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In this paper, we consider the weighted m-biharmonic equation with nonlinear damping and source terms. We proved the global
existence of solutions. Later, the decay of the energy is established by using Nakao’s inequality. Finally, we proved the blow-up of
solutions in finite time.

1. Introduction

In this work, we study the following weighted m-biharmonic
equation with initial-boundary value:

ztt + Δ k x Δz m−2Δz + Δ2zt + zt
p−1zt = z q−1z, x ∈Ω, t > 0,

z x, t = Δz x, t = 0, x ∈ ∂Ω, t > 0,
z x, 0 = z0 x , zt x, 0 = z1 x , x ∈Ω,

1

where, Ω ⊂ Rn n ≥ 1 is a domain with smooth boundary ∂Ω
in Rn. p, q ≥ 1,m ≥ 2 and the coefficient k x are assumed a
strictly continuous and positive differentiable function in Ω.

Freitas and Zuazua [1] considered the linear wave equa-
tion with indefinite damping of the form.

ztt − zxx + 2a x zt = 0 2

He proved the stability results.
In [2], Yu investigated the equation with constant coeffi-

cients.

ztt − Δz − Δzt + zt
p−2zt = z q−2z 3

He showed globality, boundedness, blow-up, conver-
gence up to a subsequence towards the equilibria, and expo-
nential stability. Gerbi and Said-Houari [3] proved the
exponential decay of solutions (3) for p = 2.

Huang and Chen [4] considered the nonlinear Klein-
Gordon equation with damping term.

ztt − Δz + T x z + z + zt
m−2zt = z p−2z, 4

Using potential well argument, they obtain global solu-
tions and blow-up result in finite time.

Tahamtani [5] discussed with nonlinear hyperbolic
equation with the Lewis function.

α x ztt + ρΔzt − div ∇z m−2∇z = f z 5

He considered a blow-up result.
Pişkin and Fidan [6] considered the variable coefficient

wave equation.

ztt − Δz − Δzt + μ1 t zt
p−2zt = μ2 t z q−2z 6

They proved the blow-up of solutions.
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Al-Gharabli and Al-Mahdi [7] investigated the following
nonlinear plate equation.

ztt + Δ2z + α t g zt = z z β 7

They proved the local existence using the Faedo-
Galerkin method.

Zheng et al. [8] considered the Petrovsky equation:

ztt + Δ2z + k1 t zt
m−2zt = k2 t z p−2z, 8

in a bounded domain. They proved the blow-up of solutions.
Guo and Li [9] considered the Petrovsky equation with a

strong damping term.

ztt + Δ2z − Δz − Δzt + α t zt = z p−2z 9

They utilized an energy estimation technique to derive
the minimum possible blow-up time.

Wu [10] considered with variable coefficients

ztt + Δ2z − Δz − ωΔzt + α t zt = z p−2z, 10

and obtained the blow-up result with lower and upper
boundedness.

Messaoudi [11] studied the following problem:

ztt − div ∇z m−2∇z − Δzt + zt
q−1zt = z p−1z 11

He studied the decay of solutions of the problem (11).
Then, the problem (11) was studied by Wu and Xue [12]
and Pişkin [13] under different conditions.

Boonaama et al. [14] have studied blow-up, decay, and
existence of solutions of the following equation:

ztt − div φ x ∇z p−2Δz − Δzt + zt
q−1ut = ξ z m−1z 12

Later, the same authors [15] studied the following
equation:

ztt − ∇z div α x
∇z
∇z

− Δzt + zt
q−1zt = z p−1z 13

They established global existence.
Pişkin and Fidan [16] are concerned with the following

problem:

ztt − div ∇z m−2∇z + Δ2z + μ1 t zt
p−2zt = μ2 t z q−2z

14

They prove the blow-up of solutions for finite time with
negative initial energy.

Then, Mokeddem [17] studied the global solutions and
decay rate estimate for the energy of the following equation:

ztt − div ∇z p−2∇z + σ t zt − Δzt + ω z m−2z = z r−2z

15

Motivated by the above-mentioned papers, in this paper,
we investigate to prove the global existence, decay, and blow-
up of solutions for problem (1), which was not previously
studied, where we study weighted m-biharmonic equation
with nonlinear damping and source terms.

The rest of the work is as follows. In Section 2, we give
some assumptions needed in this work. In Section 3, we
prove the global existence theorem. In Section 4, we prove
the decay of solutions by Nakao’s inequality. In Section 5,
the blow-up result is proved for p = 1.

2. Preliminaries

In this part, we present certain lemmas and assumptions
required for the formulation and proof of our results. Let

, p and D2,m
0 Ω indicate the typical L2 Ω , Lp Ω ,

and D2,m
0 Ω, φ norms (see [18, 19]).

To investigate eq. (1), we define the weighted Sobolev
space D2,m

0 Ω, φ as the closure of C∞
0 Ω in the norm:

z
D2,m

0 Ω =
Ω

k x Δz mdx
1/m

16

Lemma 1 (see [20]). Let ϕ t be a nonincreasing and nonneg-
ative function defined on 0, T , T > 1, satisfying

ϕ1+w2 t ≤w0 ϕ t − ϕ t + 1 , t ∈ 0, T 17

w2 is a nonnegative constant, and w0 is a positive con-
stant. Then, we get, for each t ∈ 0, T ,

ϕ t ≤ ϕ 0 e−w1 t−1 + , w2 = 0,

ϕ t ≤ ϕ 0 −w2 +w−1
0 w2 t − 1 + − 1/w2 , w2 > 0,

18

where t − 1 + = max t − 1, 0 and w1 = ln w0/ w0 − 1

Lemma 2 (see [21]). Let B t : R+ ⟶ R+ be a C2-function
satisfying

B′′ t − 4 δ + 1 B′ t + 4 δ + 1 B t ≥ 0 19

If

B′ 0 > r2B 0 + K0, 20

then B′ t > 0 for t > 0, where

r2 = 2 δ + 1 − 2 δ + 1 δ 21

is the smallest root of the equation

r2 − 4 δ + 1 r + 4 δ + 1 = 0 22

Lemma 3 (see [21]). If H t be a nonincreasing function on
t0,∞ and supplies the differential inequality
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H ′ t ≥ α + β H t 2+ 1/β for t ≥ t0, 23

Here, α > 0 and β ∈ R exist a finite time T∗:

lim
t⟶T∗−

H t = 0 24

The upper limits for T∗ are estimated as given below:

(i) If β < 0 and H t0 < min 1, − α/β

T∗ ≤ t0 +
1
−β

ln − α/β
− α/β −H t0

25

(ii) If β = 0

T∗ ≤ t0 +
H t0
H ′ t0

26

Next, we prove the local existence theorem which may be
proved by [22, 23].

Theorem 4 (local existence). We assume that 2 ≤m < q + 1
< nm/ n −m + γ < n, z0 ∈D

2,m
0 Ω , and z1 ∈ L2 Ω ; then,

problem (1) is a unique local solution.

z ∈ C 0, T ;D2,m
0 Ω ,

zt ∈ C 0, T ; L2 Ω ∩ Lp+1 0, T ×Ω
27

3. Global Existence

In this part, we show the global existence of the solution for
problem (1). We define the following functionals:

J t = 1
m Ω

k x Δz mdx −
1

q + 1 z q+1
q+1, 28

I t =
Ω

k x Δz mdx − z q+1
q+1 29

The functional E of problem (1) is as follows:

E t = 1
2 zt

2 + 1
m Ω

k x Δz mdx − 1
q + 1 z q+1

q+1, 30

and we denote the Nehari set

W = z ∈D2,m
0 Ω , I z > 0 ∪ 0 31

Lemma 5. Assume that z is a solution to problem (1). Then,
the energy of problem (1) defined by (30) satisfies and

E′ t = − Δzt
2 + zt

p+1
p+1 ≤ 0 32

Proof. Multiply eq. (1) by zt , integrate it over Ω, and apply
Green’s formula,

E t − E 0 = −
t

0
Δzτ

2dτ −
t

0
zτ

p+1
p+1dτ, for t ≥ 0 33

Lemma 6. Suppose that z0 ∈W, z1 ∈ L2 Ω , q + 1 >m, and

β = C∗ m q + 1
q + 1 −m

E 0
q+1−m /m

< 1 34

Then, for each t ≥ 0, z ∈W.

Proof. Since I 0 > 0 and due to the continuity of z t , it fol-
lows that I t > 0 for some interval near t = 0. Let Tn > 0 be
the maximum time for which eq. (29) holds on the interval
0, Tn .

Thus, from (28) and (29),

J t = 1
m Ω

k x Δz mdx − 1
q + 1 z q+1

q+1

= 1
q + 1 I t + q + 1 −m

m q + 1 Ω

k x Δz mdx
35

From I t > 0, we get

J t ≥
q + 1 −m
m q + 1 z m

D2,m
0 Ω , 36

Then, using the definition E t and E′ t , we have

z m
D2,m
0 Ω ≤

m q + 1
q + 1 −m

J t ≤
m q + 1
q + 1 −m

E t ≤
m q + 1
q + 1 −m

E 0

37

Thanks to Lemma 6 and (37), we obtain

z q+1
q+1 ≤ C∗ z q+1

D2,m
0 Ω

= C∗ z q+1−m
D2,m

0 Ω
z m

D2,m
0 Ω

≤ C∗ m q + 1
q + 1 −m

E 0
q+1−m /m

z m
D2,m

0 Ω

= β z m
D2,m

0 Ω < z m
D2,m

0 Ω ,∀t ∈ 0, Tn

38

We can conclude that I t > 0 based on reference (21),
∀t ∈ 0, Tn When by repeating the procedure, Tn is
extended to T .

Lemma 7. If the conditions of Lemma 6 are satisfied, then
there exists η = 1 − β such that the

z q+1
q+1 ≤ 1 − η z m

D2,m
0 Ω 39
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Proof. We get

z q+1
q+1 ≤ β z m

D2,m
0 Ω , 40

and when set η = 1 − β, we may deduce that

z m
D2,m

0 Ω ≤
1
η
I t 41

Theorem 8. Assume that z0 ∈W by Lemma 6, and 2 ≤m <
q + 1 < nm/ n −m + γ =m∗

γ , n >m. Then, the solution for
(1) is global.

Proof. We get

E 0 ≥ E t = 1
2 zt

2 + 1
m Ω

k x Δz mdx − 1
q + 1 z q+1

q+1

= 1
2 zt

2 + q + 1 −m
m q + 1 Ω

k x Δz mdx + 1
q + 1 I t

≥
1
2 zt

2 + q + 1 −m
m q + 1 z m

D2,m
0 Ω ,

42

by I t ≥ 0, then zt
2 + z m

D2,m
0 Ω ≤ CE 0 ; here, C =max

2, m q + 1 / q + 1 −m . From Theorem 4, we get the
global existence result.

4. Decay

In this part, we show the decay of the solution for problem (1).

Theorem 9. Assume that z0 ∈W,z1 ∈ L2 Ω . We assume that

2 ≤m < q + 1 < nm/ n −m + γ , n >m, and β = C∗

m q + 1 / q + 1 −m E 0 q+1−m /m. Thus, we have the fol-
lowing decay:

E t =
E 0 e−w0 t−1

+ , if p = 1,

E 0 −λ +w1λ t − 1 + − 1/λ
, if p > 1,

43

where w0 and w1 and λ are positive constants.

Proof. Integrating E′ t over t, t + 1 , t > 0, we obtain

E t − E t + 1 =Dp+1 t ,

Dp+1 t =
t+1

t
Δzτ

2 + zτ
p+1
p+1 dτ

44

Therefore, by using Dp+1 t and Hölder’s inequality,
we get

t+1

t Ω

zt
2dxdt ≤ CΩD

2 t , 45

where CΩ > 0.
Then, there exist t1 ∈ t, t + 1/4 and t2 ∈ t + 3/4 , t +

1 so that

zt ti ≤ CD t , i = 1, 2 46

Multiply the first equation of (1) by z, integrate it over
Ω × t1, t2 , and apply Green’s formula; we get

t+1

t
I t dt = −

t+1

t Ω

zzttdxdt +
t+1

t Ω

ΔzΔztdxdt

+
t+1

t Ω

zt
p−1ztzdxdt

47

Now, we use the Cauchy-Schwarz inequality and Hölder
inequality, and we get

t+1

t
I t dt ≤ zt t1 z t1 + zt t2 z t2

+
t+1

t
zt t

2dt +
t+1

t
Δzt Δz dt

−
t+1

t Ω

zt
p−1ztzdxdt

48

By using the Hölder inequality from the last term, we
have

t+1

t Ω

zt
p−1ztzdxdt ≤

t+1

t
zt t

p
p+1 z t p+1dt 49

Then, by (37), we have

t+1

t
zt t

p
p+1 z t p+1dt

≤ C∗

t+1

t
zt

p
p+1 z

D2,m
0 Ω dt

≤ C∗

t+1

t
zt

p
p+1 z m

D2,m
0 Ω dt

≤ C∗
m q + 1
q + 1 −m

1/m t+1

t
zt

p
p+1E

1/m s dt

≤ C∗
m q + 1
q + 1 −m

1/m
sup

t1≤s≤t2
E1/m s Dp t

50

Next, we calculate the fourth term of the right-hand side
of (48), and we obtain
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t+1

t
Δzt t Δz t dt

≤ C∗

t+1

t
Δzt z m

D2,m
0 Ω dt

≤ C∗
m q + 1
q + 1 −m

1/m t+1

t
Δzt E1/m s dt

≤ C∗
m q + 1
q + 1 −m

1/m
sup

t1≤s≤t2
E1/m s

t+1

t
Δzt dt

51

Later

t+1

t
Δzt dt ≤

t+1

t
1dt

1/2 t+1

t
Δzt

2dt
1/2

≤ kD t

52

Then,

t+1

t
Δzt t Δz t dt ≤ kC∗

m q + 1
q + 1 −m

1/m
sup

t1≤s≤t2
E1/m s Dp t

53

We have

zt ti z ti ≤ C1D t sup
t1≤s≤t2

E1/m s , 54

where C1 = kC∗ m q + 1 / q + 1 −m 1/m

Therefore,

t2

t1

I t dt ≤ C1D t sup
t1≤s≤t2

E1/m s +D2 t

+ kC∗
m q + 1
q + 1 −m

1/m
sup

t1≤s≤t2
E1/m s D t

+ kC∗
m q + 1
q + 1 −m

1/m
sup

t1≤s≤t2
E1/m s Dp t

55

Moreover, we get

E t ≤
1
2 zt

2 + C2I t 56

Here, C2 = 1/η q + 1 −m /m q + 1 + 1/q + 1
Integrating over t1, t2 , we get

t2

t1

E t dt ≤ 1
2

t2

t1

zt
2dt + C2

t2

t1

I t dt 57

Then, we get

t2

t1

E t dt ≤ 1
2CΩD

2 t + C2 C1D t sup
t1≤s≤t2

E1/m s +D2 t

+ kC∗
m q + 1
q + 1 −m

1/m
sup

t1≤s≤t2
E1/m s D t

+ kC∗
m q + 1
q + 1 −m

1/m
sup

t1≤s≤t2
E1/m s Dp t

58

Next, integrating over t, t2 , we obtain

E t = E t2 +
t2

t
Δzτ

2 + zτ
p+1
p+1 dτ 59

Since t2 − t1 ≥ 1/2 , we decide that

t2

t1

E t dt ≥ t2 − t1 E t2 ≥
1
2 E t2 60

Thus,

E t2 ≤ 2
t2

t1

E t dt 61

As a result,

E t ≤ 2
t2

t1

E t dt +
t2

t
Δzτ

2 + zτ
p+1
p+1 dτ

= 2
t2

t1

E t dt +Dp+1 t

62

Hence,

E t ≤
1
2CΩ + C2 D2 t +Dp+1 t + C3 D t +Dp t E1/m t

63

Therefore,

E t ≤ C4 D2 t +Dp+1 t +Dm/ m−1 t +D m/ m−1 p t

64

From E t that is a nonincreasing function and E t ≥ 0
on 0,∞ , we have

Dp+1 t = E t − E t + 1 ≤ E 0 65

After that,

D t ≤ E1/ p+1 0 66
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Therefore,

E t ≤ C4 D2 t +Dp+1 t +Dm/ m−1 t +D m/ m−1 p t

≤ C4D
m/ m−1 t D m−2 / m−1 t −Dp− 1/ m−1 t

+ 1 +Dm p−1 / m−1 t = C5D
m/ m−1 t

67

We obtain

E1+ m−1 p−1 /m t ≤ C6D
p+1 t 68

Case 1. When p = 1 and m = 2

E t ≤ C6D
2 t = C6 E t − E t + 1 , 69

and by Lemma 1, we obtain

E t ≤ E 0 e−w0 t−1 + , 70

where w0 = ln C6/ C6 − 1
Case 2. When m − 1 p > 1

E t ≤ E 0 −λ + C−1
6 λ t − 1 + − 1/λ

, 71

where λ = m − 1 p − 1 /m, which complete the proof of
Theorem 9.

5. Blow-up

In this part, we prove our main blow-up results to problem
(1) for p = 1.

Definition 10. A solution z to problem (1) is referred to as a
blow-up if there exists a finite time T∗ so that

lim
t⟶T∗−

B t =∞ 72

Then, we have

B t =
Ω

z2dx +
t

0 Ω

z 2 + Δz 2 dxdτ for t ≥ 0 73

Lemma 11. We assume that m < q + 1 < nm, n >m, p = 1,
and m − 2 ≤ 4δ ≤ q − 1. Then

B′′ t ≥ 4δ + 4
Ω

z2t dx − 8δ + 4 E 0

+ 8δ + 4
t

0
zτ

2 + Δzτ
2 dτ

74

Proof. By taking the first- and second-order derivative of
(73), we get

B′ t = 2
Ω

zz2t dx + z 2 + Δz 2, 75

B′′ t = 2
Ω

z2t dx + 2
Ω

zzttdx + 2
Ω

ΔzΔztdx + 2
Ω

z ztdx

= 2 zt
2 − 2

Ω

k x Δz mdx + 2 z q+1
q+1

76

By (76) and (30), we have

B′′ t = 4δ + 4
Ω

z2t dx − 8δ + 4 E 0

+ 8δ + 4
t

0
zτ

2 + Δzτ
2 dτ

+ 8δ + 4 − 2m
m Ω

k x Δz mdx

+ 2 q + 1 − 8δ + 4
q + 1 z q+1

q+1

77

Here, m − 2 < 4δ ≤ q − 1, we have (74).

Lemma 12. Let m < q + 1 < mn/ n −m and n >m, then

(i) If E 0 < 0, then B′ t > z0
2 for t > t∗, here t0 = t∗

t∗ =max 0, B
′ t − z0

2

8δ + 4 E 0
78

(ii) When E 0 = 0 and
Ω
z0z1dx > 0. Then, B′′ ≥ 0 for

t ≥ 0. We get

B′ ≥ z0
2, t ≥ 0 79

Proof.

(i) When E 0 < 0 and for t ≥ 0, then

B′′ t ≥ − 8δ + 4 E 0 t, 80

and by integration over 0, t , we get

B′ t ≥B′ 0 − 8δ + 4 E 0 t, t ≥ 0 81
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Then, we get B′ t > z0
2 for t > t∗, with

t∗ =max 0, B
′ t − z0

2

8δ + 4 E 0 82

(ii) When E 0 = 0 and
Ω
z0z1dx > 0. Then, B′′ ≥ 0 for

t ≥ 0. We get B′ ≥ z0
2, t ≥ 0

Theorem 13. Suppose that m < q + 1 < mn/ n −m and m
< n, we obtain Case 1 and Case 2.

Case 1. If E 0 < 0 and the solution z blows up in finite time
T∗ in the sense of lim

t⟶T∗−
B t =∞ and

T∗ ≤ t0 −
L t0
L ′ t0

83

Furthermore, if L t0 < min 1, − α/β 1/2 , we get

T∗ ≤ t0 +
1
−β

ln σ

σ −L t0
, 84

where σ = − α/β α/β

Case 2. If E 0 = 0 and
Ω
z0z1dx > 0. The solution z blows

up in finite time T∗ in the sense of lim
t⟶T∗−

B t =∞ and

T∗ ≤ t0 −
L t0
L ′ t0

85

With

α = δ2L2+ 2/δ t0 F ′ t0
2
− 8E 0 L− 1/δ t0 > 0,

β = 8δ2E 0
86

Proof. Set

L t = B t + T − t z0
2 −δ, t ∈ 0, T , 87

where

F t =B t + T − t z0
2, 88

where T is a strictly positive constant that will defined later.
Then, by taking the first- and the second-order derivative of
L t , we have

L ′ t = −δ B t + T − t z0
2 −δ−1

B′ t − z0
2

= −δL1+ 1/δ t B′ t − z0
2 ,

L ′′ t = −δL1+ 2/δ t B′′ t B t − T − t z0
2

+ δL1+ 2/δ t 1 + δ B′ t − z0
2 2

,

L ′′ t = −δL1+ 2/δ t C t ,
89

where

C t =B′′ t F t − 1 + δ F ′ t
2

90

For simplicity of calculation, we define

Az =
Ω

z2dx,

Bz =
Ω

z2t dx,

Cz =
t

0
z 2dt,

Dz =
t

0
zt

2dt

91

By (75) and Hölder’s inequality, we get

B′ t = 2
Ω

zztdx + z0
2 + 2

t

0 Ω

zztdxdt

≤ 2 BzAz
1/2 + CzDz

1/2 + z0
2

92

By Case 1 and Lemma 12, we obtain

B′′ t ≥ − 8δ + 4 E 0 + 4δ + 4 Bz +Dz 93

Then, by (87), (90), and (93), we have

C t ≥ − 8δ + 4 E 0 + 4δ + 4 Bz +Dz L− 1/δ t

− 4δ + 4 BzAz
1/2 + CzDz

1/2 2 94

By B t , we get

B t =
Ω

z2dx +
t

0 Ω

z2dtds = Az + Cz 95

and from L t , we get

C t ≥ − 8δ + 4 E 0 L− 1/δ t

+ 4δ + 4 Bz +Dz T − t z0
2 + λ t ,

λ t = Bz +Dz Az + Cz − BzAz
1/2 + CzDz

1/2 2

96
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When λ t is a nonnegative function, we obtain

C t ≥ − 8δ + 4 E 0 L− 1/δ t , for t ≥ t0 97

Therefore, from B′′ t , we have

L ′′ t ≤ 4δ + 8δ2 E 0 L1+ 1/δ t , for t ≥ t0 98

We obtain

L ′ t < 0, t ≥ t0 99

Multiplying of (98) by B′ t , integrate it over t0, t , and
we get

L ′2 t ≥ α + βL2+ 1/δ t , for t ≥ t0, 100

with α and β defined.
Finally, utilizing Lemma 3, there exists a T∗ such that

lim
t⟶T∗−

L t = 0 and is estimated based on the sign of E 0 .

Thus, equation (72) is satisfied.
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