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In this paper, we consider the initial boundary value problem for a class of singular parabolic equations with viscoelastic term and
logarithmic term. By using the technique of cut-off and the method of Faedo-Galerkin approximation, the local existence of the
weak solution is established. Based on the potential well method, the global existence of the weak solution is derived. Furthermore,
we prove that the weak solution blows up in finite time by taking the concavity analysis method.

1. Introduction

In this paper, we consider the initial boundary value prob-
lem for a class of singular and viscoelastic nonlinear para-
bolic equations with logarithmic source.

x −sut − Δu +
t

0
g t − s Δu s ds = u q−2u ln u , x ∈Ω, t > 0,

u x, t = 0, x ∈ ∂Ω, t > 0,
u x, 0 = u0 x , x ∈Ω,

1

where Ω is a bounded domain in RN N > 2 with a smooth
boundary ∂Ω, u0 x ∈ X =H1

0 Ω \ 0 , 2 < q < 2 1 + 2/N ,
and 0 ≤ s ≤ 2 is a constant. It is well known that many
physical phenomena, such as viscoelasticity and quantum
mechanics, can be described by differential equations. For
the structure of the solution space of second-order half-
linear differential equations, the author discussed various
classifications regarding the asymptotics of solutions in
[1]. In recent years, the problems related to partial differ-
ential equations with logarithmic source and viscoelastic
term have been widely concerned by numerous scholars,
see [2–6] and references therein. Chen and Tian in [7]
considered the following initial boundary value problem

for a class of semilinear pseudo-parabolic equations with
logarithmic nonlinearity:

ut − Δu − Δut = u ln u , x ∈Ω, t > 0,
u x, t = 0, x ∈ ∂Ω, t > 0,
u x, 0 = u0 x , x ∈Ω,

2

where u0 x ∈H1
0 Ω , T ∈ 0,+∞ , and Ω ⊂ RN N ≥ 1 is

a bounded domain with a smooth boundary ∂Ω. By using
the logarithmic Sobolev inequality (see [8, 9]) and a family
of potential wells, they obtained the existence of global solu-
tion and blow-up at +∞. Besides, they also discussed the
asymptotic behavior of solutions. Their result showed that
polynomial nonlinearity is important for the solutions to blow
up in finite time. Peng and Zhou in [10] investigated the
following initial boundary value problem for a semilinear heat
equation with logarithmic nonlinearity:

ut − Δu = u p−2u ln u , x ∈Ω, t > 0,
u x, t = 0, x ∈ ∂Ω, t > 0,
u x, 0 = u0 x , x ∈Ω,

3

where u0 x ∈H1
0 Ω and Ω ⊂ RN N ≥ 1 is a bounded

domain with smooth boundary ∂Ω, 2 < p < 2∗. By using the
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potential well method first proposed by Payne and Sattinger
et al. [11, 12], the existence of global solutions and finite time
blow-up solutions was proved. Moreover, they obtained the
upper bound of blow-up time under suitable assumptions. In
their work [13], Deng and Zhou studied the following semi-
linear heat equation with singular potential and logarithmic
nonlinearity:

x −sut − Δu = u ln u , x ∈Ω, t > 0,
u x, t = 0, x ∈ ∂Ω, t > 0,
u x, 0 = u0 x , x ∈Ω,

4

where Ω ⊂ B1 0 ⊂ RN N > 2 is a bounded domain with
smooth boundary ∂Ω, 0 ≤ s < 2. Under some appropriate
initial-boundary value conditions, they made use of the loga-
rithmic Sobolev inequality to treat the difficulties caused by
the nonlinear logarithmic term. By virtue of a family of poten-
tial wells, the global existence and infinite time blow-up of the
solutions were obtained. Besides, for the study of parabolic
equations with singular terms, we also refer the reader to
[14, 15] and references therein.

Regarding the initial boundary value problem for a class
of viscoelastic parabolic equations with logarithmic terms,

ut − Δu − Δut +
t

0
g t − τ Δu τ dτ = u p−2u ln u , x ∈Ω, t > 0,

u x, t = 0, x ∈ ∂Ω, t > 0,
u x, 0 = u0 x , x ∈Ω,

5

where u0 x ∈H1
0 Ω , p > 2. The authors in [16] studied the

existence of local solution to problem (5) by using the prin-
ciple of contraction mapping. Besides, they derived the
blow-up property of the weak solution of the problem under
the assumption of appropriate g · and initial energy, and
they also gave the life interval estimation of the solution.

Inspired by the literature [7, 10, 13, 16], a natural ques-
tion is, what are the properties of the weak solution for a
nonlinear parabolic equation with singular term and visco-
elastic term? This is the main problem in this paper.

The paper is planned as follows. In Section 2, we collect
preliminary results for proving our main theorems. In
Section 3, we prove the existence and uniqueness of local
solution. In Section 4, we prove the existence of global
solution. In Section 5, the blow-up phenomenon of weak
solution is discussed.

2. Preliminaries

In this section, we present some preliminaries to prove the
main results. We denote the conventional notation Lq Ω
1 ≤ q ≤∞ for the usual Lebesgue space equipped with
· Lq Ω norm. For simplicity, we write · q for · Lq Ω

and we denote the inner product by ·, · . In this paper,
C is an arbitrary positive number which may be different

from line to line. For problem (1), assume that q and g ·
satisfy the following conditions:

(A1) 2 < q < 2 1 + 2/N ,N > 2,
(A2) g ∈ C1 R+, R+ satisfying g s ≥ 0, g′ s ≤ 0, l = 1 −

∞
0 g s ds > 0.
Multiplying equation (1) by ut and integrating over

Ω × 0, t , we have

t

0
x −s/2uτ

2
2dτ +

1
2 1 −

t

0
g s ds ∇u 2

2

−
1
2 1 −

t

0
g s ds ∇u0

2
2

+ 1
2

t

0
g τ ∇u 2

2dτ −
1
2

t

0
g′∘∇u τ dτ

+ 1
2 g∘∇u t −

1
2 g∘∇u0 t = 1

q Ω

u q ln u dx

−
1
q Ω

u0
q ln u0 dx −

1
q2

u q
q +

1
q2

u0
q
q

6

Motivated by the calculation above, we define the fol-
lowing functionals:

J u = 1
2 1 −

t

0
g s ds ∇u 2

2 −
1
q Ω

u q ln u dx

+ 1
2 g∘∇u t + 1

q2
u q

q,
7

I u = 1 −
t

0
g s ds ∇u 2

2 −
Ω

u q ln u dx + g∘∇u t ,

8

E t =
t

0
x −s/2uτ

2
2dτ +

1
2 1 −

t

0
g s ds ∇u 2

2

−
1
q Ω

u q ln u dx + 1
2 g∘∇u t + 1

q2
u q

q,
9

where g∘∇u t = t
0g t − s ∇u t −∇u s 2

2ds.
From (7) and (8), we obtain

J u = 1
q
I u + q − 2

2q 1 −
t

0
g s ds ∇u 2

2

+ q − 2
2q g∘∇u t + 1

q2
u q

q

10

Let

N = u ∈H1
0 Ω \ 0 I u = 0 , 11
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then

d = inf
u∈N

J u ,

W = u ∈ X J u < d, I u > 0 ,

V = u ∈ X J u < d, I u < 0

12

We give the definition of the weak solution to problem
(1) as follows:

Definition 1. If T > 0, a function u ∈ L∞ 0, T ;H1
0 Ω with

x −s/2ut ∈ L2 0, T ; L2 Ω satisfying the following conditions:

(i) For any φ ∈H1
0 Ω , such that

x −sut , φ + ∇u,∇φ −
t

0
g t − s ∇u s ,∇φ ds = u q−2u ln u , φ

13

(ii) u x, 0 = u0 x in H1
0 Ω

We say that u is a weak solution of problem (1) in the
interval Ω × 0, T .

Definition 2 (see [17]) (Maximal existence time). Let u x, t
be a weak solution of problem (1), we define the maximal
existence time T∗ as follows:

(i) If u x, t exists for 0 ≤ t <∞, then T∗ = +∞
(ii) If there exists a t0 ∈ 0,∞ such that u x, t exists for

0 ≤ t < t0, but does not exist at t = t0, then T = t0

Definition 3 (see [17]) (Finite time blow-up). Let u x, t be a
weak solution of problem (1), u x, t is called finite time
blow-up if the maximal existence time T∗ < +∞ and

lim
t⟶T∗−

x −s/2u x, t 2
2 = +∞ 14

Lemma 4. Assume that α is a positive number, then we can
obtain the following inequalities:

sq ln s ≤ eα −1sq+α, for all s ≥ 1,

sq ln s ≤ eq −1, for all 0 < s < 1
15

Lemma 5 (see [18]). (i) For any function u ∈W1,p
0 Ω , we

have the inequality

u q ≤ B1 ∇u p, 16

for all 1 ≤ q ≤ p∗, where p∗ =Np/N − p if N > p and p∗ =∞ if
N ≤ p. The best constant B1 depends only on Ω, N , p, and q.

(ii) For any u ∈W1,p
0 Ω , p ≥ 1, r ≥ 1, the inequality

u q ≤ C ∇u θ
p u 1−θ

r 17

is valid, where

θ = 1
r
−
1
q

1
N

−
1
q
+ 1
r

−1

, 18

(i) for p ≥N = 1, r ≤ q ≤∞

(ii) for N > 1 and p <N, q ∈ r, p∗ if r ≤ p∗ and q ∈ p∗, r
if r ≥ p∗

(iii) for p =N > 1, r ≤ q <∞

(iv) for p >N > 1, r ≤ q ≤∞

Here, the constant C depends on N , p, q, and r.

Lemma 6 (see [16]). Suppose that (A1) and (A2) hold, for any
u ∈ X, then

(i) lim
λ⟶0+

J λu = 0, lim
λ⟶+∞

J λu = −∞

(ii) There exists a unique λ∗ > 0 such that
d/dλJ λu λ=λ∗ = 0; J λu increases on interval 0,
λ∗ , decreases on interval λ∗, +∞ , and attains
the maximum at λ = λ∗

(iii) I λu > 0, for 0 < λ < λ∗, I λu < 0, for λ∗ < λ < +∞,
and I λ∗u = 0

Proof. (i) By the definition of J u , we have

J λu = 1
2 λ

2 1 −
t

0
g s ds ∇u 2

2 −
λq

q
ln λ u q

q

−
λq

q Ω

u q ln u dx + 1
2 λ

2 g∘∇u t + λq

q2
u q

q,

19

where λ > 0, then clearly the conclusion of (i) holds.
(ii) Taking derivative of J λu in λ, we gain

d
dλ

J λu = λ 1 −
t

0
g s ds ∇u 2

2 − λq−1 ln λ u q
q

− λq−1

Ω

u q ln u dx + λ g∘∇u t

= λ 1 −
t

0
g s ds ∇u 2

2 − λq−2 ln λ u q
q

− λq−2

Ω

u q ln u dx + g∘∇u t

20
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Let K λu = λ−1 d/dλ J λu , then

d
dλ

K λu = − q − 2 λq−3 ln λ u q
q − λq−3 u q

q

− q − 2 λq−3

Ω

u q ln u dx

= −λq−3 q − 2 ln λ u q
q + u q

q + q − 2
Ω

u q ln u dx

21

Hence, by taking

λ1 = exp
u q

q + q − 2
Ω
u q ln u dx

2 − q u q
q

> 0, 22

such that d/dλ K λu > 0 on λ ∈ 0, λ1 , d/dλ K λu < 0
on λ ∈ λ1,+∞ , and d/dλ K λ1u = 0. Since K λu λ=0 =
1 − t

0g s ds ∇u 2
2 + g∘∇u t > 0 and lim

λ⟶+∞
K λu =

−∞, there exists λ∗ > 0 such that K λ∗u = 0, K λu > 0 on
λ ∈ 0, λ∗ and K λu < 0 on λ ∈ λ∗,+∞ . So, d/dλ J λu
is positive on 0, λ∗ , d/dλ J λu is negative on λ∗, +∞ ,
and d/dλ J λ∗u = 0. Thus, the conclusion of (ii) holds.

(iii) By the definition of I u , we have

I λu = λ2 1 −
t

0
g s ds ∇u 2

2 − λq ln λ u q
q

− λq

Ω

u q ln u dx + λ2 g∘∇u t

= λ λ 1 −
t

0
g s ds ∇u 2

2 − λq−1 ln λ u q
q

− λq−1

Ω

u q ln u dx + λ g∘∇u t = λ
d
dλ

J λu ,

23

where λ > 0. Combining with (ii), the conclusion of (iii)
holds.

Lemma 7. Let (A1) and (A2) hold and u ∈ X satisfy I u < 0.
Then, there exists a λ∗ ∈ 0, 1 such that I λ∗u = 0

Proof. For ∀λ > 0, we have

I λu = λ2 1 −
t

0
g s ds ∇u 2

2 + g∘∇u t − ϕ λ ,

24

where

ϕ λ = λq−2

Ω

u q ln u dx + λq−2 ln λ u q
q 25

By I u < 0, we can get

Ω

u q ln u dx > 1 −
t

0
g s ds ∇u 2

2 + g∘∇u t 26

By (24) and (26), we obtain

ϕ 1 =
Ω

u q ln u dx > 1 −
t

0
g s ds ∇u 2

2 + g∘∇u t > 0, 27

ϕ λ = λq−2

Ω

u q ln u dx + λq−2 ln λ u q
q ⟶ 0, as λ⟶ 0+ 28

Combining (24), (27), and the equality above, we can
derive that there exists λ∗ ∈ 0, 1 such that ϕ λ∗ = 1 − t

0
g s ds ∇u 2

2 + g∘∇u t and I λ∗u = 0. The proof is com-
pleted.

Lemma 8. Suppose that (A1) and (A2) hold and u x, t be a
weak solution of problem (1). Then, E t is nonincreasing
function, that is

E′ t ≤ 0 29

Proof. Multiplying problem (1) by ut and integrating on Ω,
we have

x −s/2ut
2
2 +

1
2
d
dt

∇u t 2
2 −

t

0
g t − s

Ω

∇u s ∇utdxds

=
Ω

u t q−2u t ut ln u t dx

30

Through direct calculation, it can be seen that

t

0
g t − s

Ω

∇u s ∇utdxds

= d
dt

−
1
2 g∘∇u t + 1

2
t

0
g s ds ∇u t 2

2

+ 1
2 g′∘∇u t −

1
2g t ∇u t 2

2 ,

31

Ω

u t q−2u t ut ln u t dx = 1
q
d
dt Ω

u t q ln u t dx −
1
q2

d
dt

u t q
q

32
Inserting (31) and (32) into (30), we have

x −s/2ut
2
2 +

d
dt

1
2 1 −

t

0
g s ds ∇u t 2

2

+ 1
2 g∘∇u t −

1
q Ω

u t q ln u t dx

+ 1
q2

u t q
q = 1

2 g′∘∇u t −
1
2 g t ∇u t 2

2 ≤ 0

33

The proof is completed.
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Lemma 9. Assume that (A1) and (A2) hold and u0 ∈ X. Then,

(i) the solution u of problem (1) with u0 ∈W satisfies
that u t ∈W for all t ∈ 0, T∗

(ii) the solution u of problem (1) with u0 ∈ V satisfies that
u t ∈ V for all t ∈ 0, T∗

Proof. (i) Let u t be the weak solution of problem (1) with
u0 ∈W, it means that J u0 < d, I u0 > 0. Integrating with
respect to time variable t on 0, t on both sides of (30), we
can get

J u t +
t

0
x −s/2uτ τ

2
2dτ +

1
2

t

0
g τ ∇u 2

2dτ

−
1
2

t

0
g′∘∇u τ dτ = J u0

34

By (34), we can get

J u < J u0 < d,∀t ∈ 0, T∗ 35

Next, we claim that I u t > 0 for all t ∈ 0, T∗ , which
together with (35) implies that u x, t ∈W. Otherwise, by
continuity of I u , there would exist a t0 ∈ 0, T∗ such that
I u t > 0 for t ∈ 0, t0 and I u t0 = 0, u t0 ≠ 0. It means
that u t0 ∈N . Recalling the definition of d, it is clear that
d ≤ J u t0 which contradicts with (35). Then, u t ∈W
for all t ∈ 0, T∗ .

(ii) The proof is similar to that of part (i), so we omit it.

Lemma 10 (see [19]) (Hardy-Sobolev Inequality). Let RN

Rk × RN−k, 2 ≤ k ≤N, and x = y, z ∈ Rk × RN−k. For given
γ, s satisfying 1 < γ <N, 0 ≤ s ≤ γ, s < k, and m s,N , γ = γ
N − s /N − γ, there exists a constant H =H s,N , γ, k > 0
such that

RN
y −s u x mdx ≤H

RN
∇u x γdx

N−s/N−γ

,∀u ∈W1,γ
0 Ω 36

Remark 11. Setting m = 2, then the inequality above
becomes

Ω

x −s u x 2dx ≤H
Ω

∇u x 2N/N−s+2 dx
N−s+2/N

37

It follows from 0 ≤ s ≤ 2 and N > 2, then by Hölder
inequality, we can get

Ω

x −s u x 2dx ≤H
Ω

∇u x 2N/N−s+2 dx
N−s+2/N

≤H Ω N−s+2/N −1 ∇u 2
2 =HN ∇u 2

2
38

3. Local Existence

Theorem 12. Let (A1) and (A2) hold and u0 x ∈H1
0 Ω .

Then, there exists a constant T > 0 such that problem (1)
admits a unique weak solution.

u x, t ∈ L∞ 0, T ;H1
0 Ω , x −s/2ut ∈ L

2 0, T ; L2 Ω

39

Proof. The proof of Theorem 12 is divided into 4 steps.
Step 1. Approximate problem.
Due to the singular potential existing in problem (1), the

following cut-off function is introduced to deal with it:

ρn x =min x −s, n ,∀n ∈ Z+ 40

For ∀n ∈ Z+, problem (1) has a corresponding solution
un satisfying

ρn x unt − Δun +
t

0
g t − s Δun s ds = un

q−2un ln un , x ∈Ω, t > 0,

un x, t = 0, x ∈ ∂Ω, t > 0,
un x, 0 = un0 x , x ∈Ω

41

Let ωj
∞
j=1 be a completed orthogonal basis of H1

0 Ω

which is the standard orthogonal basis in L2 Ω . Set

−Δωj = λjωj,

ωi, ωj = δij,
42

for all i, j ∈ Z+, where λj ∈ R and δij is the Kronecker’s delta.
Let un0 n∈Z+ ⊂ C∞

0 Ω be such that un0 x ⟶ u0 x in
H1

0 Ω asn⟶ +∞ We define the finite-dimensional space
Wh = span ω1, ω2,⋯,ωh , h ∈ Z+ and construct the approxi-
mate solution

uhn x, t = 〠
h

j=1
ξhnj t ωj x , ξhnj ∈ C1 0, T , 43

solving the problem

ρnu
h
nt , ωj + ∇uhn,∇ωj −

t

0
g t − s ∇uhn s ,∇ωj ds = uhn

q−2
uhn ln uhn , ωj ,

44
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uhn x, 0 = 〠
h

j=1
ξhnj 0 wj x = uhn0 ⟶ u0 x  in H1

0 Ω ,

45

as h⟶ +∞, n⟶ +∞. We can obtain

ρnu
h
nt , ωj = 〠

h

j=1 Ω

ρn x ωj x ωjdx ξhnj t
t
= 〠

h

j=1
aij ξ

h
nj t

t

46

Furthermore, one has

∇uhn,∇ωj = 〠
h

j=1
ξhnj t λ jωj x , ωj = λjξ

h
nj t ,

uhn
q−2

uhn ln uhn , ωj +
t

0
g t − s ∇uhn s ,∇ωj ds

= 〠
h

j=1
ξhnj t ωj x

q−2

〠
h

j=1
ξhnj t ωj x ln 〠

h

j=1
ξhnj t ωj x , ωj

+ λj

t

0
g t − s ξhnj s ds =Gh

nj t

47

Hence, ξhnj
h

j=1 is determined by the following Cauchy

problem:

〠
h

j=1
aij ξ

h
nj t

t
+ λjξ

h
nj t = Gh

nj t ,

〠
h

j=1
ξhnj 0 =

Ω

uhn0ωjdx

48

A standard result on ODE systems now confirms the
existence of a unique solution ξhnj ∈ C

1 0, T to (48) and

thus uhn x, t ∈ C1 0, T ;H1
0 Ω .

Step 2. Priori estimates.
Multiplying (44) by ξhnj t and summing on j = 1, 2,⋯h,

we can obtain

ρnu
h
nt , uhn + ∇uhn,∇uhn −

t

0
g t − s

∇uhn s ,∇uhn ds = uhn
q−2

uhn ln uhn , uhn
49

Integrating with respect to time variable t on 0, t on
both sides of (49), we know that

Shn t ≤ Shn 0 +
t

0

τ

0 Ω

g τ − s ∇uhn x, s ∇uhn x, τ dxdsdτ

+
t

0 Ω

uhn x, τ
q
ln uhn x, τ dxdτ,

50

where

Shn t = 1
2 ρn x 1/2uhn t

2

2
+

t

0
∇uhn τ

2

2
dτ 51

By Hölder inequality and Young inequality, we have

t

0

τ

0 Ω

g τ − s ∇uhn x, s ∇uhn x, τ dxdsdτ

≤
1
2

t

0
∇uhn τ

2

2
dτ + 1

2
t

0

τ

0
g τ − s ∇uhn s

2
ds

2
dτ

< 1
2

t

0
∇uhn τ

2

2
dτ + 1

2 1 − l
t

0

τ

0
g τ − s ∇uhn s

2

2
dsdτ

< 1 − l
2

t

0
∇uhn τ

2

2
dτ ≤ 1 − l

2 Shn t

52

On the other hand, from Lemma 4, we can get

Ω

uhn x, t
q
ln uhn x, t dx

=
Ω1

uhn x, t
q
ln uhn x, t dx

+
Ω2

uhn x, t
q
ln uhn x, t dx

≤
Ω1

uhn x, t
q
ln uhn x, t dx ≤ eα −1 uhn t

q+α

q+α
,

53

where Ω1 = x ∈Ω ; uhn x, t ≥ 1 and Ω2 = x ∈Ω ; uhn
x, t < 1 . By Lemma 5 and Young inequality, we can
choose 0 < α < 2 1 + 2/N − q to obtain

Ω

uhn x, t
q
ln uhn x, t dx

≤ eα −1 uhn t
q+α

q+α
≤ eα −1C ∇uhn t

θ q+α

2
uhn t

1−θ q+α

2

≤ ε ∇uhn t
2

2
+ C ε uhn t

2 1−θ q+α /2−θ q+α

2
,

54

where ε ∈ 0, l/2 and θ = 1/2 − 1/q + α N =N q +
α − 2 /2 q + α Now, we set

β = 1 − θ q + α

2 − θ q + α
, 55

then β > 1, since 2 < q < 2 1 + 2/N .
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Due to Ω is a bounded domain in RN , so we can get

Ω

uhn t
2
dx =

Ω

1
ρn x

ρn x uhn t
2
dx

≤ C Ω ρn x 1/2uhn t
2

2
,

56

where C Ω is related to Ω. Thus, by (54) and (56), we
have

t

0 Ω

uhn x, τ
q
ln uhn x, τ dxdτ

≤ ε
t

0
∇uhn τ

2

2
dτ + C ε

t

0
uhn τ

2β

2
dτ

≤ εShn t + C ε
t

0
Shn τ

β
dτ

57

Combining with (50), (52), and (57), we obtain

Shn t ≤ C1 + C2
t

0
Shn τ

β
dτ, 58

where C1 = 2Shn 0 /l − 2ε and C2 = 2C ε /l − 2ε. Through cal-
culation, we have

Shn t ≤ CT , 59

where CT is independent of n and h, namely,

1
2 ρn x 1/2uhn t

2

2
+

t

0
∇uhn τ

2

2
dτ ≤ CT ,∀h, n ∈ Z+

60

Multiplying (44) by ξhnj t t
, summing on j = 1, 2,⋯h

and then integrating on 0, t , we know that

t

0
ρn x 1/2uhnτ

2

2
dτ + 1

2 1 −
t

0
g s ds ∇uhn

2

2

+ 1
2 g∘∇uhn t + 1

q2
uhn

q

q

+ 1
2

t

0
g τ ∇uhn

2

2
dτ −

1
2

t

0
g′∘∇uhn τ dτ

−
1
q Ω

uhn
q
ln uhn dx = J uhn0 ,∀t ∈ 0, T

61

By using the continuity of functional J u , we deduce
that there exists a positive constant C such that

J uhn0 ≤ C,∀h, n ∈ Z+ 62

Combining with (57), (59), (61), and (62), we can derive

C ≥ J uhn0 ≥
t

0
ρn x 1/2uhnτ

2

2
dτ

+ 1
2 1 −

t

0
g s ds ∇uhn t

2

2
+ 1
2 g∘∇uhn t

+ 1
q2

uhn t
q

q
−
1
q Ω

uhn t
q
ln uhn t dx

≥
t

0
ρn x 1/2uhnτ

2

2
dτ + l

2 −
ε

q
∇uhn t

2

2

−
C ε

q
uhn t

2β

2
+ 1
2 g∘∇uhn t + 1

q2
uhn t

q

q

≥
t

0
ρn x 1/2uhnτ

2

2
dτ + l

2 −
ε

q
∇uhn t

2

2

−
C ε

q
2Sn t β + 1

2 g∘∇uhn t + 1
q2

uhn t
q

q

63

Subsequently, we have

t

0
ρn x 1/2uhnτ

2

2
dτ + l

2 −
ε

q
∇uhn t

2

2

+ 1
2 g∘∇uhn t + 1

q2
uhn t

q

q
≤ CT ,∀h, n ∈ Z+

64

Let Ω1′ = x ∈Ω x −s ≥ n and Ω2′ = x ∈Ω x −s < n ,
and by (64), we can get

t

0 Ω

unτ
2dxdτ ≤

t

0 Ω1′

1
ρn

· ρn unτ
2dxdτ

+
t

0 Ω2′

1
ρn

· ρn unτ
2dxdτ

≤
1
n

t

0 Ω

ρn unτ
2dxdτ

+ diam Ω s
t

0 Ω

ρn unτ
2dxdτ

≤ 1 + diam Ω s
t

0 Ω

ρn unτ
2dxdτ ≤ C

65

Step 3. Pass to the limit.
By means of (60), (64), and (65), there exists a subse-

quence of uhn
∞
h,n=1, which we still denote by uhn

∞
h,n=1 for

convenience. As h⟶ +∞, n⟶ +∞, we have that

uhn ⇀w
∗

u, in L∞ 0, T ;H1
0 Ω , 66

uhn ⇀w u, in L2 0, T ;H1
0 Ω , 67

ρn x 1/2uhnt ⇀
w ut

x
, in L2 0, T ; L2 Ω , 68
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uhnt ⇀
w

ut , in L2 0, T ; L2 Ω 69

Since (66) and (69), it follows from Aubin-Lions Lemma
(see [20], Corollary 4) that

uhn ⟶ u, inC 0, T ; L2 Ω , 70

as h⟶ +∞, n⟶ +∞ Thus, we have uhn ⟶ u, a e x, t
∈Ω × 0, T , which implies

uhn
q−2

uhn ln uhn ⟶ u q−2u ln u , a e x, t ∈Ω × 0, T

71

On the other hand, from Lemma 4 and Lemma 5, we
have

Ω

uhn x, t
q−2

uhn x, t ln uhn x, t
2
dx

=
Ω1

uhn x, t
q−2

uhn x, t ln uhn x, t
2
dx

+
Ω2

uhn x, t
q−2

uhn x, t ln uhn x, t
2
dx

≤
Ω1

uhn x, t
q−1

ln uhn x, t
2
dx

+
Ω2

uhn x, t
−α

ln uhn x, t uhn x, t
q−1+α 2

dx

≤ eα −2 uhn x, t
2 q−1+α

2 q−1+α
+ e q − 1 −2 Ω

≤ eα −2B1 ∇uhn x, t
2 q−1+α

2
+ e q − 1 −2 Ω ≤ C,

72

where B1 is the optimal constant of the embedding
H1

0 Ω ⟶ L2 q−1+α Ω Here, we choose 0 < α < 2 1 + 2/
N + 1 − q, q − 1 < 2 1 + 2/N . Thus, from (70) and
(72), we have

uhn
q−2

uhn ln uhn ⇀w
∗

u q−2u ln u , inL∞ 0, T ; L2 Ω

73

From (70), we have uhn x, 0 ⟶ u x, 0 in L2 Ω .
Combining (45) with uhn0 ⟶ u0 x in H1

0 Ω , we observe
that u x, 0 = u0 in H1

0 Ω . By (66), (68), and (73), passing
to the limit in (44) as h⟶ +∞, n⟶ +∞, we see that u
satisfies

x −sut , ω + ∇u,∇ω −
t

0
g t − s ∇u s ,∇ω ds = u q−2u ln u , ω ,

74

for all ω ∈H1
0 Ω , and for a.e. t ∈ 0, T .

Step 4. Uniqueness.

Now, we assume that u1 and u2 are two solutions to
problem (1) which have the same initial condition, we can
get

x −su1t ,w + ∇u1,∇w −
t

0
g t − s ∇u1 s ,∇w ds = u1

q−2u1 ln u1 ,w ,

x −su2t ,w + ∇u2,∇w −
t

0
g t − s ∇u2 s ,∇w ds = u2

q−2u2 ln u2 ,w

75

By putting v = u1 − u2, we have v x, 0 = 0. Then, by sub-
tracting the above two equations, we obtain

x −svt ,w + ∇v,∇w −
t

0
g τ − s ∇v s ,∇w ds

= u1
q−2u1 ln u1 − u2

q−2u2 ln u2 ,w
76

Taking ω = v and integrating the above equation on 0, t ,
we have

1
2 x −s/2v

2
2 +

t

0
∇v 2

2dτ −
t

0

τ

0
g τ − s

Ω

∇v s ∇v τ dxdsdτ

=
t

0 Ω

u1
q−2u1 ln u1 − u2

q−2u2 ln u2 vdxdτ

77

Substituting (52) into the above equation, we can get

t

0 Ω

u1
q−2u1 ln u1 − u2

q−2u2 ln u2 vdxdτ

= 1
2 x −s/2v

2
2 +

t

0
∇v 2

2dτ −
t

0

τ

0
g τ − s

Ω

∇v s ∇v τ dxdsdτ

≥
1
2 x −s/2v

2
2 +

t

0
∇v 2

2dτ − 1 − l
2

t

0
∇v 2

2dτ

= 1
2 x −s/2v

2
2 +

l
2

t

0
∇v 2

2dτ ≥
1
2 x −s/2v

2
2,

78

then

1
2 x −s/2v

2
2 ≤

t

0 Ω

u1
q−2u1 ln u1 − u2

q−2u2 ln u2 vdxdτ

79

We define F u : R+ ⟶ R+ and F u = u q−2u ln u . It
implies that F u is locally Lipschitz continue, so we have

t

0 Ω

F u1 − F u2 vdxdτ ≤MT

t

0
v 2

2dτ 80

Combining with (56), (79) and (80), we obtain

v 2
2 ≤

2
CΩ

MT

t

0
v 2

2dτ 81
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The uniqueness follows from (81) by Gronwall inequality.
The proof of Theorem 12 is completed.

4. Global Existence

Theorem 13. Let u0 x ∈H1
0 Ω , (A1) and (A2) hold. If J

u0 ≤ d, I u0 > 0, then problem (1) admits a global solu-
tion u ∈ L∞ 0, T ;H1

0 Ω with x −s/2ut ∈ L2 0, T ; L2 Ω .

Proof. We divide the proof into 2 steps.
Step 1. J u0 < d and I u0 > 0.
By (34), we know that

J u t +
t

0
x −s/2u τ

2
2dτ +

1
2

t

0
g τ ∇u 2

2dτ

−
1
2

t

0
g′∘∇u τ dτ = J u0 < d,∀t ∈ 0, T∗

82

Next, we prove that T∗ = +∞. From Lemma 9, we show
that u ∈W, ∀t ∈ 0, T∗ . Combining (10) and (82) to derive

t

0
x −s/2uτ

2
2dτ +

q − 2
2q 1 −

t

0
g s ds ∇u 2

2

+ q − 2
2q g∘∇u t + 1

q2
u q

q < d, t > 0,

83

which implies

t

0
x −s/2uτ

2
2dτ < d,

∇u 2
2 <

2qd
q − 2 l

,

g∘∇u t < 2qd
q − 2 ,

84

u q
q < q2d 85

Obviously, the constants on the right side of (83)–(85)
are independent of T , we can choose T∗ = +∞ that u x, t
is the global weak solution of problem (1).

Step 2. J u0 = d and I u0 > 0.
For m = 2, 3,⋯, we define μm = 1 − 1/m and um0 = μm

u0. The following problem is considered.

x −sut − Δu +
t

0
g t − s Δu s ds = u q−2u ln u , x ∈Ω, t > 0,

u x, t = 0, x ∈ ∂Ω, t > 0,
u x, 0 = u0m x , x ∈Ω

86

Since I u0 > 0, the constant λ∗ = λ∗ u0 defined in
Lemma 6 satisfies λ∗ ≥ 1 > μm. Hence, we get I u0m = I
μmu0 > 0and J u0m = J μmu0 < J u0 = d, which means

u0m ∈W. From Step 1, it follows that for each m problem
(86) admits global weak solution um ∈ L∞ 0, T ;H1

0 Ω with
x −s/2umt ∈ L2 0, T ; L2 Ω and um ∈W.

The remainder of the proof can be processed similarly to
the previous subsection. The proof of Theorem 13 is com-
pleted.

5. Finite Time Blow-up

Lemma 14 (see [21]). If G t is a nonincreasing function on
t0,∞ and satisfies the following differential equation

G′ t 2 ≥ a + bG t 2+ 1/δ , t ≥ t0, 87

where a > 0 and b ∈ R, then there exists a finite positive num-
ber T∗ such that lim

t⟶T∗
G t = 0 and an upper bound of T∗

can be estimated, respectively, in the following case

(i) When b < 0 and G t0 <min 1, a/−b 1/2 , T∗ ≤
t0 + 1/−b ln a/−b / a/−b − G t0

(ii) When b = 0, T∗ ≤ t0 + G t0 / a

(iii) When b > 0, T∗ ≤ t0 + 23δ+1/2δ δh/ a 1 −
1 + hG t0

−1/2δ , where h = a/b 2+1/δ

Lemma 15. Suppose that (A1) and (A2) hold and u0 ∈ V , then
we have

q − 2 1 −
t

0
g s ds ∇u 2

2 + q − 2 g∘∇u t + 2
q Ω

u qdx ≥ 2qd

88

Proof. Since u0 ∈ V , from Lemma 9, we get u ∈ V , i e J u t
< d, I u t < 0. In view of Lemma 7, we know that there is
λ∗ ∈ 0, 1 , so that I λ∗u = 0. Recalling the definition of d,
we can obtain

d ≤ J λ∗u = 1
q
I λ∗u + q − 2

2q 1 −
t

0
g s ds ∇λ∗u 2

2

+ q − 2
2q g∘∇λ∗u t + 1

q2
λ∗u q

q

89

Then

q − 2 1 −
t

0
g s ds ∇u 2

2 + q − 2 g∘∇u t + 2
q Ω

u qdx ≥ 2qd

90

Let

F t =
t

0
x −s/2u τ

2
2dτ + T − t x −s/2u0

2
2, 91
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then

F ′ t = x −s/2u t
2
2 − x −s/2u0

2
2,

F″ t = 2
Ω

x −su t utdx = −2 ∇u 2
2

+ 2
t

0
g t − s ∇u s ,∇u t ds + 2 u q−2u ln u , u

= −2 ∇u 2
2 + 2

t

0
g t − s ∇u s ,∇u t ds + 2

Ω

u q ln u dx

92

Lemma 16. Assume that ∞
0 g s ds ≤ q − 3/q − 2 , then

F″ t − 2q
t

0
x −s/2uτ

2

2
dτ ≥ −2qE 0

+ α q − 2 1 −
t

0
g s ds ∇u 2

2 + q − 2 g∘∇u t + 2
q Ω

u qdx ,

93

where α = 1 − 1/ q − 2 l .

Proof. Utilizing Young inequality and Lemma 8, we can
obtain

F″ t − 2q
t

0
x −s/2uτ

2
2dτ = −2 ∇u t 2

2

+ 2
t

0
g t − s ∇u s ,∇u t ds + 2

Ω

u t q ln u t dx

− 2q
t

0
x −s/2uτ

2
2dτ ≥ −2q

t

0
x −s/2uτ

2
2dτ

− 2 1 −
t

0
g t − s ds ∇u t 2

2 + 2
Ω

u t q ln u t dx

− 2 g∘∇u t + 1
4

t

0
g t − s ds ∇u t 2

2 ≥ −2qE 0

+ q − 2 1 −
t

0
g t − s ds ∇u t 2

2

−
1
2

t

0
g t − s ds ∇u t 2

2 +
2
q Ω

u t qdx

+ q − 2 g∘∇u t ≥ −2qE 0

+ 1 − 1
q − 2 l

q − 2 1 −
t

0
g τ dτ ∇u t 2

2

+ q − 2 g∘∇u t + 2
q Ω

u t qdx

94

The proof of Lemma 16 is completed.

Lemma 17. Suppose that (A1) and (A2) hold and u0 ∈ V ,
u x, t is the solution of problem (1), if one of the following
conditions is true

E 0 < 0, 2 E 0 = 0, 3 0 < E 0 < αd 95

Then, F ′ t > 0 for t > 0.

Proof. (1) If E 0 < 0, then by Lemma 16, we obtain

F ′ t ≥ F ′ 0 − 2qE 0 t 96

Thus, F ′ t > 0 for t > 0.

(1) If E 0 = 0, then by Lemma 16, we have F ′′ t > 0
for t > 0, since F ′ 0 = 0 for t > 0, we get F ′ t > 0
for t > 0

(2) If 0 < E 0 < αd and I u0 < 0, then combining with
Lemma 15 and Lemma 16, we obtain

F″ t ≥ 2q αd − E 0 > 0 97

Integrating with respect to time variable t on 0, t on
both sides of the above equation, we see that

F ′ t ≥ F ′ 0 + 2q αd − E 0 t, t > 0 98

Therefore, we get F ′ t > 0 for t > 0.

Theorem 18. Suppose that (A1) and (A2) hold and u0 ∈ V , u
is the weak solution of problem (1), if one of the following
conditions is true

(1) E 0 < 0, 2 E 0 = 0, 3 0 < E 0 < αd
Then, the weak solution u t blow-up at a finite time T∗

in the sense of

lim
t⟶T∗−

x −s/2u x, t 2

2
= +∞ 99

In case (1), T∗ ≤ t∗ − A t∗ /A′ t∗ and if A t∗ <min
1, a/−b , then T∗ ≤ t∗ + a/−b ln a/−b/
a/−b − A t∗ .
In case (2), T∗ ≤ t∗ + A t∗ / a.
In case (3), T∗ ≤ t∗ − A t∗ /A′ t∗ , and if A t∗ <min

1, a1/−b1 , then T∗ ≤ t∗ + 1/−b1 ln a1/−b1/
a1/−b1 − A t∗ .

Proof. Let

A t = F t − q−2/2 100

Then

A′ t = −
q − 2
2 F t − q−2/2 −1F ′ t = −

q − 2
2 F t −q/2F ′ t ,

101
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A″ t = −
q − 2
2 A t 1+ 4/q−2 F″ t F t −

q
2 F ′ t

2

102

By using Lemma 15, Lemma 16, and Hölder inequality,
we get

F″ t F t −
q
2 F ′ t

2
≥ 2q

t

0
x −s/2uτ

2
2dτ − 2qE 0

+ α q − 2 1 −
t

0
g s ds ∇u 2

2 +
2
q Ω

u qdx

+ q − 2 g∘∇u t F t −
q
2 4F t

t

0
x −s/2uτ

2
2dτ

≥ −2qE 0 + α q − 2 1 −
t

0
g s ds ∇u 2

2

+ 2
q Ω

u qdx + q − 2 g∘∇u t F t

= −2qE 0 + α q − 2 1 −
t

0
g s ds ∇u 2

2

+ 2
q Ω

u qdx + q − 2 g∘∇u t A t − 2/q−2

≥ 2qαd − 2qE 0 A t − 2/q−2

103

Now, we substitute (103) into (102) to obtain

A″ t ≤ q q − 2 E 0 − αd A t 1+ 2/q−2 104

If case (1) or case (2) holds, by (104), we have

A″ t ≤ q q − 2 E 0 A t 1+ 2/q−2 105

By Lemma 17, multiplying (105) by A′ t and integrat-
ing on t∗, t , we arrive at

A′ t
2
≥ a + bA t 2+ 2/q−2 , t ≥ t∗, 106

where

a = A′ t∗ 2 −
q q − 2 2

q − 1 E 0 A t∗
2+ 2/q−2 , b = q q − 2 2

q − 1 E 0

107

If the case (3) holds, we can get

A″ t ≤ −q q − 2 αd − E 0 A t 1+ 2/q−2 108

By employing identical reasoning as presented in (104),
we know that

A′ t
2
≥ a1 + b1A t 2+ 2/q−2 , t ≥ t∗, 109

where

a1 = A′ t∗ 2 −
q q − 2 2

q − 1 E 0 − αd A t∗
2+ 2/q−2 ,

b = q q − 2 2

q − 1 E 0 − αd

110

Therefore, when δ = q − 2/2 and t0 = t∗ > 0, by Lemma
14, there exists a finite time T∗ such that

lim
t⟶T∗−

A t = 0, 111

i.e.,

lim
t⟶T∗−

x −s/2u x, t 2
2 = +∞ 112

This finished the proof of Theorem 18.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the Science and Technology
Development Plan Project of Jilin Province, China
(YDZJ202201ZYTS584 and 20240101307JC).

References

[1] P. Řehák, “Half-linear differential equations: regular variation,
principal solutions, and asymptotic classes,” Electronic Journal
of Qualitative Theory of Differential Equations, vol. 2023, no. 1,
pp. 1–28, 2023.

[2] H. Chen, P. Luo, and G. Liu, “Global solution and blow-up of a
semilinear heat equation with logarithmic nonlinearity,” Jour-
nal of Mathematical Analysis and Applications, vol. 422, no. 1,
pp. 84–98, 2015.

[3] Y. Han, “Blow-up at infinity of solutions to a semilinear heat
equation with logarithmic nonlinearity,” Journal of Mathemat-
ical Analysis and Applications, vol. 474, no. 1, pp. 513–517,
2019.

[4] H. Yüksekkaya and E. Piskin, “Local existence, global existence
and decay results of a logarithmic wave equation with delay
term,” Mathematical Methods in the Applied Sciences, vol. 46,
no. 11, pp. 11802–11813, 2023.

[5] H. Yüksekkaya, E. Piskin, M. M. Kafini, and A. M. Al-Mahdi,
“Well-posedness and exponential stability for the logarithmic
Lamé system with a time delay,” Applicable Analysis,
vol. 103, no. 2, pp. 506–518, 2024.

[6] H. Yüksekkaya, E. Piskin, M. M. Kafini, and A. M. Al-Mahdi,
“General energy decay estimate for a viscoelastic damped
swelling porous elastic soils with time delay,” Mathematical

11Journal of Function Spaces



Methods in the Applied Sciences, vol. 46, no. 12, pp. 12914–
12929, 2023.

[7] H. Chen and S. Y. Tian, “Initial boundary value problem for a
class of semilinear pseudo-parabolic equations with logarith-
mic nonlinearity,” Journal of Differential Equations, vol. 258,
no. 12, pp. 4424–4442, 2015.

[8] L. Gross, “Logarithmic Sobolev inequalities,” American Jour-
nal of Mathematics, vol. 97, no. 4, pp. 1061–1083, 1975.

[9] E. H. Lieb and M. Loss, Analysis, American Mathematical
Society, 2001.

[10] J. M. Peng and J. Zhou, “Global existence and blow-up of solu-
tions to a semilinear heat equation with logarithmic nonlinear-
ity,” Applicable Analysis, vol. 100, no. 13, pp. 1–21, 2021.

[11] L. E. Payne and D. H. Sattinger, “Saddle points and instability
of nonlinear hyperbolic equations,” Israel Journal of Mathe-
matics, vol. 22, no. 3-4, pp. 273–303, 1975.

[12] D. H. Sattinger, “On global solution of nonlinear hyperbolic
equations,” Archive for Rational Mechanics and Analysis,
vol. 30, no. 2, pp. 148–172, 1968.

[13] X. Deng and J. Zhou, “Global existence and blow-up of solu-
tions to a semilinear heat equation with singular potential
and logarithmic nonlinearity,” Communications on Pure &
Applied Analysis, vol. 19, no. 2, pp. 923–939, 2020.

[14] Y. Han, “Blow-up phenomena for a reaction diffusion equa-
tion with special diffusion process,” Applicable Analysis,
vol. 101, no. 6, pp. 1971–1983, 2020.

[15] W. Lian, J. Wang, and R. Xu, “Global existence and blow up of
solutions for pseudo-parabolic equation with singular poten-
tial,” Journal of Differential Equations, vol. 269, no. 6,
pp. 4914–4959, 2020.

[16] L. Li and Y. Ye, “Blow-up of solutions and existence of local
solutions for viscoelastic parabolic equations,” Proceedings of
the Romanian Academy Series A-mathematics Physics Techni-
cal Sciences Information Science, vol. 23, no. 3, pp. 235–244,
2022.

[17] R. Z. Xu and J. Su, “Global existence and finite time blow-up
for a class of semilinear pseudo-parabolic equations,” Journal
of Functional Analysis, vol. 264, no. 12, pp. 2732–2763, 2013.

[18] C. N. Le and X. T. Le, “Global solution and blow-up for a class
of p-Laplacian evolution equations with logarithmic nonline-
arity,” Acta Applicandae Mathematicae, vol. 151, no. 1,
pp. 149–169, 2017.

[19] Z. Liu and Z. B. Fang, “On a singular parabolic p-biharmonic
equation with logarithmic nonlinearity,” Nonlinear Analysis:
Real World Applications, vol. 70, article 103780, 2023.

[20] J. Simon, “Compact sets in the spaceL p (0,T; B),” Annali di
Matematica Pura Ed Applicata, vol. 146, no. 1, pp. 65–96,
1986.

[21] M. R. Li and L. Y. Tsai, “Existence and nonexistence of global
solutions of some system of semilinear wave equations,” Non-
linear Analysis: Theory, Methods & Applications, vol. 54, no. 8,
pp. 1397–1415, 2003.

12 Journal of Function Spaces


	Global Existence and Blow-up of Solutions for a Class of Singular Parabolic Equations with Viscoelastic Term
	1. Introduction
	2. Preliminaries
	3. Local Existence
	4. Global Existence
	5. Finite Time Blow-up
	Data Availability
	Conflicts of Interest
	Acknowledgments




