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In this article, a modified version of frame called frame associated with a sequence of scalars (FASS) is defined. This modified
version of frame is used to study quantum measurements. Also, using FASS, some Naimark-type results are obtained. Finally, a
formula to give the average probability of an incorrect measurement using FASS is obtained.

1. Introduction

Duffin and Schaeffer [1] formalised the definition of frames
for Hilbert space in 1952 to examine some challenging issues
involving nonharmonic Fourier series. In order to explore
signal processing, Duffin and Schaeffer essentially abstracted
the basic Gabor concept. However, until the seminal study
by Daubechies et al. [2] in 1986, it did not seem that the con-
cepts of Duffin and Schaeffer attracted much attention out-
side of the nonharmonic Fourier series. Although not to
the level of the extremely quick growth of wavelets, the idea
of frames started to be researched more extensively after this
groundbreaking breakthrough. Frames have historically
been utilised in sampling theory, data compression, image
processing, and signal processing. The theory is now being
used in a growing number of fields, including filterbanks,
optics, signal detection, and the study of Besov spaces and
Banach space theory.

Let H denote a separable Hilbert space equipped with
inner product ·, · . A sequence f n

∞
n=1 of elements in H

is called a frame for H , if there exist positive constants C
and D such that

C f 2 ≤ 〠
∞

n=1
f , f n 2 ≤D f 2, for all f ∈H 1

The scalars C and D are called frame bounds and they
are not unique. If C =D, the frame f n

∞
n=1 is called a tight

frame, whereas ifC =D = 1, the frame f n is called a Parseval
frame. For the frame f n

∞
n=1, the inequality in (1) is

known as the frame inequality. The operator T ℓ2 ℕ
⟶H defined by

T bk
∞
n=1 = 〠

∞

k=1
bkf k 2

is called the preframe operator or the synthesis operator,
and its adjoint operator T ∗ H ⟶ ℓ2 ℕ is called the
analysis operator which is given by

T ∗ f = f , f k , for all f ∈H 3

Composing the operators T and T ∗, we obtain
another operator called the frame operator S =TT ∗ H

⟶H which is given by

S f = 〠
∞

k=1
f , f k f k for all f ∈H 4

The frame operatorS is a positive, self-adjoint, and invert-
ible operator on H . Thus, the reconstruction formula for all
f ∈H is given by
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f = SS−1 f = 〠
∞

k=1
S−1 f , f k f k  = 〠

∞

k=1
f , S−1 f k f k 5

For more details related to frames and some of their gen-
eralizations, one may refer to [3–8].

Eldar and Forney [9] investigated the connection between
tight frames and rank-one quantum measurement. Addition-
ally, they described frame matrices by comparing them to the
measurement matrices of quantummechanics. They extended
tight frames to orthonormal bases utilising Neumark’s
theorem [10, 11]. They constructed the optimal tight frames
by drawing inspiration from least squares measurement of
quantum mechanics. In this study, we demonstrate various
Naimark-type results and derive a formula to calculate the
average probability of an incorrect measurement when utilis-
ing FASS.

2. Frames Associated with a Sequence of Scalars

We begin this section by defining a modified version of
frame called frame associated with a sequence of scalars.

Definition 1. Letℕ = ∞
n=1Pn, where Pi are finite subsets ofℕ

with Pi ∩ Pj = ϕ for all i ≠ j, and let μn be any sequence of
scalars. A sequence xn in Hilbert space H is called a frame
associated with a sequence of scalars with respect to Pn, μn , if
there exist constants Al and Au 0 < Al ≤ Au <∞ such that

Al x 2 ≤ 〠
∞

n=1
〠
j∈Pn

μj

2
x, xj

2 ≤ Au x 2, for all x ∈H 6

IfAl = Au, then xn is called a tight frame associated with
a sequence of scalars with respect to Pn, μn . If Al = Au = 1,
then xn is called a Parseval frame associated with a sequence
of scalars with respect to Pn, μn .

It should be noted that xn is a FASS for H associated
with a sequence of scalars with respect to Pn, μn if and only
if μixi i∈Pn

∞
n=1

is a frame for H .

Definition 2. Let Pn
∞
n=1 be a sequence of subsets of ℕ as

defined in Definition 1. For an orthonormal basis en of
ℓ2, let us consider

ℓ2Pn
= 〠

j∈Pn

αjej αj are scalars and n ∈ℕ ,

〠
n∈ℕ

⊕ ℓ2Pn

ℓ2

= un : un ∈ ℓ2Pn
and 〠

∞

n=1
un

2 <∞

7

One may observe that ℓ2Pn
, n ∈ℕ are subspaces of ℓ2. An

inner product defined on ∑n∈ℕ ⊕ ℓ2Pn ℓ2
is given by

un , vn = 〠
∞

n=1
un, vn , for un , vn ∈ 〠

n∈ℕ
⊕ ℓ2Pn

ℓ2

8

One can handily corroborate that ∑n∈ℕ ⊕ ℓ2Pn ℓ2
is a

Hilbert space.
It can easily be substantiated that the operator

T B ∑n∈ℕ ⊕ ℓ2Pn ℓ2
⟶H given by

T B 〠
i∈Pn

μiei

∞

n=1

= 〠
∞

n=1
〠
i∈Pn

μixi 9

is bounded and is called the synthesis operator of the
frame xn associated with a sequence of scalars μn .
Also, the bounded operator T ∗

B H ⟶ ∑n∈ℕ ⊕ ℓ2Pn ℓ2

given by

T ∗
B x = 〠

i∈Pn

x, μixi ei
∞

n=1

10

is called the analysis operator of the frame associated with a
sequence of scalars μn . By composing operators T B and
T ∗

B, we obtain frame operator SB =T BT
∗
B H ⟶H

given by

SB x = 〠
∞

n=1
〠
i∈Pn

x, μixi μixi = 〠
∞

n=1
〠
i∈Pn

μi
2 x, xi xi 11

Let xn be a frame associated with a sequence of
scalars μn . Let T B and T ∗

B be synthesis and analysis
operators, respectively, and let SB be the frame operator
of the frame xn . One may promptly observe that

S−1
B SB = IH = S−1

B T BT
∗
B 12

Therefore, we have T ∗
B =T ∗

BS
−1
B T BT

∗
B. So, S

−1
B T B is

the pseudoinverse of T ∗
B, and T ∗

BS
−1
B T B is a projection

from ∑n∈ℕ ⊕ ℓ2Pn ℓ2
onto T ∗

B H .

If xn is a Parseval frame forH with respect to Pn, μn ,
then T BT

∗
B = IH ; that is, T ∗

B is isometry.
Given a Parseval frame xn for H with respect to

Pn, μn , the following result establishes that there exist a
Hilbert space K containing H and an orthonormal frame
yn for H with respect to Pn, μn such that the orthogonal

projection of yn onto H is xn for each n. One may observe
that (Proposition 1.1 in [12]) a classic result in frame theory
is closely related to Theorem 3.

Theorem 3. Let xn be a Parseval frame associated with a
sequence of scalars for H with respect to Pn, μn , where
scalars μn are nonzero. Then, there exist a Hilbert spaceK with
H as a subspace ofK and an orthonormal frame yn associ-
ated with a sequence of scalars for K with respect to Pn, μn
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such that PH yn = xn, for all n ∈ℕ, where PH is a projection
from K onto H .

Proof. Let K =H ⊕ kerT B and PkT B
be orthogonal projec-

tion from ∑n∈ℕ ⊕ ℓ2Pn ℓ2
onto kerT B. Define yi = xi + 1/μi

PkerT B
ei ∈K =H ⊕ kerT B, x ∈H , and v = ∑i∈Pn

viei
∈ kerT B. Further, define LB K ⟶ ∑n∈ℕ ⊕ ℓ2Pn ℓ2

as

LB x ⊕ v = 〠
i∈Pn

x ⊕ v, μiyi 13

This gives

LB x ⊕ v 2 = 〠
∞

n=1
〠
i∈Pn

μi
2 x, xi 2 + 〠

∞

n=1
〠
i∈Pn

vi
2

= T ∗
B x 2 + v 2

= x 2 + v 2

= x ⊕ v 2

14

Thus, LB is an isometry that is L∗
BLB = IK . Also,

we know that QB = I −T ∗
BT B is a projection from

∑n∈ℕ ⊕ ℓ2Pn ℓ2
onto kerT B. And we have

μiyi, μjyj = μi xi +
1
μi
QB ei , μj xj +

1
μj

QB ej

= μixi, μ jxj + QB ei ,QB ej

= μixi, μ jxj + ei,QB ej

= μixi, μ jxj + ei, I −T ∗
BT B ej

= μixi, μ jxj + ei, ej − ei,T ∗
BT Bej

= μixi, μ jxj + ei, ej − T Bei,T Bej

= ei, ej
= δij

15

3. Quantum Measurement

According to the well-known spectral theorem, the
projection-valued measures (PVMs) or spectral measures
correlate one to one with the self-adjoint operators. In con-
ventional quantum mechanics, quantum observables are
represented by PVMs. PVMs are defined in [9, 13–16] as
follows.

3.1. Projection-Valued Measure (PVM). A PVM on Hilbert
space H is any set of operators En on H which satisfies
the following:

(i) Each operator En is a self-adjoint projection for all
n ∈ℕ

(ii) EiEj = 0, i ≠ j

(iii) ∑∞
n=1En = IH

Let B X be a σ-algebra of the subsets of a locally com-
pact space X and L H be the set of bounded operators on
Hilbert space H . A positive operator-valued measure
(POVM) is a function Π B X ⟶L H such that

(i) For all U ∈B X , Π U is a positive self-adjoint
operator

(ii) Π ϕ = 0
(iii) For all disjoint subsets Ui

∞
i=1 ⊂B X , we have

Π
∞

i=1
Ui = 〠

∞

i=1
Π Ui 16

(iv) Π X = IH

The representation of quantum observables by POVMs is
found to be more appropriate than by spectral measures. In
1940s, POVMs were defined to study some extensions of oper-
ators (symmetric). Later, around 1970s, POVMs were used as a
tool to describe the quantum measurements. It was observed
that POVMs are an extension of quantum observable that are
embodied by a spectral measure (PVMs). Presently, POVMs
are used as a basic tool in the study of quantum information
theory [17] and quantum optics. In [18], Ali studied certain
geometrical properties of POVM, defined on the Borel sets of
locally compact space X, taking values in the set of all bounded
operators on a separable Hilbert space. In terms of POVM for
observables, a thorough examination of the basic ideas of
quantum theory as well as current experiments connected to
it is presented in [19]. The broad statistical (convex) approach
framework in [20] presents a purely statistical characterization
of measurements of observables (characterized by spectral mea-
sures in standard quantum mechanics formalism). In [21],
Prugovečki studied the stochastic quantum mechanics. The
necessity of using non-normalized POVM is also described in
order to understand the idea of quantum localization in space-
time. POVM is precisely defined in [13, 14, 22] as follows.

3.2. Positive Operator-Valued Measure (POVM). A POVM
on Hilbert spaceH is any set of operators En onH which
satisfies the following conditions:

(i) Each operator En is positive, for all n ∈ℕ

(ii) ∑∞
n=1En = IH

The quantum observables delineated by POVMs are like
a generalization of the basic or standard quantum observ-
ables. So POVMs are generally called unsharp observables
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or generalized observables. A very important result which
discusses the interconnection between POVMs and PVMs
is the Naimark dilation theorem. However, its interpretation
from physical perspective is not very clear, and so there is
some awkwardness in interpreting the Hilbert space H .

It is well known that a Parseval frame defines a POVM
(see, for example, [23]). For the convenience of the reader,
we state and prove this result in the particular case of Parse-
val frames associated with a sequence of scalars.

Theorem 4. Let xn be Parseval frame associated with a
sequence of scalars for H with respect to Pn, μn , and let
En x =∑i∈Pn

x, μixi μixi, for all n ∈ℕ. Then, En is a
POVM on H .

Proof. First, we show that each En is a positive operator. For
x ∈H , we obtain

En x , x = 〠
i∈Pn

x, μixi μixi, x = 〠
i∈Pn

x, μixi 2 ≥ 0

17

To establish the completeness relation, let x ∈H . Then,

〠
∞

n=1
En x = 〠

∞

n=1
〠
i∈Pn

x, μixi μixi = 〠
∞

n=1
〠
i∈Pn

μi
2 x, xi xi = x

18

In the following result, we show that POVM in a Hilbert
space can give rise to a Parseval frame associated with a
sequence of scalars for H .

Theorem 5. Let Π be a POVM on a Hilbert space H . Then,
there exist a disjoint partition Pn of ℕ with Pn finite for all
n ∈ℕ and a sequence of scalars μn and a sequence xn in
H such that xn is a Parseval frame associated with a
sequence of scalars for H with respect to Pn, μn .

Proof. Let Pn be disjoint partitions of ℕ with Pn finite for
all n ∈ℕ. Note that Π Pn is positive and self-adjoint oper-
ator. So, in view of the spectral theorem of positive operator,
there exists an orthonormal set vj j∈Pn

in H and positive

numbers ξj j∈Pn
such that for all x ∈H , we have

Π Pn x = 〠
j∈Pn

ξj x, vj vj = 〠
j∈Pn

x, ξjvj ξjvj 19

But ℕ = ∞
n=1Pn, and so, we obtain

x =Π ℕ x =Π
∞

n=1
Pn x = 〠

∞

n=1
Π Pn x 20

Taking xi = vi and μi = ξi, for i ∈ℕ, we get

x = 〠
∞

n=1
〠
i∈Pn

x, μixi μixi = 〠
∞

n=1
〠
i∈Pn

μi
2 x, xi xi, for all x ∈H

21

We shall now prove Naimark-type results using frames
associated with a sequence of scalars. More precisely, we
prove that an orthonormal frame associated with a sequence
of scalars represents projection-valued measure in Hilbert
spaces.

Theorem 6. Let xn be an orthonormal frame associated
with a sequence of scalars forH with respect to Pn, μn . Also,
let En x =∑i∈Pn

x, μixi μixi, for n ∈ℕ. Then, En is a
projection-valued measure on H .

Proof. It is clear that En is self-adjoint for n ∈ℕ and

x = 〠
∞

n=1
En x = 〠

∞

n=1
〠
i∈Pn

x, μixi μixi, for all x ∈H 22

We are now left to show that En is a projection for n ∈ℕ.
Let x ∈H . Then, we have

E2
n x = 〠

i∈Pn

E2
n x , μixi μixi

= 〠
i∈Pn

〠
j∈Pn

x, μjx j μjxj, μixi μixi

= 〠
i∈Pn

x, μixi μixi

= En x

23

Finally, we show that a Parseval frame associated with a
sequence of scalars can also give a PVM through dilation
theorem.

Theorem 7. Let xn be a frame associated with a sequence
of scalars for H with respect to Pn, μn . Then, there exist a
Hilbert space K with H as a subspace of K , yn ⊆K with
PH yn = xn, for all n ∈ℕ, and a sequence of operators Fn
on K such that Fn is a projection-valued measure on K ,
where PH is a projection from K onto H and Fn y =
∑i∈Pn y, μiyi μiyi, for y ∈K .

Proof. Proof follows from Theorem 3 and Theorem 6.

A quantum system in a pure state is characterized by a
normalized vector ψ in a Hilbert space H . Information
about a quantum system is extracted by subjecting the sys-
tem to a measurement. In quantum theory, the outcome of
a measurement is inherently probabilistic, with the probabil-
ities of the outcomes of any conceivable measurement deter-
mined by the state vector ψ ∈H . Now, we will show how
Parseval frame associated with a sequence of scalars can be
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used in quantum measurement. Let xn be Parseval frame
associated with a sequence of scalars for H with respect to
Pn, μi . Take En x =∑i∈Pn

x, μixi μixi, for x ∈H . Suppose
the measurement is performed upon a quantum system in
a pure state ψ. Then, the probability of the n outcome is
given by

p n = ψ, Enψ = ψ, 〠
i∈Pn

ψ, μixi μixi = 〠
i∈Pn

ψ, μixi 2

24

Moreover, one can notice that

〠
∞

n=1
p n = 〠

∞

n=1
〠
i∈Pn

ψ, μixi 2 = ψ 2 = 1 25

Let ψi be unit normed states in Hilbert space H with
corresponding probabilities ρi that sum to 1. If the state of
the system is ψi, for i ∈ℕ, then the measurement provides us
the information that the system is in the ith state with high
probability of p j , given by

p j = ψi, Ejψi =
1 if i = j,
0 if i ≠ j

26

The probability that the output of our measurement
device will be j is ψi, Ejψi if the state of the system state
is ψi. Consequently, ψi, Eiψi is the probability of correct
measurement. Since each ψj occurs with probability ρj, the
average probability of a successful measurement is

E success =E ψi, Ei ψi
∞
i=1

= 〠
∞

i=1
ρi ψi, Ei ψi

= 〠
∞

i=1
ρi〠

k∈Pi

ψi, μkxk 2

27

Thus, the average probability of incorrect measurement
is given by

pe = 1 − 〠
∞

i=1
ρi ψi, Ei ψi = 1 − 〠

∞

i=1
ρi〠

k∈Pi

ψi, μkxk 2 28

Note that the probability that we measure the system
erroneously to be ψj is ψi, Ej ψi if the state of the system
is ψi for i ∈ℕ and i ≠ j. Hence, the following relation yields
the average probability of an inaccurate measurement:

E incorrect =E ψi, Ej ψi i≠j

=〠
i≠j
ρi ψi, 〠

k∈Pj

ψi, μkxk μkxk

=〠
i≠j
ρi 〠

k∈Pj

ψi, μkxk 2

29

Next, we use a frame associated with a sequence of sca-
lars for H with respect to Pn, μn to provide the average
probability of an inaccurate measurement.

Theorem 8. Let ψi be unit normed states in Hilbert space
H with corresponding probabilities ρi that sum to 1 and
xn be Parseval frame associated with a sequence of scalars

for H with respect to Pn, μn . Then, the average probability
of an incorrect measurement is given by

E incorrect = pe = 1 − 〠
∞

i=1
ρi〠

k∈Pi

ψi, μkxk 2 30

Proof. We know that

〠
i≠j
ρi ψi, Ej ψi + 〠

i∈ℕ
ρi ψi, Ei ψi = 〠

i,j∈ℕ
ρi ψi, Ej ψi

= 〠
i∈ℕ

ρi ψi, 〠
j∈ℕ

Ej ψi

= 〠
i∈ℕ

ρi ψi, ψi = 1

31

Thus, we obtain

E incorrect = pe = 1 − 〠
∞

i=1
ρi〠

k∈Pi

ψi, μkxk 2 32

4. Conclusion

Positive operator-valued measures (POVMs) have long been
the subject of the study. Later, POVMs were used as a tool to
delineate the quantum measurements. According to the
Naimark dilation theorem, POVMs are seen as an extension
of a quantum observable that is represented by spectral mea-
sures (or PVMs). POVMs are currently employed in the
research of quantum information theory and quantum
optics as a basic tool. In this article, we proved various
Naimark-type results using frames associated with a
sequence of scalars. The average probability of an incorrect
measurement is then obtained using a frame associated with
a sequence of scalars.
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