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Let X be a nonempty set, A be a commutative Banach algebra, and 1 ≤ p <∞. In this paper, we present a concise proof for the result
concerning the BSE (Banach space extension) property of ℓp X, A . Specifically, we establish that ℓp X, A possesses the BSE property
if and only if X is finite and A is BSE. Additionally, we investigate the BSE module property on Banach ℓp X, A -modules and
demonstrate that a Banach space ℓp X, Y serves as a BSE Banach ℓp X, A -module if and only if X is finite and Y represents a
BSE Banach A-module.

1. Introduction

The abbreviation BSE refers to the well-known Bochner-
Schoenberg-Eberlein theorem, which provides a characteriza-
tion of the Fourier-Stieltjes transforms of bounded Borel
measures on locally compact abelian groups. In essence, this
theorem describes the BSE property of the group algebra
L1 G for a locally compact abelian groupG. For further infor-
mation, we refer to [1–4]. Additionally, for integrable functions
on the positive real line, denoted as L1 ℝ+ , for the function
space consisting of bounded complex-valued continuous func-
tions on a locally compact Hausdorff space X, and for charac-
terizing the Fourier and Fourier-Stieltjes transforms on locally
compact abelian groups, consult references [5–7].

Let A be a commutative Banach algebra with the charac-
ter space Δ A and X be a Banach A-module. We define a
multiplier from A into X as an A-module morphism from
A into X, denoted by M A, X . For any T ∈M A, X , there

exists a unique vector field T̂ on Δ A such that T a = aT̂
for all a ∈ A. When X = A, we denote M A, A by M A ,
see [8], for more details.

A bounded continuous function σ on Δ A is called a
BSE function if there exists a constant C > 0 such that for
any finite number of φ1,⋯, φn ∈ Δ A and complex num-
bers c1,⋯, cn, the inequality

〠
n

i=1
ciσ φi ≤ C 〠

n

i=1
ciφi

A∗

1

holds, where A∗ is the first dual of A. The BSE norm of σ,
denoted as · BSE, is defined as the infimum of all such C.
The set of all BSE functions is denoted by CBSE Δ A .

A Banach algebra A is called a BSE algebra if the BSE
functions on Δ A are precisely the Gelfand transforms of

the elements ofM A , i.e., M A = CBSE Δ A . This notion
was introduced by Takahasi and Hatori in [9] and character-
ized by Kaniuth and Ülger in [10]. There are many litera-
tures that contain interesting results on BSE algebras; see
[10–20] for more details.

Takahasi in [21] generalized the BSE property to Banach
modules. Let A be a commutative Banach algebra with a
bounded approximate identity and X be a symmetric
Banach A-bimodule, i.e., a · x = x · a, for all a ∈ A and x ∈ X.
Let φ ∈ Δ A . Denote kerφ by Mφ = a ∈ A φ a = 0 .
There exists eφ ∈ A such that φ eφ = 1. Now, define

Xφ = sp MφX + 1 − eφ X , 2

where sp is the closed linear span. Note that Xφ is inde-
pendent of the choice of eφ. Then, X

φ becomes a Banach
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A-submodule of X. Now, define Xφ = X/Xφ and x̂ φ = x +
Xφ, for all x ∈ X. Hence, Xφ becomes a Banach A-bimodule.
Let Xφ be the class of all functions σ defined on Δ A such
that σ φ ∈ Xφ. An element of Xφ is called a vector field on
Δ A . The space Xφ is anA-module by the following action:

a · σ φ = φ a σ φ ,  a ∈ A, φ ∈ Δ A , σ ∈ Xφ

3

Set

bXφ = σ ∈ Xφ σ ∞ = sup
φ∈Δ A

σ φ <∞ 4

For each φ ∈ Δ A , define πφ x = x̂ φ , for all x ∈ X. A
vector field σ ∈ Xφ is called BSE if there exists β ∈ℝ+ such
that for any finite number of φ1,⋯, φn ∈ Δ A and the same
number f1 ∈ Xφ1

∗,⋯, f n ∈ Xφn

∗, we have

〠
n

i=1
σ φi , f i ≤ β 〠

n

i=1
f i ∘ πφi

X∗

, 5

where Xφi

∗ denotes the dual space of the Banach space Xφi
.

Moreover, set

BSE
Xφ = σ ∈ Xφ σ is BSE 6

A vector field σ ∈ Xφ is called continuous if it is continu-
ous at every φ ∈ Δ A . The class of all continuous vector fields in

Xφ is denoted by cXφ and set c
BSEXφ = BSEXφ c

Xφ. Let X̂ = x̂ x ∈ X and M A, X = T̂ T ∈M A, X .

A Banach A-module X is called BSE if M A, X = c
BSEXφ,

for all φ ∈ Δ A . In [21], some examples of Banach algebras
that have BSE module property such as group algebras on
locally compact groups are given, and in [11], authors charac-
terized module property of module extensions of Banach
algebras.

Similar to Xφ, we define Xφ as the class of all func-
tions σ defined on Δ A such that σ φ ∈ Xφ. By the similar
module action that we have defined for Xφ, Xφ

becomes an A-module.
Let X be a nonempty set and A be a commutative

Banach algebra. Suppose that 1 ≤ p <∞ and define

ℓp X, A = f X⟶ A 〠
x∈X

f x p <∞ 7

Then, ℓp X, A with the pointwise product and the
following norm becomes a commutative Banach algebra:

f p = 〠
x∈X

f x p

1/p

, f ∈ ℓp X, A 8

Some interesting results related to the maximal ideal
space of ℓp X, A and BSE property on it are given in [16].
Moreover, some results such as the regularity of ℓp X, A
and the existence of BED on ℓp X, A are obtained in [22].

In the subsequent section, our initial focus is on examin-
ing the BSE property within the context of the ℓp-direct sum
of Banach algebras. Through the insights gained from these
investigations, we are able to provide a streamlined proof
for the primary outcome established in [16]. This stream-
lined proof offers a clear and concise demonstration that
can enhance comprehension of the BSE concept as it per-
tains to ℓp X, A . Moving forward to Section 3, we delve into
exploring the BSE module property concerning Banach
modules over ℓp X, A . Our key finding in this section estab-
lishes that for any ℓp X, A -module, denoted as ℓp X, Y , to
exhibit the BSE property, it is a necessary and sufficient con-
dition that the module Y itself possesses the BSE attribute as
an A-module gate in the BSE module property on Banach
modules over ℓp X, A , and as a main result, we prove that
for any ℓp X, A -module, ℓp X, Y is BSE if and only if Y is
BSE as an A-module.

2. A Simple Proof for BSE Property on ℓp X, A
Kamali and Abtahi proved the following result in [16].

Theorem 1. Let X be a set and A be a commutative semisim-
ple Banach algebra. Then, ℓp X, A is a BSE algebra if and
only if X is finite and A is a BSE algebra.

In this section, we present an alternative and straightfor-
ward demonstration of the aforementioned outcome. Ini-
tially, we provide pertinent details pertaining to the direct
sum of Banach algebras (modules). Let A and B be two com-
mutative Banach algebras and 1 ≤ p, q ≤∞ such that 1/p +
1/q = 1. Consider the ℓp-direct sum algebra A ⊕ pB of A and
B with the coordinate wise sum and product, i.e.,

a, b + a′, b′ = a + a′, b + b′ ,

a, b · a′, b′ = aa′, bb′ ,
9

for all a, b , a′, b′ ∈ A × B, where A × B is the Cartesian
product of A and B. For 1 ≤ p <∞, we equip A ⊕ pB by the
following norm:

a, b p = a p
A + b p

B
1/p, a, b ∈ A ⊕ pB 10
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Moreover, for p =∞, we equip A ⊕ ∞B by the following
norm:

a, b ∞ =max a A, b B , a, b ∈ A ⊕ ∞B 11

Throughout this section, the above notations are sup-
posed to hold. Note that for p = 1, A ⊕ 1B is the direct sum
of A and B and we refer [17], for more details. To achieve
our goal in this section, we need some results related to a
direct sum of Banach algebras. We summarize some proper-
ties of the above structures as follows.

Proposition 2.

(i) A ⊕ pB, · p , for 1 ≤ p <∞, and A ⊕ ∞B, · ∞
are commutative Banach algebras

(ii) The first dual of A ⊕ pB, · p , for 1 ≤ p <∞ and 1
< q ≤∞, is A∗ ⊕ qB

∗, · q ; this holds for any
Banach spaces A and B

(iii) Let E = φ, 0 : φ ∈ Δ A and F = 0, ψ : ψ ∈ Δ
B . Then, Δ A ⊕ pB = E ∪ F, for 1 ≤ p <∞

(iv) A ⊕ pB has a bounded approximate identity if and
only if A and B have bounded approximate identity

Proof. (i) and (ii) are clear. (iii) is Lemma 2.1 in[17]. Let
1 ≤ p <∞ and Eα α = eα, f α α ⊆ A ⊕ pB be a bounded
approximate identity for A ⊕ pB. Hence, there exists 0 < C
<∞ such that Eα p ≤ C. This implies that eα A, f α B

≤ C. Moreover,

aeα − a p
A = aeα, 0 − a, 0 p

p = a, 0 Eα − a, 0 p
p ⟶ 0,

12

for all a ∈ A. Thus, eα α ⊆ A is a bounded approximate
identity for A. Similarly, f α α becomes a bounded
approximate identity for B. For the case p =∞, similar
to (12), we have

aeα − a A = aeα, 0 − a, 0 ∞ = a, 0 Eα − a, 0 ∞ ⟶ 0,
13

for all a ∈ A. The rest of the proof is similar.
Conversely, suppose that eα α and f β β

are bounded

approximate identities for A and B, respectively. Then, there
exist 0 < C1, C2 <∞ such that eα A ≤ C1 and f β B

≤ C2.

Now, we set Eα,β = eα, f β and C =max C1, C2 . Then,

Eα
p
p = eα

p
A + f β

p

B
≤ Cp

1 + Cp
2 ≤ 2Cp 14

This means that Eα,β α,β is bounded net inA ⊕ pB. For the

case A ⊕ ∞B, the proof is similar. For any a, b ∈ A ⊕ pB,

a, b Eα,β − a, b p

p
= a, b eα, f β − a, b

p

p

= aeα, bf β − a, b
p

p

= aeα − a, bf β − b
p

p

= aeα − a p
A + bf β − b

p

B
⟶ 0

15

Thus, Eα,β α,β is bounded approximate identity forA ⊕ pB.

For the case A ⊕ ∞B, we have

a, b Eα,β − a, b
∞
= a, b eα, f β − a, b

∞

= aeα, bf β − a, b
∞

= aeα − a, bf β − b
∞

=max aeα − a A, bf β − b
B

⟶ 0

16

This completes the proof.

The BSE property on direct sums of Banach algebras is
investigated in [17], where the authors showed that for com-
mutative semisimple Banach algebras A and B, A ⊕ B is BSE
if and only if A and B are BSE of Theorem 2.4 in [17]. Sim-
ilarly, we have the following.

Theorem 3. Let A and B be two commutative semisimple
Banach algebras and 1 ≤ p <∞. Then, A ⊕ pB is BSE if and
only if A and B are BSE.

Proof. The proof for p = 1 is the proof of Theorem 2.4 in
[17]. Now, let 1 < p <∞, A, and B be BSE. Similar discussion
in the proof of Theorem 2.4 in [17] implies that M A ⊕ pB ⊆
CBSE Δ A ⊕ pB , and moreover, for any σ ∈ Cb Δ A ⊕ pB

∩ A ⊕ pB
∗∗

Δ A⊕pB
= Cb Δ A ⊕ pB ∩ A∗∗ ⊕ pB

∗∗
Δ A⊕pB

,

there exist σA ∈ A∗∗ and σB ∈ B∗∗ such that σA ∈ Cb Δ A
∩ A∗∗

Δ A , σB ∈ Cb Δ B ∩ B∗∗
Δ B , and σ = σA, σB

Δ A⊕pB
. By σ ∈ CBSE Δ A ⊕ pB , there exists C > 0 such that

for any finite number of c1,⋯, cn ∈ℂ and φ1, ψ1 ,⋯, φn,
ψn ∈ Δ A ⊕ pB , we have

〠
n

i=1
ciσ φi, ψi ≤ C 〠

n

i=1
ci φi, ψi

A∗⊕qB
∗

17
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Then, by (17) and letting ψi = 0, for all 1 ≤ i ≤ n, we have

〠
n

i=1
ciσA φi

q

= 〠
n

i=1
ciσ φi, 0

q

≤ Cq 〠
n

i=1
ci φi, 0

q

A∗⊕qB
∗

= Cq 〠
n

i=1
ciφi

q

A∗

18

This implies that

〠
n

i=1
ciσA φi ≤ C 〠

n

i=1
ciφi

A∗

19

Thus, σA ∈ CBSE Δ A and so is inM A . Similarly, by let-
ting φi = 0, for all 1 ≤ i ≤ n in (17), we obtain that σB ∈M B .
These together imply that σ = σA, σB ∈M A ⊕ pB . This
means that CBSE Δ A ⊕ pB ⊆M A ⊕ pB . Hence, A ⊕ pB is
BSE. The converse is similar to the converse case of Theorem
2.4 in [17].

As an immediate result, we have the following result that
plays an important role in the proof of the main result of this
section.

Corollary 4. Let A1 ⋯ , An be commutative semisimple
Banach algebras and 1 ≤ p <∞. Then, ⊕ n

i=1Ai is BSE if and
only if each Ai is BSE, for all 1 ≤ i ≤ n.

Lemma 5. Let X be a nonempty set and A be a commutative
Banach algebra. If X is finite, then ℓp X, A is a ℓp-direct sum
of X copies of A, where X is the cardinal number of X.

Proof. If X is finite, then there exists n ∈ℕ such that X is
isomorphic to ℕn = 1,⋯, n . Hence, without loss of gener-
ality, we can see ℓp X, A as follows:

ℓp ℕn, A = ai i∈ℕn
〠
n

i=1
ai

p
A <∞ 20

This implies that

ℓp X, A = ℓp ℕn, A = A ⊕ p ⋯ ⊕ pA

n times

21

If X is a finite set and we show its cardinal number by X ,
then we denote

A ⊕ p ⋯ ⊕ pA

X times

22

by ⊕ p
X

A. A bounded net eα α ⊆ A is called a Δ-weak approx-

imate identity for A, if φ eα ⟶ 1, for all φ ∈ Δ A . Clearly,
every bounded approximate identity for a Banach algebra is
a Δ-weak approximate identity. We now investigate the exis-
tence of bounded approximate identity for ℓp X, A . We recall
the following result.

Theorem 6 (see [16], Theorem 2.6). Let X be a set, A be a
commutative Banach algebra, and 1 ≤ p <∞. Then, ℓp X,A
has a Δ-weak approximate identity if and only if X is finite
and A has a Δ -weak approximate identity.

Now, we are ready to give a simple proof for Theorem 1.
Proof of Theorem 1. Let ℓp X, A be BSE. Then, by

Corollary 5 in [9], it has a Δ-weak approximate identity.
Thus, Theorem 6 implies that X is finite and A has Δ-weak
approximate identity. Then, by employing Lemma 5, we
see that ℓp X, A is as ⊕ p

X

A. Then, by applying Corollary 4,

we conclude that A is BSE. The converse holds, clearly,
because if X is finite and A is BSE, again by Corollary 4,
⊕ p
X

A is BSE and Lemma 5 implies that ℓp X, A is BSE.

3. BSE Module Property of ℓp X, A -Modules

The main aim of this section is the investigation of the exis-
tence of BSE module property on ℓp X, A -modules, where
A is a commutative Banach algebra.

Lemma 7. Let X be a nonempty set, A be a commutative
Banach algebra, and Y be in Banach A -module. Then,
ℓp X, Y is a Banach ℓp X, A -module.

Proof. We define the left module action of ℓp X, A on
ℓp X, Y as follows:

f · g x = f x g x , f ∈ ℓp X, A , g ∈ ℓp X, Y , x ∈ X
23

It is easy to verify that the above-defined left action is
well defined and

f · g p
p = 〠

x∈X
f · g x p

Y

= 〠
x∈X

f x g x p
Y

≤ 〠
x∈X

f x p
A g x p

Y

≤ 〠
x∈X

f x p
A 〠

x∈X
g x p

Y

= f p
p g p

p

24

Thus, ℓp X, Y is a Banach ℓp X, A -module.
Our main result in this section is the following result,

and we give a short and simple proof for it.
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Theorem 8. Let X be a nonempty set, A be a commutative
Banach algebra, and Y be in Banach A-module. Then, ℓp X, Y
is a BSE Banach ℓp X, A -module if and only if X is finite
and Y is a BSE Banach A-module.

Before proving the above result, we give some results
related to p-direct sums of Banach algebra and their module
properties. Let X and Y be Banach A- and B-modules,
respectively. For 1 ≤ p <∞, we consider the Banach space
X ⊕ pY with the norm · p. Then, by the following action,
X ⊕ pY becomes a Banach A ⊕ pB-module:

a, b · x, y = a · x, b · y , a, b ∈ A ⊕ pB, x, y ∈ X ⊕ pY

25

From now on, we suppose that A and B have bounded
approximate identities.

Proposition 9. T ∈M A ⊕ pB, X ⊕ pY if and only if there
exist TA,X ∈M A, X and TB,Y ∈M B, Y such that

T a, b = TA,X a , TB,Y b   a, b ∈ A ⊕ pB 26

Proof. Let T ∈M A ⊕ pB, X ⊕ pY . Define ıA A⟶ A ⊕ pB
by ıA a = a, 0 , ıB A⟶ A ⊕ pB by ıB b = 0, b , πX

X ⊕ pY ⟶ X by πX x, y = x, and πY X ⊕ pY ⟶ Y by
πY x, y = y, for all a ∈ A, b ∈ B, x ∈ X, and y ∈ Y . These
maps are linear and bounded. Finally, we define TA,X ≔
πX ∘ T ∘ ıA, TA,Y ≔ πY ∘ T ∘ ıA, TB,X ≔ πX ∘ T ∘ ıB, and TB,Y
≔ πY ∘ T ∘ ıB. Clearly, these maps are linear and bounded,
and we have

T a, b = TA,X a + TB,X b , TA,Y a + TB,Y b   a, b ∈ A ⊕ pB

27

For any a, b , a′, b′ ∈ A ⊕ pB, (27) implies that

a, b · T a′, b′ = a · TA,X a′ + a · TB,X b′ , b · TA,Y a′

+ b · TB,X b′ ,

28

T a, b a′, b′ = TA,X aa′ + TB,X bb′ , TA,Y aa′

+ TB,X bb′

29

Letting a = 0 in (28) and (29) and possessing a bounded
approximate identity for B together imply that TB,X = 0. Sim-
ilarly, by letting b = 0, we obtain that TA,Y = 0. Moreover, we
have a · TA,X a′ = TA,X aa′ and b · TB,X b′ = TB,X bb′ ,
for all a, a′ ∈ A and b, b′ ∈ B. These show that TA,X ∈M A,
X and TB,Y ∈M B, Y . The converse can be verified easily.
So the proof holds.

Proposition 10. Let φ ∈ Δ A , ψ ∈ Δ B , X be a Banach
A-module, and Y be Banach B-module. Then,

M φ,ψ = Mφ, 0 ∪ 0,Mψ 30

(i) X ⊕ pY
φ,0 = Xφ ⊕ pY and X ⊕ pY

0,ψ = X ⊕ pY
ψ

(ii) X ⊕ pY φ,0 ≅ Xφ and X ⊕ pY 0,ψ ≅ Yψ as Banach

spaces

(iii) c
BSE X ⊕ pY Φ

= σX , σY : σX ∈ c
BSEXφ, σY ∈

c
BSEYψ , where Φ ∈ Δ A ⊕ pB such that σ φ, 0 =

σX φ and σ 0, ψ = σY ψ

Proof.

(i) Let a ∈Mφ and b ∈Mψ. Then, φ a + ψ b = 0. This
means that a, b ∈M φ,ψ . Hence, Mφ, 0 ∪ 0,Mψ

⊆M φ,ψ . Now, suppose that a, b ∈M φ,ψ . Thus, φ
a + ψ b = 0. We claim that a ∈Mφ and b ∈Mψ.
Assume towards a contradiction, φ a ≠ 0. This
implies that ψ b ≠ 0. These facts say that φ ≠ 0
implies that ψ ≠ 0. For any a, b , a′, b′ ∈ A ⊕ pB,
similar to proof of Lemma 2.1 in [17], we have

φ, ψ a, b a′, b′ = φ, ψ a, b φ, ψ a′, b′

= φ a + ψ b φ a′ + ψ b′

= φ a φ a′ + φ a ψ b′

+ ψ b φ a′ + ψ b ψ b′

31

On the other hand, for any a, b , a′, b′ ∈ A ⊕ pB,

φ, ψ a, b a′, b′ = φ, ψ aa′, bb′

= φ aa′ + ψ bb′

= φ a φ a′ + ψ b ψ b′

32

So (31) and (32) imply that

φ a ψ b′ + ψ b φ a′ = 0, 33

for all a, a′ ∈ A and b, b′ ∈ B. If φ ≠ 0, by letting a′ ∈Mφ

and a ∉Mφ, we conclude that ψ b′ φ a = 0, for all b ∈ B.
Hence, ψ b′ = 0, for all b′ ∈ B. This means that ψ = 0, a
contradiction. Thus, a ∈Mφ. Similarly, this holds for Mψ.

5Journal of Function Spaces



Hence, if a, b ∈M φ,ψ , then a ∈Mφ and b ∈Mψ. This
shows that M φ,ψ ⊆ Mφ, 0 ∪ 0,Mψ .

(ii) Suppose that eφ ∈ A and eψ ∈ B such that φ eφ = 1
and ψ eψ = 1. Let x ∈ Xφ and y ∈ Yψ. Then, there
exist a1,⋯, an ∈Mφ, x1,⋯, xn, x1′,⋯, xm′ ∈ X, b1,
⋯, bt ∈Mψ, and y1,⋯, yt , y1,⋯, yl ∈ Y such that,
for every ε > 0, we have

x − 〠
n

i=i
aixi + 1 − eφ 〠

m

j=1
xj′

X

< ε, 34

y − 〠
t

i=1
biyi + 1 − eψ 〠

l

j=1
yj′

Y

< ε 35

Then, for any x′ ∈ X and y′ ∈ Y , (34) and (35) imply that

x, y′ − 〠
n

i=1
ai, 0 xi, y′ + 1, 1 − eφ, 0 〠

m

j=1
xj′ ,

1
m
y′

X⊕pY

= x − 〠
n

i=1
aixi + 1 − eφ 〠

m

j=1
xj′ , 0

X⊕pY

= x − 〠
n

i=i
aixi + 1 − eφ 〠

m

j=1
xj′

X

< ε,

x′, y − 〠
t

i=i
0, bi x′, yi + 1, 1 − 0, eψ 〠

l

j=1

1
l
x′, yj′

X⊕pY

= 0, y − 〠
N

i=i
biyi + 1 − eψ 〠

L

j=1
yj′

X⊕pY

= y − 〠
t

i=1
biyi + 1 − eψ 〠

l

j=1
yj′

Y

< ε

36

These show that Xφ ⊕ pY ⊆ X ⊕ pY
φ,0 and X ⊕ pY

ψ ⊆
X ⊕ pY

0,ψ . Now, let x, y ∈ X ⊕ pY
φ,0 . Then, from (i),

there exist a1, 0 ,⋯, an, 0 ∈M φ,ψ and x1, ,⋯, xn, y ,
x1′ , y ,⋯, xm′ , y ∈ X ⊕ pY such that, for every ε > 0,

ε > x, y − 〠
n

i=1
ai, 0 xi, y + 1, 1 − eφ, 0 〠

m

j=1
xj′ ,

1
m
y

X⊕pY

= x − 〠
n

i=1
aixi + 1 − eφ 〠

m

j=1
xj′ , 0

X⊕pY

= x − 〠
n

i=i
aixi + 1 − eφ 〠

m

j=1
xj′

X

37

Thus, (37) implies that x ∈ Xφ. This implies that x, y
∈ Xφ ⊕ pY , and so, we have X ⊕ pY

φ,0 ⊆ Xφ ⊕ pY . This

implies that X ⊕ pY
φ,0 = Xφ ⊕ pY . Similarly, one can verify

that X ⊕ pY
ψ = X ⊕ pY

0,ψ . Thus, (ii) holds.

(iii) Define Θ X ⊕ pY ⟶ Xφ ⊕ Y by Θ x, y = x + Xφ,
y , for all x, y ∈ X ⊕ pY. It is easy to verify that Θ is
a continuous homomorphism between Banach spaces.
Moreover,

kerΘ = x, y ∈ X ⊕ pY Θ x, y = 0Xφ⊕Y = Xφ ⊕ pY = Xφ ⊕ pY

38

This implies that

X ⊕ pY φ,0 =
X ⊕ pY

X ⊕ pY
φ,0 ≅ Xφ 39

Similarly, define Φ X ⊕ pY ⟶ X ⊕ Yψ by Θ x, y = x,
y + Yψ , for all x, y ∈ X ⊕ pY . We have

kerΦ = x, y ∈ X ⊕ pY Φ x, y = 0X⊕Yψ
= X ⊕ pY

ψ = X ⊕ pY
ψ

40

Then,

X ⊕ pY 0,ψ =
X ⊕ pY

X ⊕ pY
0,ψ ≅ Yψ 41

(iv) Define πX
φ x = x̂ φ , πY

ψ y = ŷ ψ , and π φ,ψ x, y
= πX

φ x , πY
ψ y , for all x ∈ X and y ∈ Y . Let σX ∈

c
BSEXφ and σY ∈ c

BSEYψ; then, for any φ1,⋯, φn

∈ Δ A and ψ1,⋯, ψm ∈ Δ B , there exist β1, β2 ∈
ℝ+, f1 ∈ Xφ1

∗,⋯, f n ∈ Xφn

∗, and g1 ∈ Yψ1
∗,⋯,

gm ∈ Yψn

∗ such that

〠
n

i=1
σX φi , f i ≤ β1 〠

n

i=1
f i ∘ π

X
φi

X∗

, 42

〠
m

i=1
σY ψi , gi ≤ β2 〠

m

i=1
gi ∘ π

Y
ψi

Y∗

43

Let Φ1,⋯,Φt ∈ Δ A ⊕ pB and F1 ∈ X ⊕ pY
∗
Φ1
,⋯, Ft ∈

X ⊕ pY
∗
Φt
, where t =m + n. Then, by Proposition 2 (iii),

Φi = φi, 0 or = 0, ψi . Thus, rearrange Φi’s as follows:

Φi =
φi, 0 , 1 ≤ i ≤ n,
0, ψi , n + 1 ≤ i ≤ t

44
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By (iii) and Proposition 2 (ii), we have X ⊕ pY
∗
φi ,0

≅

X∗
φi
⊕ qY

∗ and X ⊕ pY
∗
0,ψi

≅ X∗ ⊕ qY
∗
ψi
, for any 1 ≤ i ≤ t.

Thus, there exist f1 ∈ Xφ1
∗,⋯, f n ∈ Xφn

∗ and gn+1 ∈
Yψn+1

∗,⋯, gt ∈ Yψt

∗ such that

Fi =
f i, 0 , 1 ≤ i ≤ n,
0, gi , n + 1 ≤ i ≤ t

45

First, we suppose that p ≠ 1, so 1 < q <∞. Then, by
employing (42) and (43) and the fact that r + s q ≤ 2q−1 rq

+ sq , for all r, s ∈ℝ+, we have

〠
t

i=1
σX , σY Φi , Fi

q

= 〠
n

i=1
σX , σY Φi , Fi + 〠

t

i=n+1
σX , σY Φi , Fi

q

= 〠
n

i=1
σX , σY φi, 0 , f i, 0

+ 〠
t

i=n+1
σX , σY 0, ψi , 0, gi

q

= 〠
n

i=1
σX φi , f i + 〠

t

i=n+1
σY ψi , gi

q

≤ 2q−1 〠
n

i=1
σX φi , f i

q

+ 〠
m

i=1
σY ψi , gi

q

≤ 2q−1 βq
1 〠

n

i=1
f i ∘ π

X
φi

q

X∗

+ βq
2 〠

m

i=1
gi ∘ π

Y
ψi

q

Y∗

≤max 2q−1βq
1, 2q−1β

q
2 〠

n

i=1
f i ∘ π

X
φi

q

X∗

+ 〠
m

i=1
gi ∘ π

Y
ψi

q

Y∗

= βq 〠
n

i=1
f i ∘ π

X
φi
, 〠

m

i=1
gi ∘ π

Y
ψi

q

X∗⊕qY
∗

= βq 〠
t

i=1
Fi ∘ πΦi

q

X∗⊕qY
∗

= βq 〠
t

i=1
Fi ∘ πΦi

q

X⊕pY
∗

,

46

where β =max 21/pβ1, 21/pβ2 . Thus,

〠
n

i=1
σX , σY Φi , Fi ≤ β 〠

n

i=1
Fi ∘ πΦi

X⊕pY
∗

47

Now, let p = 1; then, similar to the above discussion,
we have

〠
t

i=1
σX , σY Φi , Fi = 〠

n

i=1
σX , σY Φi , Fi

+ 〠
t

i=n+1
σX , σY Φi , Fi

= 〠
n

i=1
σX , σY φi, 0 , f i, 0

+ 〠
t

i=n+1
σX , σY 0, ψi , 0, gi

≤ 〠
n

i=1
σX φi , f i + 〠

m

i=1
σY ψi , gi

≤ β1 〠
n

i=1
f i ∘ π

X
φi

X∗

+ β2 〠
m

i=1
gi ∘ π

Y
ψi

Y∗

≤ 2 max β1, β2 max

〠
n

i=1
f i ∘ π

X
φi

X∗

, 〠
m

i=1
gi ∘ π

Y
ψi

Y∗

= β 〠
n

i=1
f i ∘ π

X
φi
, 〠

m

i=1
gi ∘ π

Y
ψi

X∗⊕∞Y∗

= β 〠
t

i=1
Fi ∘ πΦi

q

X∗⊕∞Y∗

= β 〠
t

i=1
Fi ∘ πΦi

X⊕1Y
∗

,

48

where β = 2 max β1, β2 . Hence,

〠
n

i=1
σX , σY Φi , Fi ≤ β 〠

n

i=1
Fi ∘ πΦi

X⊕1Y
∗

49

Moreover, from the continuity of σX and σY on Δ A
and Δ B , we have σX , σY ∈ c

BSE X ⊕ pY φ,ψ .

Let σ ∈ c
BSE X ⊕ pY Φ

. Then, there exists β ∈ℝ+ such

that for any Φ1,⋯,Φt ∈ Δ A ⊕ pB and F1 ∈ X ⊕ pY
∗
Φ1
,⋯,

Ft ∈ X ⊕ pY
∗
Φt
,

〠
t

i=1
σ Φi , Fi ≤ β 〠

t

i=1
Fi ∘ πΦi

X⊕pY
∗

50

Then,Φi’s and Fi’s are similar to (44) and (45). Moreover,
for any φ, 0 , 0, ψ ∈ Δ A ⊕ pB , σ φ, 0 ∈ X ⊕ pY φ,0 and

σ 0, ψ ∈ X ⊕ pY 0,ψ . Then, by employing (iii), there exist

σX ∈ Xφ and σY ∈ Yψ such that σ φ, 0 = σX φ and σ 0, ψ
= σY ψ . If for any 1 ≤ i ≤ n, we suppose that Fi = f i, 0 ,
and for n + 1 ≤ i ≤ t, Fi = 0, 0 ; (50) implies that
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〠
n

i=1
σX φi , f i = 〠

n

i=1
σX , σY Φi , f i, 0

= 〠
t

i=1
σ Φi , Fi ≤ β 〠

t

i=1
Fi ∘ πΦi

X⊕pY
∗

= β 〠
t

i=1
f i, 0 ∘ πX

φi
, πY

ψi

X∗⊕qY
∗

= β 〠
n

i=1
f i ∘ π

X
φi

X∗

51

Thus, σX ∈ BSEXφ. Moreover, continuity of σ on
Δ A ⊕ pB implies that σX is continuous and this means
that σX ∈ c

BSEXφ. Similarly, by letting Fi = 0, 0 , for
1 ≤ i ≤ n and Fi = 0, gi , for all i = 1 + n,⋯, t, we con-
clude that σY ∈ c

BSEYψ.

Theorem 11. Let X be a Banach A-module and Y be Banach
B-module. Then, X ⊕ pY is a BSE Banach A ⊕ pB-module if
and only if X is a BSE Banach A-module and Y is a BSE
Banach B-module.

Proof. Suppose that X ⊕ pY is a BSE Banach A ⊕ pB-module.
Let σX ∈ c

BSEXφ and σY ∈ c
BSEYψ. Define σ Δ A ⊕ pB

⟶ Φ∈E∪F X ⊕ pY Φ
by σ φ, 0 = σX φ and σ 0, ψ = σY

ψ , for all φ ∈ Δ A and ψ ∈ Δ B . Since σX and σY are
BSE, similar to the proof of Proposition 10 (iv), we can con-
clude that σ ∈ c

BSE X ⊕ pY Φ
. On the other hand, X ⊕ pY is

a BSE Banach A ⊕ pB-module, so there exists T ∈M A ⊕ pB,
X ⊕ pY such that σ = T̂. Moreover, T a, b = a, b T̂, for all
a, b ∈ A ⊕ pB. By Proposition 9, there exist TA,X ∈M A, X
and TB,Y ∈M B, Y such that

T a, b = TA,X a , TB,Y b   a, b ∈ A ⊕ pB 52

By letting b = 0, in the above equation, we have T a, 0
= TA,X a , 0 , for all a ∈ A. Then,

a, 0 · σ = a, 0 T̂ = T a, 0 = TA,X a , 0
= TA,X a , 0 = aTA,X , 0

53

Moreover,

a, 0 · σ φ, 0 = φ a σX φ = a · σX φ = a · σX , 0 φ, 0
54

Thus, (53) and (54) imply that a · σX = aTA,X , for all a ∈ A.
This implies that σX = TA,X . This means that c

BSEXφ ⊆
M A, X . Similarly, by letting a = 0 in (52) and by the

similar arguments as the above, we obtain that σY = TB,Y .
Therefore, we have c

BSEYψ ⊆M B, Y .
Now, let T ∈M A ⊕ pB, X ⊕ pY . Then, there exist TA,X

∈M A, X and TB,Y ∈M B, Y and (52) holds. Thus, there
exists σ ∈ c

BSE X ⊕ pY Φ
such that σ = T̂ . Then, by Proposi-

tion 10 (iv), there exist σX ∈ c
BSEXφ and σY ∈ c

BSEYψ such
that σ φ, 0 = σX φ and σ 0, ψ = σY ψ . Choose an ele-
ment eφ ∈ A such that φ eφ = 1. Then,

σX φ = σ φ, 0 = T̂ φ, 0 = T eφ, 0 φ, 0

= TA,X eφ , 0 φ, 0 = TA,X eφ , 0 φ, 0

= TA,X eφ φ = TA,X φ

55

This implies that σX = TA,X . Thus, M A, X ⊆ c
BSEXφ.

Hence, we obtain that c
BSEXφ =M A, X . This means that

X is a BSE Banach A-module. Similarly, if eψ ∈ B satisfies

ψ eψ = 1, then we obtain σY ψ = TB,Y ψ . Thus, we have
M B, Y ⊆ c

BSEYψ and so c
BSEYψ =M B, Y . This

implies that Y is BSE a Banach B-module.
Conversely, suppose that X and Y are BSE Banach

A-module and B-module, respectively. Let σ ∈ c
BSE

X ⊕ pY Φ
, where Φ ∈ Δ A ⊕ pB . By Proposition 10 (iv), there

exist σX ∈ c
BSEXφ and σY ∈ c

BSEYψ such that σ = σX , σY ,
σ φ, 0 = σX φ , and σ 0, ψ = σY ψ , for all φ ∈ Δ A and
ψ ∈ Δ B . Then, there exist TA,X ∈M A, X and TB,Y ∈M B,
Y such that σX = TA,X and σY = TB,Y . Define T A ⊕ pB
⟶ X ⊕ pY by T a, b = TA,X a , TB,Y b , for all a, b ∈ A
⊕ pB. Then, by Proposition 9, T is in M A ⊕ pB, X ⊕ pY .
Assume that eφ ∈ A and eψ ∈ B such that φ eφ = 1 and ψ eψ
= 1. Then,

T̂ φ, 0 = TA,X , TB,Y φ, 0 = TA,X , TB,Y eφ, 0 φ, 0

= TA,X eφ , 0 φ, 0 = TA,X eφ , 0 φ, 0

= TA,X , 0 φ, 0 = TA,X φ = σA φ ,

56

T̂ 0, ψ = TA,X , TB,Y 0, ψ = TA,X , TB,Y 0, eψ 0, ψ

= 0, TB,Y eψ 0, ψ = 0, TB,Y eψ 0, ψ

= 0, TB,Y 0, ψ = TB,Y ψ = σB ψ

57

On the other hand, from Proposition 10 (iv), σ = σX , σY
is in c

BSE X ⊕ pY Φ
such that σ φ, 0 = σX φ and σ 0, ψ

= σY ψ , for all φ ∈ Δ A and ψ ∈ Δ B . Thus, (56) and (57)
imply the σ = T̂, and consequently, c

BSE X ⊕ pY Φ
⊆M A

⊕ pB, X ⊕ pY . Now, we show that M A ⊕ pB, X ⊕ pY ⊆
c
BSE X ⊕ pY Φ

. Let T ∈M A ⊕ pB, X ⊕ pY . Again, by
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Proposition 9, there exist TA,X ∈M A, X and TB,Y ∈M B, Y
satisfying (52). Thus, there exist σX ∈ c

BSEXφ and σY ∈ c
BSE

Yψ such that TA,X = σX and TB,Y = σY . By similar argument

in (56) and (57), we conclude that T̂ = σX , σY ∈ c
BSE

X ⊕ pY Φ
. Hence, M A ⊕ pB, X ⊕ pY ⊆ c

BSE X ⊕ pY Φ
.

This completes the proof.

Example 1.

(i) Let A and B be two commutative C∗-algebras and I
and J be closed ideals of A and B, respectively. From
Theorem 3.1 in [21], I and J are BSE Banach A- and
B-modules. Then, by Theorem 11, I ⊕ p J is a BSE
Banach A ⊕ pB-module

(ii) Let G and H be two compact abelian groups. Then,
by Theorem 3.3 in [21], Lr G and Ls H , where
1 ≤ r, s ≤∞, are BSE Banach L1 G - and L1 H
-modules. Hence, Theorem 11 implies that Lr G
⊕ pL

s H is a BSE Banach L1 G ⊕ pL
1 H -module

Proposition 12. ℓp X, A has a bounded approximate iden-
tity if and only if A has a bounded approximate identity
and X is finite.

Proof. Suppose that ℓp X, A has a bounded approximate
identity Eα α such that Eα <M. This implies that it has
a Δ-weak approximate identity. Then, by Theorem 6, we
conclude that X is finite. For a fixed x0 ∈ X and any α, define
eα ≔ Eα x0 . Thus, eα α ⊆ A and

eα A = Eα x0 A ≤ 〠
x∈X

Eα x0
p
A

1/p

≤ Eα p <M

58

This shows that eα α is a bounded net in A. Moreover,

lim
α
aeα = lim

α
aEα x0 = lim

α
δx0a x0 Eα x0

= lim
α

δx0a Eα x0 = δx0a x0 = a
59

Hence, eα α is a bounded approximate identity forA. Con-
versely, suppose that X is finite and A has a bounded approxi-
mate identity. Thus, by Lemma 5, ℓp X, A is as ⊕ p

X

A. Then,

Proposition 2 (iv) implies ⊕ p
X

A, and consequently, ℓp X, A

has a bounded approximate identity.

Proof of Theorem 4. Since ℓp X, A has a bounded approxi-
mate identity, Proposition 12 implies that X is finite and A
has a bounded approximate identity. Hence, by Lemma 5,
one can see ℓp X, A as ⊕ p

X

A and ℓp X, Y as ⊕ p
X

Y . Now,

by employing Theorem 11, the proof holds.

4. Conclusion

The BSE property and BSE module property in commutative
Banach algebras and Banach modules are crucial for under-
standing the relationships between their multiplier spaces
and maximal ideal spaces (character spaces). As mentioned
earlier, the presence of these properties provides valuable
insights into the structures of the spaces under investigation.
In this study, we explore the BSE and BSE module properties
of vector-valued functions belonging to ℓp X, A . By exam-
ining the ℓp-direct sum of commutative Banach algebras,
we present a concise and straightforward proof of the BSE
property on ℓp X, A , contrasting with the more complex
proof presented in [16]. Furthermore, through the utiliza-
tion of the ℓp-direct sum and the characterization of module
multiplier spaces, we delve into the BSE module property of
modules over ℓp X,A . Our analysis reveals that ℓp X, Y is
a BSE Banach ℓp X, A -module if and only if X is finite
and Y is a BSE Banach A-module.
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