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This study establishes a new method to investigate bounds of ak ; k ≥ n , for certain general classes of bi-univalent functions.
The results include a number of improvements and generalizations for well-known estimations. We also discuss bounds of
na2n − a2n−1 and consider several corollaries, remarks, and consequences of the results presented in this paper.

1. Introduction and Preliminary

In the usual notation, let A denote the class of functions
f ζ in the form

f ζ = ζ + 〠
∞

k=2
akζ

k, 1

which are analytic in the open unit disk U = ζ ∈ℂ ζ
< 1 and normalized by f 0 = f ′ 0 − 1 = 0. We also
denote by S the subclass of A consisting of univalent
(one-to-one) functions in U. Further, the class P is consisting
of analytic functions p ζ = 1 +∑∞

n=1cnζ
n satisfying p 0 = 1

and Re p ζ > 0, ζ ∈U . Note that cn ≤ 2, for n ≥ 1, by the
Carathéodory lemma. It is well known that every function f
∈ S, in the form (1), has an inverse function f −1 defined by
f −1 f ζ = ζ, ζ ∈U and f f −1 w =w, w < 1/4 , accord-
ing to the Koebe one-quarter theorem (see [1]). In fact, the
inverse function g = f −1 is given by

g w = f −1 w =w − a2w
2 + 2a22 − a3 w3 − 5a32 − 5a2a3 + a4 w4+⋯

≕w + 〠
∞

k=2
bkw

k,  w < r0 f , r0 f ≥
1
4

2

A function f ∈A is said to be bi-univalent in U if both f
and f −1 are univalent in U. The class of bi-univalent func-
tions in U is denoted by Σ. As can be observed from studies
[2–4], research on the class of bi-univalent functions started
some time ago, probably around the year 1967. Indeed, the
bounds for the coefficients of functions in Σ were first inves-
tigated by Lewin [2], where he showed that a2 < 1 51. Later,
Brannan and Clunie [4] conjectured that a2 ≤ 2, and Net-
anyahu [3] proved that a2 ≤ 4/3 for functions of Σ whose
images cover the open unit disk. The best known estimate
for a2 is 1.485 given by Tan [5]. Brannan and Taha [6] have
introduced nonsharp estimates for the first two coefficients of
the strongly bistarlike, bistarlike, and biconvex function clas-
ses. In the recent years, interest in the subject has returned;
for example, numerous publications have been published
since 2010 [7–27].
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Since the condition of bi-univalency renders the behav-
ior of the higher coefficients unpredictable, determining
the boundaries for an ; n ≥ 4 is a notable problem in geo-
metric function theory. Ali et al. [28] also proclaimed it to be
an open topic. Accordingly, numerous writers have esti-
mated the initial nonzero coefficient an for a variety of Σ
subclasses using the Faber polynomials (see [29–36]). Al-
Refai and Ali, on the other hand, recently developed an
alternative approach to estimating an. They have in fact
validated the following intriguing theorem.

Theorem 1 (see [10]). Let the function

f ζ = ζ + 〠
∞

k=n
akζ

k ; n ≥ 2 3

be univalent in U with f −1 w =w +∑∞
k=nbkw

k ; w < r0 f ,
r0 f ≥ 1/4 . Then,

b2n−1 = na2n − a2n−1, bk = −ak, for n ≤ k ≤ 2n − 2 4

This yields an ≤ 4 − 2/n and na2n − a2n−1 ≤ 2n − 1, for
f ∈ Σ. Motivated by Theorem 1, bounds of ak ; k ≥ n and
na2n − a2n−1 can be investigated for various subclasses of Σ.
In this paper, we investigate such bounds for the following
general interesting subclass of Σ and for some of its special
cases. Some improvements and generalizations for well-
known results will be obtained.

Definition 2. A function f ζ = ζ +∑∞
k=nakζ

k ∈ Σ, n ≥ 2 is

said to be in the classBh,p
Σ,n η   η ≥ 1 , if the following con-

ditions are satisfied:

1 − η
f ζ

ζ
+ ηf ′ ζ ∈ h U ,  ζ ∈U ; η ≥ 1 , 5

1 − η
g w
w

+ ηg′ w ∈ p U ,  w ∈U ; η ≥ 1 , 6

where h, p ∈P and

g w = f −1 w =w + 〠
∞

k=n
bkw

k 7

The functions h ζ and p ζ can be specialized to pro-
vide interesting subclasses of analytic functions. If we set

h ζ = 1 + 〠
∞

k=n
hkζ

k−1, p ζ = 1 + 〠
∞

k=n
pkζ

k−1,  ζ ∈U, 0 ≤ β < 1, n ≥ 2 ,

8

where hk ≤ 2 − 2β and pk ≤ 2 − 2β, for every k ≥ n, and
Re h ζ > β, Re p ζ > β, and ζ ∈U , then the hypoth-
eses of Definition 2 are satisfied, and we have the following
subclass of bi-univalent functions.

Definition 3. A function f ∈ Σ, in the form (3), is said to be in
the class BΣ,n β, η , n ≥ 2 , if the following conditions are
satisfied:

Re 1 − η
f ζ

ζ
+ ηf ′ ζ > β,  ζ ∈U, 0 ≤ β < 1, η ≥ 1 ,

Re 1 − η
g w
w

+ ηg′ w > β,  w ∈U, 0 ≤ β < 1, η ≥ 1 ,

9

where the function g is given by (7).

Similarly, it can be verified that the hypotheses of Defini-
tion 2 are satisfied for the choice

h ζ = ϕ ζ α, p ζ = ψ ζ α,  0 < α ≤ 1 , 10

where the functions ϕ and ψ are defined by

ϕ ζ = 1 + 〠
∞

k=n
ckζ

k−1, ψ ζ = 1 + 〠
∞

k=n
dkζ

k−1,  ζ ∈U, n ≥ 2 ,

11

such that ck ≤ 2 and dk ≤ 2, for every k ≥ n. This provides
the following subclass of bi-univalent functions.

Definition 4. A function f ∈ Σ, in the form (3), is said to be in
the class AΣ,n α, η , n ≥ 2 , if the following conditions are
satisfied:

arg 1 − η
f ζ

ζ
+ ηf ′ ζ ≤

απ

2 ,  ζ ∈U, 0 < α ≤ 1, η ≥ 1 ,

arg 1 − η
g w
w

+ ηg′ w ≤
απ

2 ,  w ∈U, 0 < α ≤ 1, η ≥ 1 ,

12

where the function g is given by (7).

For the special case when n = 2, the class B
h,p
Σ,n η

reduces to the classBh,p
Σ η , which was introduced and stud-

ied by Xu et al. [37]. However, for n = 2 and η = 1, the class
B

h,p
Σ,2 1 was studied earlier by Xu et al. [38], and Definitions

3 and 4 have been defined by Frasin and Aouf [7], for the
case when n = 2.

The following example shows that the subclasses

AΣ,n α, η ,BΣ,n β, η of the general class B
h,p
Σ,n η are

not empty.

Example 5. Consider the function

f ζ = − log 1 − ζ = ζ + 〠
∞

k=2

1
k
ζk 13
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Then, its inverse is given by

f −1 w = 1 − e−w =w + 〠
∞

k=2

−1 k+1

k
wk 14

Now, Re f ′ ζ = Re 1/ 1 − ζ > 1/2 and Re f −1 ′
w = Re e−w > 1/e imply that f ∈BΣ,2 1/e, 1 . Note that
BΣ,2 1/e, 1 ⊂BΣ,2 0, 1 ≔AΣ,2 1, 1 .

With regard to specialization of the parameters of AΣ,n
α, η and BΣ,n β, η which gives other examples of func-
tions that show that those classes are not empty, see Adegani
et al. [39].

2. Main Results

First, we find general coefficient bounds for functions in the

class Bh,p
Σ,n η .

Theorem 6. Let f ζ = ζ +∑∞
k=nakz

k ; n ≥ 2 be in the class

B
h,p
Σ,n η η ≥ 1 . Then,

an ≤min h 2n−2 0 + p 2n−2 0

2n − 2 1 + 2n − 2 η n
,

h n−1 0

n − 1 1 + n − 1 η
,

15

ak ≤
h k−1 0

k − 1 1 + k − 1 η
,  k ≥ n + 1 , 16

na2n − a2n−1 ≤
p 2n−2 0

2n − 2 1 + 2n − 2 η
17

Proof. Let g w =w +∑∞
k=nbkw

k ; n ≥ 2 be the inverse func-
tion of f . According to conditions (5) and (6), we have

h ζ = 1 − η
f ζ

ζ
+ ηf ′ ζ = 1 + 〠

∞

k=n
1 + k − 1 η akζ

k−1,  ζ ∈U ,

p w = 1 − η
g w
w

+ ηg′ w = 1 + 〠
∞

k=n
1 + k − 1 η bkw

k−1,  w ∈U ,

18

where h and p satisfy the hypotheses of Definition 2. A com-
putation shows, for j ≥ n, that

h j−1 ζ = 〠
∞

k=j
k − 1 k − 2 ⋯ k − j + 1 1 + k − 1 η akζ

k−j,  ζ ∈U ,

19

p j−1 w = 〠
∞

k=j
k − 1 k − 2 ⋯ k − j + 1 1 + k − 1 η bkw

k−j,  w ∈U

20

Substituting z = 0 in (19) and w = 0 in (20) yields

aj =
h j−1 0

j − 1 1 + j − 1 η
,  j ≥ n , 21

bj =
p j−1 0

j − 1 1 + j − 1 η
,  j ≥ n 22

It follows that

an =
h n−1 0

n − 1 1 + n − 1 η
, 23

a2n−1 =
h 2n−2 0

2n − 2 1 + 2n − 2 η
, 24

b2n−1 =
p 2n−2 0

2n − 2 1 + 2n − 2 η
25

In view of Theorem 1, (24) and (25) yield that

a2n =
a2n−1 + b2n−1

n
= h 2n−2 0 + p 2n−2 0

2n − 2 1 + 2n − 2 η n
26

Thus, (23) in conjunction with (26) yields (15). Since
b2n−1 = na2n − a2n−1, (25) yields (17). Finally, (16) follows
from (21). This completes the proof of Theorem 6.

Setting n = 2 in Theorem 6 gives the following corollary.

Corollary 7. Let f z = z +∑∞
k=2akz

k be in the class Bh,p
Σ,2 η

η ≥ 1 . Then,

a2 ≤min h″ 0 + p″ 0

4 1 + 2η
, h′ 0

1 + η
, 27

ak ≤
h k−1 0

k − 1 1 + k − 1 η
,  k ≥ 3 , 28

2a22 − a3 ≤
p″ 0

2 1 + 2η
29

Remark 8. The estimate (27) improves that given by Xu et al.
([37], Theorem 3). For k = 3, (28) reduces to estimate of a3
given by Theorem 3 of [37]. Indeed, for η = 1, (27) improves
the bound of a2 and is identical to the bound of a3 given
in Theorem 3 of [38].
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Corollary 9. Let f ζ = ζ +∑∞
k=nakζ

k be in the class BΣ,n β,
η , n ≥ 2 . Then,

an ≤

4 1 − β

n 1 + 2 n − 1 η
, if 0 ≤ β ≤ 1 −

1 + n − 1 η 2

n 1 + 2 n − 1 η
,

2 1 − β

1 + n − 1 η
, if 1 −

1 + n − 1 η 2

n 1 + 2 n − 1 η
≤ β < 1,

ak ≤
2 1 − β

1 + k − 1 η
,  k ≥ n + 1 ,

na2n − a2n−1 ≤
2 1 − β

1 + 2 n − 1 η

30

Proof. Let the functions h and p be defined as in (8). A
computation shows, for k ≥ n, that

h k−1 0 = k − 1 hk ≤ k − 1 2 − 2β , 31

p k−1 0 = k − 1 pk ≤ k − 1 2 − 2β 32

By applying (31) and (32) to Theorem 6, we get the
desired estimates.

The estimate of an in Corollary 9 improves Corollary 3
in [32] and Theorem 1 in [33]. Now, for the special case
when n = 2, we have the following remark.

Remark 10. If f ∈BΣ,2 β, η , then

a2 ≤

2 1 − β

1 + 2η , if 0 ≤ β ≤
1 + 2η − η2

2 1 + 2η ,

2 1 − β

1 + η
, if 1 + 2η − η2

2 1 + 2η ≤ β < 1,

ak ≤
2 1 − β

1 + k − 1 η
,  k ≥ 3 ,

2a22 − a3 ≤
2 1 − β

1 + 2η

33

Note that Remark 10, for k = 3, reduces to Corollary 6 by
Bulut [32]. The estimates of a2 and a3 are much better
than those given by Xu et al. ([37], Corollary 2) and Frasin
and Aouf ([7], Theorem 3.2). Moreover, the estimate of a2
which gives the range of β corresponds to the suitable bound
of a2 , which facilitates Corollary 11 in [40].

Now, for the case whenever η = 1, Corollary 9 reduces to
Theorem 3.2 in [10], for p = 1, as follows.

Remark 11. If f ζ = ζ +∑∞
k=nakζ

k satisfies Re f ′ ζ > β

and Re g′ w > β, then

an ≤

4 1 − β

n 2n − 1 , if 0 ≤ β ≤
n − 1
2n − 1 ,

2 1 − β

n
, if n − 1

2n − 1 ≤ β < 1,

34

ak ≤
2 1 − β

k
,  k ≥ n + 1 , 35

na2n − a2n−1 ≤
2 1 − β

2n − 1
36

The estimate (36) improves that given in Corollary 15 of
[41]. Moreover, when n = 2 and k = 3, Remark 11 reduces to
Corollary 7 by Bulut [32]. In fact, it improves the estimate of
a2 given in Theorem 2 by Srivastava et al. [8] and Corollary
2 by Xu et al. [38], as follows.

Remark 12. If f ζ = ζ +∑∞
k=2akζ

k satisfies Re f ′ ζ > β

and Re g′ w > β, then

a2 ≤

2 1 − β

3 , if 0 ≤ β ≤
1
3 ,

1 − β, if 13 ≤ β < 1,

ak ≤
2
k

1 − β ,  k ≥ 3 ,

2a22 − a3 ≤
2
3 1 − β

37

Remark 13. Note that the function

f ζ = − log 1 − ζ = ζ + 〠
∞

k=2

1
k
ζk, 38

given in Example 5, satisfies the conclusions of Remark 12.
Indeed, in view of Remark 12, we find that

ak = 1
k
≤
2
k

1 − 1
e

,  k ≥ 2 ,

2a22 − a3 = 1
6 ≤

2
3 1 − 1

e

39

The following theorem introduces general coefficient
bounds for functions in the class AΣ,n α, η .
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Theorem 14. Let f , in form (3), be in the class AΣ,n α, η ,
n ≥ 2 . Then,

an ≤

2α

n 1 + 2 n − 1 η
, if 1 ≤ η ≤ 1 + n

n − 1
,

2α
1 + n − 1 η

, if η ≥ 1 + n
n − 1

,

ak ≤
2α

1 + k − 1 η
,  n ≤ k ≤ 2n − 2 ,

a2n−1 ≤
2α2

1 + 2 n − 1 η
,

na2n − a2n−1 ≤
2α2

1 + 2 n − 1 η

40

Proof. Let h ζ = ϕ ζ α and p ζ = ψ ζ α, 0 < α ≤ 1 ,
where ϕ and ψ are defined as in (11). It follows, for j ≥ n, that

ϕ j−1 ζ = 〠
∞

k=j
k − 1 k − 2 ⋯ k − j + 1 ckζ

k−j 41

A computation shows, for n = 2, that

h″ 0 = α α − 1 ϕ′ 0
2
+ ϕ″ 0 = α α − 1 c2

2 + 2 c3 ,

42

and, for n = 3, we have

h 4 0 = α 3 α − 1 ϕ″ 0
2
+ ϕ 4 0

= α 3 α − 1 2 c3
2 + 4 c5

43

Next, for n = 4, we get

h 6 0 = α 10 α − 1 ϕ‴ 0
2
+ ϕ 6 0

= α 10 α − 1 3 c4
2 + 6 c7

44

In general, for n ≥ 2, we obtain

h 2n−2 0 = α
2n − 2

2 n − 1 2 α − 1 ϕ n−1 0
2
+ ϕ 2n−2 0

= α
2n − 2

2 n − 1 2 α − 1 n − 1 cn
2 + 2n − 2 c2n−1

≤
2n − 2

2 n − 1 2 α − 1 α n − 1 2 2 + 2n − 2 2α

= 2n − 2 2α2

45

Similarly,

p 2n−2 0 ≤ 2n − 2 2α2 46

Note that ϕ 0 = 1 and ϕ j−1 0 = 0, for all j = 2,⋯, n − 1
and n ≥ 3. Therefore, for every n ≥ 2, we obtain

h k−1 0 = αϕ k−1 0 = k − 1 ck α ≤ k − 1 2α ,  n ≤ k ≤ 2n − 2

47

By applying (45), (46), and (47) to Theorem 6, we obtain
the desired estimates. This completes the proof of Theorem 14.

Corollary 15. If f ∈AΣ,2 α, η , then

a2 ≤

2α

2 1 + 2η
, if 1 ≤ η ≤ 1 + 2,

2α
1 + η

if η ≥ 1 + 2,

a3 ≤
2α2

1 + 2η
,

2a22 − a3 ≤
2α2

1 + 2η

48

Remark 16. The estimates of a2 and a3 in Corollary 15
improve those given in Theorem 2.2 by Frasin and Aouf
[7]. In particular, for η = 1, the bounds improve the given
estimates in Theorem 1 by Srivastava et al. [8]. Also, the esti-
mate of a2 improves that given in Corollary 1 by Xu et al.
[37] and Corollary 1 by Xu et al. [38].

Corollary 17. If f ∈AΣ,3 α, η , then

a3 ≤

2α

3 1 + 4η
, if 1 ≤ η ≤ 1 + 3

2
,

2α
1 + 2η

if η ≥ 1 + 3
2
,

a4 ≤
2α

1 + 3η
,

a5 ≤
2α2

1 + 4η
,

3a23 − a5 ≤
2α2

1 + 4η

49

3. Conclusion

Geometric function theory is a branch of complex analysis
with a rich history that studies various analytical tools to
study the geometric features of complex-valued functions.
Due to the major importance of the study of the coefficients
which plays an important role in the theory of univalent
functions, the primary goal of this work is to determine coef-
ficient bounds for certain general classes of bi-univalent
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functions. Making use of Theorem 1 due to Al-Refai and Ali
[10], a new method of estimating coefficients is applied, and
interesting results that improve and generalize well-known
estimates are obtained. The used technique may motivate
other researchers to study other classes of bi-univalent func-
tions and obtain new results.
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