

d gm, ðmgm = 0, 51

d ℏm+1, p ≤ 1 +ImR1 d am, p +Ψm 52

Next, by using lim inf on both sides, we obtain

J ≤ limm⟶∞ inf d am, p , 53

and using (25), we get

d am, p ≤ 1 +ImR1
5d am, p

+Ψm 1 + 1 +ImR1
2 2 +ImR1 1 +ImR1

54

Let us apply lim sup on both sides to get

lim
m⟶∞

sup d am, p ≤ J 55

Next, using (51) and (53), we obtain

J = lim
m⟶∞

sup d am, p = lim
m⟶∞

sup d ðmjm, p ,

d ðmm, p ≤ d jm, p +ImR1d jm, p +Ψm ≤ 1 +ImR1 d jm, p +Ψm,
56

and applying lim sup on both sides, we get

lim
m⟶∞

sup d ðmjm, p ≤ lim
m⟶∞

sup d jm, p , 57

J ≤ lim
m⟶∞

sup d jm, p 58

Moreover,

d jm, p ≤ 1 +ImR1
2d gm, p + 2 +ImR1 Ψm,

d jm, p ≤ d gm, p ,
d jm, p ≤ d ℏm, p ,

lim
m⟶∞

sup d jm, p ≤ J

59

By using (45), (55), (57), and Lemma 5, we get

lim
m⟶∞

d jm, ðmjm = 0 60

Since ðm is Im,Ψm, ϕ is a total asymptotically nonex-
pansive mapping, therefore

d ðmgm, ðmℏm ≤ d gm, ℏm +Imϕd gm, ℏm +Ψm

≤ 1 +ImR1 d gm, ℏm +Ψm

≤ 1 +ImR1 d ðm 1 − σm ℏm ⊕ σmð
mℏm , ℏm +Ψm

≤ 1 +ImR1 d ðm 1 − σm ℏm ⊕ σmð
mℏm , ℏm

+ d ðmℏm, ℏm +Ψm ≤ 1 +ImR1
2 σmd ðmℏm, ℏm

+ d ðmℏm, ℏm 1 +ImR1 + 2 +ImR1 Ψm

61

By taking limit m⟶∞ and using

lim
m⟶∞

d ðmgm, ðmℏm = 0, 62

we obtain

d ðmjm, ðmgm ≤ d jm, gm +Imϕd jm, gm +Ψm

≤ 1 +ImR1 d jm, gm +Ψm

≤ 1 +ImR1 d ðm ðmdm, gm +Ψm

≤ 1 +ImR1 d ðm ðmgm , gm + d ðmgm, gm

+Ψm ≤ 1 +ImR1 d ðm ðmgm , gm
+ 1 +ImR1 d ðmgm, gm +Ψm

≤ 1 +ImR1 d ðmgm, gm +ImR1d ðmgm, gm +Ψm

+ 1 +ImR1 d ðmgm, gm +Ψm

≤ 1 +ImR1 1 +ImR1 d ðmgm , gm +Ψm

+ 1 +ImR1 d ðmgm , gm +Ψm

≤ 1 +ImR1
3d gm, gm + 1 +ImR1 d ðmgm, gm

+ 1 +ImR1
2Ψm + 2 +ImR1 Ψm

63

Next, by taking limm⟶∞ and using (51), we obtain

lim
m⟶∞

d ðmjm, ðmgm = 0 64

Hence, we obtain the following:

d ðmam, ðmjm ≤ d am, jm +Imϕd am, jm +Ψm

≤ 1 +ImR1 d am, jm +Ψm

≤ 1 +ImR1 d ðm jm, jm +Ψm

≤ 1 +ImR1 d ðmjm, jm + d ðmjm, jm +Ψm

≤ 1 +ImR1
2d ðmjm, jm +Ψm

65

Then, by taking limit m⟶∞

lim
m⟶∞

d ðmam, ðmjm = 0, 66

and using (42), (60), (62), and (64), we get

d ℏm, ℏm+1 = d ℏm, ðmam ≤ d ℏm, ðmℏm
+ d ðmℏm, ðmgm + d ðmgm, ðmjm
+ d ðmjm, ðmam ⟶ 0asm⟶∞

67

Since ð is nonexpansive and uniformly L-Lipschitzian,
therefore we obtain
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Table 1: Numerical values of the sequence σl ; ζl with the initial point (0.5).

Total iterations (l) Numeric outcomes Mann (2) Picard-S (5) Modified-S (9) Proposed (13)

1 0.500000000000000 0.500000000000000 0.500000000000000 0.500000000000000

2 1.723928538741106 1.886255449358858 1.976613028097837 1.996145420286175

3 1.950092442436139 1.988108110779719 1.999553814382810 1.999985260725864

4 1.991717174248763 1.998714262800699 1.999992020382923 1.999999941419748

5 1.998712485903244 1.999859435104046 1.999999864826100 1.999999999763727

6 1.999809279065809 1.999984550416402 1.999999997803722 1.999999999999040

7 1.999972754626556 1.999998296729063 1.999999999965455 2.000000000000000

8 1.999996215929949 1.999999811857257 1.999999999999470 2.000000000000000

9 1.999999486114128 1.999999979190913 1.999999999999992 2.000000000000000

10 1.999999931481887 1.999999997696364 1.999999999999998 2.000000000000000

11 1.999999991002672 1.999999999744810 2.000000000000000 2.000000000000000

12 1.999999998833680 1.999999999971717 2.000000000000000 2.000000000000000

13 1.999999999850472 1.999999999996864 2.000000000000000 2.000000000000000

14 1.999999999981012 1.999999999999652 2.000000000000000 2.000000000000000

15 1.999999999997609 1.999999999999961 2.000000000000000 2.000000000000000

16 1.999999999999701 1.999999999999996 2.000000000000000 2.000000000000000

17 1.999999999999963 1.999999999999999 2.000000000000000 2.000000000000000

18 1.999999999999995 2.000000000000000 2.000000000000000 2.000000000000000

19 1.999999999999999 2.000000000000000 2.000000000000000 2.000000000000000

20 2.000000000000000 2.000000000000000 2.000000000000000 2.000000000000000

Table 2: Numerical values of the sequence σm ; ζm with the initial point (0.5).

Total iterations (m) Numeric outcomes Picard-Mann Picard-S Modified Picard Proposed algorithm

1 0.500000000000000 0.500000000000000 0.500000000000000 0.500000000000000

2 1.723928538741106 1.905366735526605 1.985210450750278 1.997551030817435

3 1.950092442436139 1.992893963797876 1.999840830715960 1.999994722348261

4 1.991717174248763 1.999487151289271 1.999998427982258 1.999999988416683

5 1.998712485903244 1.999964058581792 1.999999985369638 1.999999999974333

6 1.999809279065809 1.999997531809481 1.999999999869551 1.999999999999943

7 1.999972754626556 1.999999832979629 1.999999999998874 2.000000000000000

8 1.999996215929949 1.999999988823132 1.999999999999991 2.000000000000000

9 1.999999486114128 1.999999999258555 1.999999999999999 2.000000000000000

10 1.999999931481887 1.999999999951159 2.000000000000000 2.000000000000000

11 1.999999991002672 1.999999999996801 2.000000000000000 2.000000000000000

12 1.999999998833680 1.999999999999792 2.000000000000000 2.000000000000000

13 1.999999999850472 1.999999999999987 2.000000000000000 2.000000000000000

14 1.999999999981012 1.999999999999999 2.000000000000000 2.000000000000000

15 1.999999999997609 2.000000000000000 2.000000000000000 2.000000000000000

16 1.999999999999701 2.000000000000000 2.000000000000000 2.000000000000000

17 1.999999999999963 2.000000000000000 2.000000000000000 2.000000000000000

18 1.999999999999995 2.000000000000000 2.000000000000000 2.000000000000000

19 1.999999999999999 2.000000000000000 2.000000000000000 2.000000000000000

20 2.000000000000000 2.000000000000000 2.000000000000000 2.000000000000000
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d ℏm, ðℏm ≤ d ℏm, ℏm+1 + d ℏm+1, ðm+1ℏm+1

+ d ðm+1ℏm+1, ðm+1xm + d ðm+1xm, ðmxm
≤ d ℏm, ℏm+1 + d ℏm+1, ðm+1ℏm+1 + Ld ℏm+1, xm

+ Ld ðmxm, xm ⟶ 0asm⟶∞

68

Let x ∈WΔ ℏm and a subsequence zm of ℏm
with A zm = x exists; then, Lemmas 3 and 4 will
imply that there exists a subsequence ym of zm such
that ym Δ-converges to y ∈ C and y ∈ F̂ ð , respectively.
Next, we verify that WΔ ℏm contains only one point.
For this, let zm be a subsequence of ℏm with A zm =
x and A ℏm = ℏ . We see that x = y and y ∈ F̂ ð .
Finally, since d ℏm, y converges therefore by Lemma 2,
we obtain ℏ = y ∈ F̂ ð . This shows that WΔ ℏm = ℏ .

Theorem 8. Consider ℵ, d , ð, C , (A1), (A2), (A3), σm, and
Im be the same as defined in Theorem 7. Then, ℏm defined
in (13) converges strongly to a fixed point of

lim
m⟶∞

inf d ℏm, F̂ ðm = 0, 69

where d ℏ, F̂ ð = inf d ℏ, p : p ∈ F̂ ð .

Senter and Dotson [30] defined condition I for mapping ð
C ⟶C by following the same steps as followed by Thakur

et al. [19]. Hence, we were able to obtain the following result.

Theorem 9. Considering ð satisfies condition (I) and ℵ, d ,C ,
(A1), (A2), (A3), σm, andIm be the same as in Theorem 7, then
ℏm defined by (13) converge to a point of F̂ ð .

By following to Karapinar et al. [27], the concept of
semicompact mapping was introduced in [31]. Thereafter,
we state the following theorem.

Theorem 10. Considering ð C ⟶C satisfies property of
semicompact and ℵ, d , C , (A1), (A2), (A3), σm, and Im

be the same as in Theorem 7, then, ℏm defined by (13) con-
verges to a point of Q.

Remark 11. If we choose ðm = ð, then algorithms ((5)), (9),
and (13) reduce to the following:

ℏ1 ∈C ,
gm = 1 − σm ℏm ⊕ σmðℏm,
am = 1 − ζm ℏm ⊕ ζmðgm,

ℏm+1 = ðam,

70

ℏ1 ∈C ,
gm = ð 1 − σm ℏm ⊕ σmðℏm,
am = ð 1 − ζm ℏm ⊕ ζmðgm,

ℏm+1 = ðam,

71

0.5

2

1

1.5

0

1

0.5
0.4

0.6
0.7
0.8
0.9

0.3
0.2
0.1

0 5 10 15 20

Picard-Mann
S-hybrid

M. Izhar
Proposed work

Figure 1: Graphical comparison between different algorithms for
the sequence σl ; ζl .
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Figure 2: Graphical comparison for different algorithms for the
sequence σm ; ζm.
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Figure 3: Comparison of the speed of convergence using proposed
and existing algorithms.
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ℏ1 ∈ C,
gm = ð 1 − σm ℏm ⊕ σmðℏm ,
jm = ð ðgm ,
am = ð jm ,

ℏm+1 = ð am ,

72

respectively.

4. Application

In this section, we compare the numerical outcomes of the
existing algorithms (2), (5), and (9) with our proposed algo-

rithm (13). We ensure the fast convergence for our proposed
iterative scheme (13) by considering Examples 1 and 2.

Example 1. Let ℵ, d = ℝ, d , C = 1, 20 , and ð C ⟶C

be a self-mapping as follows:

ð ℏ = ℏ2 + 43 ∀ℏ ∈C 73

It was proved in [23] that such a class of mappings is a
total asymptotically nonexpansive mapping. Particular condi-
tions satisfied by the mapping ð were discussed in [24] by
using the initial point ℏ = 0 5 and setting the stopping criteria

ℏ − 2 ≤ 10−15 74

Table 3: Numerical values of the sequence σn ; ζn with the initial point (50).

Total iterations (n) Numeric outcomes Picard-Mann Picard-S Modified Picard Propose iterations

1 50.000000000000000 50.000000000000000 50.000000000000000 50.000000000000000

5 1.525749884405584 1.278044778721721 1.151666956326911 1.101364278336563

10 1.446940787467405 1.112238701544899 1.062061334277530 1.042983468543593

15 1.448954616364597 1.069825417644027 1.038815704452426 1.027220837647252

20 1.450054039511293 1.050582730782256 1.028200159941627 1.019906529413124

25 1.450686892984754 1.039624731120415 1.022131578013160 1.015687061493346

30 1.451098379685536 1.032556692905615 1.018207109516873 1.012942077463268

35 1.451387493666156 1.027622414503705 1.015462252261662 1.011013983045187

40 1.451601803573477 1.023983655549045 1.013435182016224 1.009585504971188

45 1.451767034137480 1.021190037437011 1.011877167731332 1.008484796621000

50 1.451898321240493 1.018978097710047 1.010642430686560 1.007610696284585
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Figure 4: Graphical comparison using σn ; ζn.
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We consider the following sequences:

σl = 1 − l

l2 + 1
; ζl =

l
l + 1 ,

σm = 1 − m
3m + 1 ; ζm = m

m + 1

75

We apply iterative schemes (2), (5), (9), and (13). Hence,
the corresponding numerical values are provided in Table 1
and Table 2, and their graphical comparison is provided in
Figures 1 and 2, respectively.

Example 2. Let ℵ, d = ℝ, d , C = 1, 50 , and ð ℝ⟶ℝ
be a self-mapping

ð ℏ = ln ℏ + 1 76

Then, it is obvious that ð is continuous uniform L-
Lipschitzian and F̂ ð = 1. Moreover, it was proved in [23]
that this class of mappings is a total asymptotically nonex-
pansive. The graphical comparison using discussed iterative
schemes is provided in Figure 3. We consider the following
choice of sequences:

σn = 1 − n2

n4 + 1
,

ζn =
n

n + 1

77

We apply iterative schemes (2), (5), (9), and (13). Hence, the
corresponding numerical values are provided in Table 3, and
the graphical comparison is provided in Figure 3. However,
the graphical comparison of the speed of convergence
among the proposed and existing algorithms is provided in
Figure 4.

5. Conclusion

In this research article, we proposed a modern iterative algo-
rithm and used it to obtain numerical results. These results
proved that the proposed method is effective and can accel-
erate the convergence rate of existing methods for tackling
the fixed point problems of the total asymptotically nonex-
pansive mapping. This research provides both theoretical
and practical contributions to the study of fixed point theory
and iterative algorithms in the Hadamard spaces. For future
work, algorithm can be further modified to obtain better rate
of convergence for different classes of mapping [32].
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