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This paper gives a review of steady state and pseudosteady state productivity equations for an unfractured fully penetrating vertical
well in a permeability anisotropic reservoir. This paper also studies the effects of drainage area, reservoir boundary conditions,
drainage shape, and well location on productivity. The production performances of an unfractured vertical well in a circular
reservoir, a sector fault reservoir and a rectangular reservoir are studied and compared. Mechanical skin factor is included in the
productivity equations. This paper examines the steady state and pseudosteady state production performance of oil wells with
constant flow rates in different drainage shapes, a library of productivity equations is introduced, several combinations of closed
and/or constant pressure boundary conditions are considered at lateral reservoir boundaries. The equations introduced in this
paper can be used to determine the economical feasibility of a drilling an unfractured fully penetrating vertical well. It is concluded
that, drainage area and reservoir boundary conditions have significant effects on productivity of a well, and productivity is a weak
function of drainage shape and well location.

1. Introduction

Well productivity is one of primary concerns in field devel-
opment and provides the basis for field development strat-
egy. To determine the economical feasibility of drilling a well,
petroleum engineers need reliable methods to estimate its
expected productivity. Petroleum engineers often relate the
productivity evaluation to the long-time performance behav-
ior of a well, that is, the behavior during pseudosteady state
or steady state flow [1].

Substituting Darcy’s equation into the equation of conti-
nuity, the steady state productivity equation for an unfrac-
tured fully penetrating vertical well in a permeability isotropic
circular reservoir with constant pressure outer boundary is
obtained below [2]:

Qw ¼ FD
2πkh Pe − Pwð Þ= μBð Þ

ln Re=Rwð Þ ; ð1Þ

where k is reservoir permeability; h is payzone thickness; μ is
oil viscosity; Pe, Pw are pressures at drainage outer boundary

and wellbore, respectively; Re, Rw are radii of drainage area
and wellbore, respectively; Qw is well flow rate; FD is the unit
conversion factor [3]. In oil field units, FD ¼ 0:001127 [4].

The pseudosteady state productivity equation for an unfrac-
tured fully penetrating vertical well in a permeability isotropic
circular reservoir with closed outer boundary is given by [5]:

Qw ¼ FD
2πkh Pa − Pwð Þ= μBð Þ
ln Re=Rwð Þ − 3=4

; ð2Þ

where Pa is the average reservoir pressure throughout the
circular drainage area.

To account for irregular drainage shapes or asymmetrical
positioning of a well within its drainage area, the following
productivity equation was proposed by Dietz [6]:

Qw ¼ FD
2πkh Pa − Pwð Þ= μBð Þ

1=2ð Þ ln 2:2458A= CAr2wð Þ½ � ; ð3Þ

where CA is shape factor and A is the drainage area.
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Dietz [6] evaluated shape factor for rectangles with single
well in various locations, but the shape factors obtained by
Dietz are only applicable to rectangular shapes whose sides
are integral ratios. Hagoort [7] presented an algorithm to
calculate productivity of a well in a rectangle with arbitrary
aspect ratio.

Well productivity is often evaluated using the productiv-
ity index, which is defined as the production rate per unit
pressure drawdown [8]. Hagoort [9] presented an analytical
formula for the stabilized productivity index of an arbitrary
well in an arbitrary closed, naturally fractured reservoir that
can be modeled as a double-porosity reservoir. Hagoort [10]
also presented an algorithm to calculate the productivity
index of a well with a vertical, infinite-conductivity fracture
in a closed rectangular reservoir for a wide range of fracture
lengths and reservoir aspect ratios. Friehauf et al. [11] devel-
oped a model to calculate the productivity index of a finite-
conductivity fractured well, including the effect of fracture-face
damage caused by fluid leakoff.

The production performance of multiple wells system
has received attention in the last two decades.

Valko et al. [12] presented pseudosteady state productivity
index for multiple wells producing from a closed rectangular
reservoir. Umnuayponwiwat et al. [13] presented equations of
inflow performance of multiple vertical and horizontal wells in
closed systems. Marhaendrajana and Blasingame [14] pre-
sented a solution and associated analysis methodology to eval-
uate single well performance behavior in a multiple wells
reservoir system.

Lu [1] presented steady state and pseudosteady state
productivity equations for an off-center unfractured par-
tially penetrating vertical well in a circular reservoir and a
rectangular reservoir, but the mechanical skin factor due to
formation damage or stimulation is not included in his
equations.

The term vertical well in this paper is defined as a well-
bore penetrating nearly vertically into a nearly horizontal,
nonhydraulically fractured payzone [15].

A review of steady state and pseudosteady state produc-
tivity equations for an unfractured fully penetrating vertical
well in a permeability anisotropic reservoir is given in this
paper. The effects of drainage area, reservoir boundary con-
ditions, drainage shape, and well location on productivity are
also studied. The production performances of an unfrac-
tured vertical well in a circular reservoir, a sector fault res-
ervoir, and a rectangular reservoir are compared. Several
combinations of closed and/or constant pressure boundary
conditions are considered at lateral reservoir boundaries,
and mechanical skin factor is included in the productivity
equations.

In this paper, all parameters of reservoir, wellbore, and
fluid properties in the following equations are in oil field
units as shown in Table 1. The unit conversion factor FD
in the following equations is equal to 0.001127, FD ¼
0:001127.

2. Reservoir Boundary Conditions and
Drainage Shape

In this paper, the following assumptions are made:

(1) The top and bottom boundaries of a three-dimensional
reservoir are impermeable, and the reservoir is perme-
ability anisotropic, the production occurs through an
unfractured fully penetrating vertical well with radius
Rw, thus the three-dimensional reservoir is reduced to a
two-dimensional reservoir.

(2) Before production, the pressure is uniformly distrib-
uted in the reservoir, equal to the initial pressure Pi. If
the reservoir has constant pressure boundaries (edge
water, gas cap, and bottom water), the pressure Pe is
equal to the initial value Pi at such boundaries during
production.

(3) A single phase fluid, of small and constant compress-
ibility Cf , constant viscosity μ, and formation volume
factor B, flows from the reservoir to the well. Fluid
properties are independent of pressure. Gravity forces
are neglected.

(4) There is no water encroachment or water/gas coning.
Edge water, gas cap, and bottom water are taken as
constant pressure boundaries, multiphase flow effects
are ignored.

In this paper, mechanical skin factor due to formation
damage or stimulation is included in the productivity equa-
tions for an unfractured fully penetrating vertical well in a
permeability anisotropic reservoir.

For an unfractured fully penetrating vertical well in an
isotropic reservoir, if we refer to the additional pressure drop
in the skin zone as ΔPs, then [16]

ΔPs ¼
1
FD

� �
μBQw

2πkh

� �
Sm; ð4Þ

TABLE 1: Oil field units for the parameters of reservoir, wellbore, and
fluid properties.

Parameter Oil field unit

Formation volume factor, B bbl/STB
Pay zone thickness, h ft
Permeability, k mD
Pressure, P psi
Productivity index, PI STB/day/psi
Well flow rate, Qw STB/day
Off-center (off-vertex) distance, R0 ft
Wellbore radius, Rw ft
Drainage radius, Re ft
Length of rectangular reservoir, Xe ft
Width of rectangular reservoir, Ye ft
Oil viscosity, μ cp
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where Sm is mechanical skin factor due to formation damage
or stimulation.

In a permeability anisotropic reservoir, there holds [3]

ΔPs ¼
1
FD

� �
μBQw

2πkrh

� �
Sm; ð5Þ

kr is the radial permeability. In a rectangular reservoir, we
always assume kr ¼

ffiffiffiffiffiffiffiffiffi
kxky

p
.

Figure 1 is a schematic of an off-center unfractured fully
penetrating vertical well in a circular reservoir with radius Re

and the off-center distance is R0. The following two cases of
different lateral boundary conditions are considered for a
circular reservoir:

Case 1: Constant pressure lateral boundary

Pjr¼Re
¼ Pe ¼ Pi: ð6Þ

Case 2: Impermeable lateral boundary

∂P
∂r

����
r¼Re

¼ 0: ð7Þ

Figure 2 is a schematic of an unfractured fully penetrat-
ing vertical well in a sector fault reservoir with radius Re, the
well is on the bisector line, the well location angle θw ¼ Φ=2,
and sector angleΦ ¼ π=n; where n is an integer number, and
R0 is off-vertex distance of the well.

The two sides of the angle are impermeable, that is, the
sector reservoir is with two sealing faults

∂P
∂N

����
OA

¼ 0;  
∂P
∂N

����
OB

¼ 0; ð8Þ

where ∂P=∂NjOA;OB are the exterior normal derivatives of
pressure on the two sides of angle of the sector area.

Case 1: Constant pressure outer boundary

If the outer boundary is with edge water, during produc-
tion the pressure at the outer boundary is always equal to
initial reservoir pressure Pi.

Pjr¼Re
¼ Pe ¼ Pi: ð9Þ

Case 2: Outer boundary is impermeable

∂P
∂r

����
r¼Re

¼ 0: ð10Þ

Figure 3 is a schematic of an off-center unfractured fully
penetrating vertical well in a rectangular reservoir with length (x
direction) Xe and width (y direction) Ye. The original point of
the rectangular coordinate system is the lower left corner point
of the rectangular area, the well is located at the point (Xw, Yw).
And the following five cases of different lateral boundary con-
ditions are applicable to a rectangular reservoir [17].

Case 1: the rectangular reservoir is surrounded by a
strong edge water drive, such that the pressures at the four
lateral boundaries are assumed constant and equal to the
reservoir initial pressure during production

Well R0

R e

FIGURE 1: An off-center well in a circular reservoir.

R0

Re

Φ

θ
w

O

A

B

FIGURE 2: A well in a sector fault reservoir.

X
w

Xe

Y
w

Ye

FIGURE 3: A well in a rectangular reservoir.
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Pjx¼0 ¼ Pjx¼Xe
¼ Pjy¼0 ¼ Pjy¼Ye

¼ Pe ¼ Pi: ð11Þ

Case 2: Only two opposite lateral boundaries are at con-
stant pressure. The other two opposite lateral boundaries are
considered as no-flow (impermeable) boundaries

Pjy¼0 ¼ Pjy¼Ye
¼ Pe ¼ Pi;  

∂P
∂x

����
x¼0

¼ ∂P
∂x

����
x¼Xe

¼ 0: ð12Þ

Case 3: Only one lateral boundary is at constant pressure,
while the other three lateral boundaries are considered as no-
flow (impermeable) boundaries

Pjy¼Ye
¼ Pe ¼ Pi;  

∂P
∂x

����
x¼0

¼ ∂P
∂x

����
x¼Xe

¼ ∂P
∂y

����
y¼0

¼ 0:

ð13Þ

Case 4: Only one lateral boundary is a no-flow (imper-
meable) boundary, while the other three are at constant
pressure

Pjx¼0 ¼ Pjx¼Xe
¼ Pjy¼0 ¼ Pe ¼ Pi;  

∂P
∂y

����
y¼Ye

¼ 0: ð14Þ

Case 5: Only two adjacent lateral boundaries are at con-
stant pressure, while the other two adjacent lateral bound-
aries are no-flow (impermeable) boundaries

Pjy¼0 ¼ Pjx¼Xe
¼ Pe ¼ Pi;  

∂P
∂x

����
x¼0

¼ ∂P
∂y

����
y¼Ye

¼ 0: ð15Þ

The above five different lateral boundary conditions in
Case 1 through Case 5 are shown in Figure 4(a) through
Figure 4(e), respectively.

3. Productivity Equations in Steady State

This section presents the steady state productivity equations
for an unfractured fully penetrating vertical well located in a
circular reservoir, a sector reservoir and a rectangular reser-
voir, and the mechanical skin factor is included.

3.1. Circular Reservoir. If an off-center unfractured fully pen-
etrating vertical well is located in a permeability isotropic
circular reservoir which has a constant pressure outer bound-
ary, then the steady state productivity equation is [1]

Qw ¼ FD
2πkh Pe − Pwð Þ= μBð Þ

ln R2
e − R2

0ð Þ= ReRwð Þ½ � þ Sm
; ð16Þ

(0, 0) (Xe, 0)

(0, Ye) (Xe, Ye)

Y

X

Impermeable boundary
Constant pressure boundary

ðaÞ

(0, 0) (Xe, 0)

(0, Ye) (Xe, Ye)

Y

X

Impermeable boundary
Constant pressure boundary

ðbÞ

(0, 0) (Xe, 0)

(0, Ye) (Xe, Ye)

Y

X

Impermeable boundary
Constant pressure boundary

ðcÞ

(0, 0) (Xe, 0)

(0, Ye) (Xe, Ye)

Y

X

Impermeable boundary
Constant pressure boundary

ðdÞ

(0, 0) (Xe, 0)

(0, Ye) (Xe, Ye)

Y

X

Impermeable boundary
Constant pressure boundary

ðeÞ
FIGURE 4: Lateral boundary conditions for rectangular reservoir: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, and (e) Case 5.
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where R0 is off-center distance of the well, Sm is mechanical
skin factor due to formation damage or stimulation, and FD is
the unit conversion factor. In oil field units, FD ¼ 0:001127.

If the well is in a permeability anisotropic reservoir, then

Qw ¼ FD
2πkrh Pe − Pwð Þ= μBð Þ

ln R2
eD − R2

0Dð Þ= ReDRwDð Þ½ � þ Sm
: ð17Þ

The definitions of ReD;RoD;RwD are given in Appendix A.
For a well located at the center, the off-center distance

R0= 0, then Equation (16) reduces to

Qw ¼ FD
2πkh Pe − Pwð Þ= μBð Þ
ln Re=Rwð Þ þ Sm

: ð18Þ

If Sm= 0, Equation (18) is equivalent to Equation (1),
which is the well-known steady state productivity equation
for an unfractured fully penetrating vertical well located at
the center of a permeability isotropic circular reservoir in the
literature [2].

3.2. Sector Fault Reservoir. If an unfractured fully penetrating
vertical well is located in a permeability anisotropic sector fault
reservoir with outer boundaries indicated in Equations (8) and
(9), the well is on the bisector line, the well location angle
θw ¼ Φ=2, off-vertex distance is R0, sector angle Φ ¼ π=n;
and n is an integer number, we have

Qw ¼ FD
2πkrh Pi − Pwð Þ= μBð Þ

ln Γð Þ þ Sm
; ð19Þ

where

Γ ¼ 1 − R2n
0Dð Þ 1 − 2R2n

0D cos 2nθwð Þ þ R4n
0D½ �1=2

2nRwD R2n−1
0D sin nθwð Þ ; ð20Þ

Γ is sector shape function in steady state, the definitions of
RoD;RwD are given in Appendix A.

If permeability is isotropic, kr ¼ k; consequently,

Γ ¼ 1 − R0=Reð Þ2n½ � 1 − 2 R0=Reð Þ2n cos 2nθwð Þ þ R0=Reð Þ4n½ �1=2
2n Rw=R0ð Þ R0=Reð Þ2n−1 sin nθwð Þ ;

ð21Þ

then

Qw ¼ FD
2πkh Pi − Pwð Þ= μBð Þ

ln Γð Þ þ Sm
: ð22Þ

For n= 1, 2, 3, 4, 5, 6, 8, 9, 10, and Γ can be found in
Table 2.

3.3. Rectangular Reservoir. If an off-center unfractured fully
penetrating vertical well is located in a permeability isotropic

rectangular reservoir which has at least one constant pres-
sure outer boundary, we have the following five cases:

Case 1: The lateral boundary condition is defined by
Equation (11), then [1]

Qw ¼ FD
2πkh Pi − Pwð Þ= μBð Þ

1=2 ln T1 × T2= T3 × T4ð Þ½ � þ Sm
; ð23Þ

where

T1 ¼ sin2 πYw=Yeð Þ=sin2 πRw= 2Yeð Þ½ �; ð24Þ

T2 ¼ sin2 πYw=Yeð Þ þ sinh2 πXe=Yeð Þ½ �= sin2 πRw= 2Yeð Þ½ �f
þ sinh2 πXe=Yeð Þg;

ð25Þ

T3 ¼ sin2 πYw=Yeð Þ þ sinh2 πXw=Yeð Þ½ �= sin2 πRw= 2Yeð Þ½ �f
þ sinh2 πXw=Yeð Þg;

ð26Þ

T4 ¼ sin2 πYw=Yeð Þ þ sinh2 π=Yeð Þ Xe − Xwð Þ½ �f g=
sin2 πRw= 2Yeð Þ½ � þ sinh2 π=Yeð Þ Xe − Xwð Þ½ �f g:

ð27Þ

For a fully penetrating vertical well at the center of an
isotropic square reservoir, we have Xw ¼ Xe=2 ¼ Yw ¼
Ye=2; then Equation (23) can be approximated by the follow-
ing expression

Qw ¼ FD
2πkh Pi − Pwð Þ= μBð Þ

1=2 ln τ1 × τ2= τ3 × τ4ð Þ½ � þ Sm
; ð28Þ

where

τ1 ¼ 1:0=sin2 πRw= 2Yeð Þ½ �; ð29Þ

τ2 ¼ 1þ sinh2 πð Þ½ �= sin2 πRw= 2Yeð Þ½ � þ sinh2 πð Þf g;
ð30Þ

TABLE 2: Steady state sector shape functions for special sector angles.

Case Φ = π/n n θw Γ

1 π 1 π/2 1 − R0=Reð Þ4½ �= 2RwR0=R2
eð Þ

2 π/2 2 π/4 1 − R0=Reð Þ8½ �= 4RwR
3
0=R

4
eð Þ

3 π/3 3 π/6 1 − R0=Reð Þ12½ �= 6RwR5
0=R

6
eð Þ

4 π/4 4 π/8 1 − R0=Reð Þ16½ �= 8RwR
7
0=R

8
eð Þ

5 π/5 5 π/10 1 − R0=Reð Þ20½ �= 10RwR9
0=R

10
eð Þ

6 π/6 6 π/12 1 − R0=Reð Þ24½ �= 12RwR
11
0 =R12

eð Þ
7 π/8 8 π/16 1 − R0=Reð Þ32½ �= 16RwR

15
0 =R16

eð Þ
8 π/9 9 π/18 1 − R0=Reð Þ36½ �= 18RwR17

0 =R18
eð Þ

10 π/10 10 π/20 1 − R0=Reð Þ40½ �= 20RwR
19
0 =R20

eð Þ
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τ3 ¼ τ4 ¼ 1þ sinh2 π=2ð Þ½ �= sin2 πRw= 2Yeð Þ½ � þ sinh2 π=2ð Þf g:
ð31Þ

Equation (28) is the steady state productivity equation
for a fully penetrating vertical well located at the center of a
permeability isotropic square reservoir surrounded by a
strong aquifer.

Case 2: The lateral boundary condition is defined by
Equation (12), then [17]

Qw ¼ FD
2πkh Pi − Pwð Þ= μBð Þ

1=2 ln T1 × T2 × T3 × T4ð Þ þ Sm
; ð32Þ

and T1, T2, T3, and T4 have the same meanings as in Equa-
tions (24)–(27), respectively.

Case 3: The lateral boundary condition is defined by
Equation (13), then

Qw ¼ FD
2πkh Pi − Pwð Þ= μBð Þ

1=2 ln T5 × T6 × T7 × T8ð Þ þ Sm
; ð33Þ

where

T5 ¼ 1þ 2 exp −πXw=Yeð Þ cos πYw=Yeð Þ þ exp −2πXw=Yeð Þ½ �
× 1þ 2 exp −πXw=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXw=Yeð Þf g
÷ 1 − 2 exp −πXw=Yeð Þ cos πYw=Yeð Þ þ exp −2πXw=Yeð Þ½ �
÷ 1 − 2 exp −πXw=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXw=Yeð Þf g;

ð34Þ

T6 ¼ 1þ 2 exp −π Xe − Xwð Þ=Ye½ � cos πYw=Yeð Þ þ exp −2π Xe − Xwð Þ=Ye½ �f g
× 1þ 2 exp −π Xe − Xwð Þ=Ye½ � cos πRw= 2Yeð Þ½ � þ exp −2π Xe − Xwð Þ=Ye½ �f g
÷ 1 − 2 exp −π Xe − Xwð Þ=Ye½ � cos πYw=Yeð Þ þ exp −2π Xe − Xwð Þ=Ye½ �f g
÷ 1 − 2 exp −π Xe − Xwð Þ=Ye½ � cos πRw= 2Yeð Þ½ � þ exp −2π Xe − Xwð Þ=Ye½ �f g;

ð35Þ

T7 ¼
1þ cos πYw=Yeð Þ½ � 1þ cos πRw= 2Yeð Þ½ �f g
1 − cos πYw=Yeð Þ½ � 1 − cos πRw= 2Yeð Þ½ �f g ; ð36Þ

T8 ¼ 1þ 2 exp −πXe=Yeð Þ cos πYw=Yeð Þ þ exp −2πXe=Yeð Þ½ �
× 1þ 2 exp −πXe=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXe=Yeð Þf g
÷ 1 − 2 exp −πXe=Yeð Þ cos πYw=Yeð Þ þ exp −2πXe=Yeð Þ½ �
÷ 1 − 2 exp −πXe=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXe=Yeð Þf g:

ð37Þ

Case 4: The lateral boundary condition is defined by
Equation (14), then

Qw ¼ FD
2πkh Pi − Pwð Þ= μBð Þ

1=2 ln T9 × T10 × T11 × T12ð Þ þ Sm
; ð38Þ

where

T9 ¼ 1þ 2 exp −πXw=Yeð Þ cos πYw=Yeð Þ þ exp −2πXw=Yeð Þ½ �
× 1 − 2 exp −πXw=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXw=Yeð Þf g
÷ 1 − 2 exp −πXw=Yeð Þ cos πYw=Yeð Þ þ exp −2πXw=Yeð Þ½ �
÷ 1þ 2 exp −πXw=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXw=Yeð Þf g;

ð39Þ

T10 ¼ 1þ 2 exp −π Xe − Xwð Þ=Ye½ � cos πYw=Yeð Þ þ exp −2π Xe − Xwð Þ=Ye½ �f g
× 1 − 2 exp −π Xe − Xwð Þ=Ye½ � cos πRw= 2Yeð Þ½ � þ exp −2π Xe − Xwð Þ=Ye½ �f g
÷ 1 − 2 exp −π Xe − Xwð Þ=Ye½ � cos πYw=Yeð Þ þ exp −2π Xe − Xwð Þ=Ye½ �f g
÷ 1þ 2 exp −π Xe − Xwð Þ=Ye½ � cos πRw= 2Yeð Þ½ � þ exp −2π Xe − Xwð Þ=Ye½ �f g;

ð40Þ

T11 ¼
1 − cos πYw=Yeð Þ½ � 1þ cos πRw= 2Yeð Þ½ �f g
1þ cos πYw=Yeð Þ½ � 1 − cos πRw= 2Yeð Þ½ �f g ; ð41Þ

T12 ¼ 1 − 2 exp −πXe=Yeð Þ cos πYw=Yeð Þ þ exp −2πXe=Yeð Þ½ �
× 1þ 2 exp −πXe=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXe=Yeð Þf g
÷ 1þ 2 exp −πXe=Yeð Þ cos πYw=Yeð Þ þ exp −2πXe=Yeð Þ½ �
÷ 1 − 2 exp −πXe=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXe=Yeð Þf g:

ð42Þ
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Case 5: The lateral boundary condition is defined by
Equation (15), then

Qw ¼ FD
2πkh Pi − Pwð Þ= μBð Þ

1=2 ln T13 × T14 × T15 × T16 × T17 × T18 × T19 × T20ð Þ þ Sm
;

ð43Þ

where

T13 ¼ 1 − 2 exp −πXw=Yeð Þ cos πYw=Yeð Þ þ exp −2πXw=Yeð Þ½ �
× 1þ 2 exp −πXw=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXw=Yeð Þf g
÷ 1þ 2 exp −πXw=Yeð Þ cos πYw=Yeð Þ þ exp −2πXw=Yeð Þ½ �
÷ 1 − 2 exp −πXw=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXw=Yeð Þf g;

ð44Þ

T14 ¼ 1 − 2 exp −π 2Xe − Xwð Þ=YeD½ � cos πYw=Yeð Þ þ exp −2π 2Xe − Xwð Þ=Ye½ �f g
× 1þ 2 exp −π 2Xe − Xwð Þ=Ye½ � cos πRw= 2Yeð Þ½ � þ exp −2π 2Xe − Xwð Þ=Ye½ �f g
÷ 1þ 2 exp −π 2Xe − Xwð Þ=Ye½ � cos πYw=Yeð Þ þ exp −2π 2Xe − Xwð Þ=Ye½ �f g
÷ 1 − 2 exp −π 2Xe − Xwð Þ=Ye½ � cos πRw= 2Yeð Þ½ � þ exp −2π 2Xe − Xwð Þ=Ye½ �f g;

ð45Þ

T15 ¼
1 − cos πYw=Yeð Þ½ � 1þ cos πRw= 2Yeð Þ½ �f g
1þ cos πYw=Yeð Þ½ � 1 − cos πRw= 2Yeð Þ½ �f g ; ð46Þ

T16 ¼ 1 − 2 exp −2πXe=Yeð Þ cos πYw=Yeð Þ þ exp −4πXe=Yeð Þ½ �
× 1þ 2 exp −2πXe=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −4πXe=Yeð Þf g
÷ 1þ 2 exp −2πXe=Yeð Þ cos πYw=Yeð Þ þ exp −4πXe=Yeð Þ½ �
÷ 1 − 2 exp −2πXe=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −4πXe=Yeð Þf g;

ð47Þ

T17 ¼ 1þ 2 exp −π Xe − Xwð Þ=Ye½ � cos πYw=Yeð Þ þ exp −2π Xe − Xwð Þ=Ye½ �f g
× 1 − 2 exp −π Xe − Xwð Þ=Ye½ � cos πRw= 2Yeð Þ½ � þ exp −2π Xe − Xwð Þ=Ye½ �f g
÷ 1 − 2 exp −π Xe − Xwð Þ=Ye½ � cos πYw=Yeð Þ þ exp −2π Xe − Xwð Þ=Ye½ �f g
÷ 1þ 2 exp −π Xe − Xwð Þ=Ye½ � cos πRw= 2Yeð Þ½ � þ exp −2π Xe − Xwð Þ=Ye½ �f g;

ð48Þ

T18 ¼ 1þ 2 exp −π Xe þ Xwð Þ=Ye½ � cos πYw=Yeð Þ þ exp −2π Xe þ Xwð Þ=Ye½ �f g
× 1 − 2 exp −π Xe þ Xwð Þ=Ye½ � cos πRw= 2Yeð Þ½ � þ exp −2π Xe þ Xwð Þ=Ye½ �f g
÷ 1 − 2 exp −π Xe þ Xwð Þ=Ye½ � cos πYw=Yeð Þ þ exp −2π Xe þ Xwð Þ=Ye½ �f g
÷ 1þ 2 exp −π Xe þ Xwð Þ=Ye½ � cos πRw= 2Yeð Þ½ � þ exp −2π Xe þ Xwð Þ=Ye½ �f g;

ð49Þ

T19 ¼ 1þ 2 exp −πXe=Yeð Þ cos πYw=Yeð Þ þ exp −2πXe=Yeð Þ½ �
× 1 − 2 exp −πXe=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXe=Yeð Þf g
÷ 1 − 2 exp −πXe=Yeð Þ cos πYw=Yeð Þ þ exp −2πXe=Yeð Þ½ �
÷ 1þ 2 exp −πXe=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXe=Yeð Þf g;

ð50Þ

T20 ¼ 1þ 2 exp −πXe=Yeð Þ cos πYw=Yeð Þ þ exp −2πXe=Yeð Þ½ �
× 1 − 2 exp −πXe=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXe=Yeð Þf g
÷ 1 − 2 exp −πXe=Yeð Þ cos πYw=Yeð Þ þ exp −2πXe=Yeð Þ½ �
÷ 1þ 2 exp −πXe=Yeð Þ cos πRw= 2Yeð Þ½ � þ exp −2πXe=Yeð Þf g:

ð51Þ
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If the reservoir is permeability anisotropic in the above
five cases, then permeability k in Equations (23), (28), (32),
(33), (38), and (43) should be replaced by

ffiffiffiffiffiffiffiffiffi
kxky

p
; and Xw;

Yw;Xe;Ye;Rw in Equations (11), (29), (34), (35), (36), (37),
(39), and (44) should be replaced by XwD;YwD;XeD;YeD;RwD
which are given in Appendix A.

4. Productivity Equations in Pseudosteady State

If all reservoir boundaries are impermeable, and the producing
time is sufficiently long, then the pseudosteady state can be
reached [3], and the wellbore pressure must decline at the
same rate as the average reservoir pressure. This section presents
pseudosteady state productivity equations for an unfractured
fully penetrating vertical well located in a permeability anisotro-
pic circular reservoir, a sector fault reservoir, and a rectangular
reservoir, and the mechanical skin factor is included.

4.1. Circular Reservoir. The productivity of an off-center
unfractured fully penetrating vertical well in a permeability
anisotropic closed circular reservoir in pseudosteady state
can be calculated by [1]

Qw ¼ FD
2πkrh Pa − Pwð Þ= μBð Þ

Ψ þ Sm
; ð52Þ

where

Ψ ¼ ln
R3
eD

RwD R2
eD − R2

0D − R0DRwDð Þ
� �

þ RoD
ReD

� �
2
−
3
4
;

ð53Þ

and Pa is the average reservoir pressure throughout the cir-
cular drainage area, the definitions of ReD;RoD;RwD are given
in Appendix A.

If permeability is isotropic, kr ¼ k; consequently,

Ψ ¼ ln
R3
e

Rw R2
e − R2

0 − R0Rwð Þ
� �

þ Ro
Re

� �
2
−
3
4
; ð54Þ

and

Qw ¼ FD
2πkh Pa − Pwð Þ= μBð Þ

Ψ þ Sm
: ð55Þ

For a well located at the center, the off-center distance
R0= 0, then Equation (55) reduces to

Qw ¼ FD
2πkh Pa − Pwð Þ= μBð Þ
ln Re=Rwð Þ − 3=4þ Sm

: ð56Þ

If Sm= 0, Equation (56) is equivalent to Equation (2),
which is the well-known pseudosteady state productivity
equation for an unfractured fully penetrating vertical well
located at the center of a permeability isotropic closed circu-
lar reservoir in the literature [5].

4.2. Sector Fault Reservoir. If an unfractured fully penetrating
vertical well is located in a permeability anisotropic closed sector
fault reservoir with outer boundaries indicated in Equations (8)
and (10), the well is on the bisector line, the well location angle
θw ¼ Φ=2 and sector angle Φ ¼ 2π=m; we have

Qw ¼ FD
2πkrh Pa − Pwð Þ= μBð Þ

ln Λð Þ þ Sm
; ð57Þ

where

Λ ¼ m RoD
ReD

� �
2
−
3
4
þ ln

ReD

RoD

� �� �
þ ln

RoDR2
eD

Rw R2
eD − R2

oD − RoDRwDð Þ
� �

−∑
m

i¼2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

RoD

ReD

� �
2
cos

2 i − 1ð Þπ
m

� �
þ RoD

ReD

� �
4

� �
2 − 2 cos

2 i − 1ð Þπ
m

� �� �s( ) ; ð58Þ

TABLE 3: Pseudosteady state sector shape functions for special sector angles.

Case Φ= 2π/m m θw Λ

1 π 2 π /2 ln R6
e

2RwR0 R2
eþR2

0ð Þ R2
e−R2

0−R
2
e R2

0ð Þ
� �

þ 2 Ro
Re

� �
− 3=2

2 2π/3 3 π/3 ln R9
e

3RwR
2
0 R2

e−R0
2
−ReRwð Þ R4

eþR2
e R

2
0þR4

0ð Þ
� �

þ 3 Ro
Re

� �
− 9=4

3 π/2 4 π/4 ln R12
e

4RwR3
0 R2

eþR2
0ð Þ R2

e−R2
0−ReRwð Þ R4

eþR4
0ð Þ

� �
þ 4 Ro

Re

� �
− 3

4 π/3 6 π/6 ln
R10
e

6RwR
5
0 R2

e þ R2
0ð Þ R2

e − R2
0 − ReRwð Þ

� �

þln
R8
e

R4
e − R2

eR2
0 þ R4

0ð Þ R4
e þ R2

eR2
0 þ R4

0ð Þ
� �

þ 6
Ro

Re

� �
− 9=2
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Λ is sector shape function in pseudosteady state, the defini-
tions of ReD;RoD;RwD are given in Appendix A.

If permeability is isotropic, kr ¼ k; consequently,

Λ ¼ m Ro
Re

� �
2
−
3
4
þ ln

Re

R0

� �� �
þ ln

R0R2
e

Rw R2
e − R2

0 − R0Rwð Þ
� �

−∑
m

i¼2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

Ro

Re

� �
2
cos

2 i − 1ð Þπ
m

� �
þ Ro

Re

� �
4

� �
2 − 2 cos

2 i − 1ð Þπ
m

� �� �s( ) ; ð59Þ

and

Qw ¼ FD
2πkh Pa − Pwð Þ= μBð Þ

ln Λð Þ þ Sm
: ð60Þ

For m= 2, 3, 4, and 6, Λ can be found in Table 3.

4.3. Rectangular Reservoir. If an off-center unfractured fully
penetrating vertical well is located inside a permeability ani-
sotropic closed rectangular reservoir, then the well produc-
tivity in pseudosteady state can be calculated by [1]

Qw ¼ FD
2π

ffiffiffiffiffiffiffiffiffi
kxky

p
h Pa − Pwð Þ= μBð Þ
Θþ Sm

; ð61Þ

where Pa is average reservoir pressure throughout the rect-
angular drainage area, and

Θ ¼ 4πXeD

YeD

� �
1
6
−

XwD

2XeD
þ X2

wD

2X2
eD

� �
−ln 4 sin πYwD=YeDð Þj jsin πRwD= 2YeDð Þ½ �f g:

ð62Þ

The definitions of XwD;YwD;XeD;YeD;RwD are given in
Appendix A.

If permeability is isotropic, kx ¼ ky ¼ k; consequently,

Qw ¼ FD
2πkh Pa − Pwð Þ= μBð Þ

Θþ Sm
; ð63Þ

and

Θ ¼ 4πXe

Ye

� �
1
6
−

Xw

2Xe
þ X2

w

2X2
e

� �
−ln 4 sin πYw=Yeð Þj jsin πRw= 2Yeð Þ½ �f g:

ð64Þ

If a well is located at the center of a closed rectangular
reservoir,

Xw ¼ Xe=2;   Yw ¼ Ye=2; ð65Þ

then Equation (63) reduces to

Qw ¼ FD
2πkh Pa − Pwð Þ= μBð Þ

πXe= 6Yeð Þ½ � − ln 4 sin πRw= 2Yeð Þ½ �f g þ Sm
:

ð66Þ

If a well is at the center of a closed square reservoir,
Xe ¼ Ye; then Equation (66) can be further simplified to

Qw ¼ FD
2πkh Pa − Pwð Þ= μBð Þ

π=6 − ln 4 sin πRw= 2Yeð Þ½ �f g þ Sm
: ð67Þ

Equation (67) is the pseudosteady state productivity
equation for an unfractured fully penetrating vertical well
located at the center of a permeability isotropic closed square
reservoir.

Recall Equation (3), Dietz [6] developed the following
equation to calculate the productivity of a vertical well in a
permeability isotropic closed rectangular reservoir,

Qw ¼ FD
2πkh Pa − Pwð Þ= μBð Þ

1=2ð Þ ln 2:2458 XeYeð Þ= CAr2wð Þ½ � ; ð68Þ

where CA is shape factor, which is used to account for asym-
metrical positioning of a well within a rectangular reservoir.

5. Application and Analysis

All the above equations proposed by the authors of this paper
are only applicable to an unfractured fully penetrating verti-
cal well in a permeability anisotropic reservoir. The equa-
tions for partially penetrating vertical wells, horizontal wells,
or hydraulically fractured wells will be available in our
future work.

The performance of oil reservoirs is highly affected by
many parameters, such as formation petrophysical properties,
fluid properties, and reservoir and wellbore configuration.
The effects of these parameters on reservoir performance
are represented by productivity index (PI). PI is one of the
major parameters in reservoir-management/development
plans. It is defined as the surface production rate per unit
pressure drawdown,
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PI ¼ Qw

ΔP
: ð69Þ

In steady state, ΔP ¼ Pi − Pw is constant with time; in
pseudosteady state, ΔP ¼ Pa − Pw is also constant with time.
Thus, in steady state and pseudosteady state, unless the con-
ditions progressively deteriorate because of formation dam-
age and skin factor, PI is constant.

5.1. Effects of Drainage Shape and Well Location

Example 1. Figure 5 shows a square reservoir Xe ¼ Yeð Þ and
its inscribed circular reservoir. A fully penetrating vertical
well is located at Xw;ð YwÞ in the square reservoir. Assume
Yw ¼ Ye=2 ¼ Xe=2 and Xw is variable. Calculate steady state
productivity indexes if the square reservoir is with constant
pressure outer boundary. And calculate the productivity
indexes of the well which is located in the inscribed circular
reservoir with constant pressure outer boundary. Reservoir
and fluid properties data in field units are given in Table 4.
Mechanical skin factor Sm ¼ 0.

5.1.1. Solution. We use Equations (8) and (23), and note
that

Re ¼ Ye=2 ¼ Xe=2 ¼ Yw; R0 ¼ Xe=2 − Xw ¼ Re − Xw:

ð70Þ

Steady state productivity indexes of the well are given in
Table 5.

Example 2. If the outer boundaries are impermeable in
Figure 5, calculate the productivity indexes in pseudosteady
state. Reservoir and fluid properties data are the same as
those given in Table 4.

5.1.2. Solution. We use Equations (21) and (63), pseudos-
teady state productivity indexes are given in Table 6.

Tables 5 and 6 indicate that in steady state and in pseu-
dosteady state, the productivity index is a weak function of
drainage shape and well location, neither drainage shape nor
well location has significant effects on the production perfor-
mance of a well.

Steady state is dominated by a constant pressure outer
boundary flow regime, which implies that the same volume
of fluid is beingmoved at the wellbore and at the outer bound-
ary. Table 5 indicates that in steady state, for a given well,
when the off-center distance increases (when R0 increases and
Xw decreases) the productivity index also increases. Because

Xe = Ye

Ye

Y
w

X
w

Re – X
w

Re = Xe/2

FIGURE 5: A square reservoir and its inscribed circle.

TABLE 4: Reservoir and fluid properties data for Examples 1 and 2.

Reservoir length, Xe 2,000 ft

Reservoir width, Ye 2,000 ft
Wellbore radius, Rw 0.5 ft
Well location in y direction, Yw 1,000 ft
Payzone thickness, h 50 ft
Permeability, k 200mD
Oil Viscosity, μ 2.0 cp
Formation volume factor, B 1.1 RB/STB
Mechanical skin factor, Sm 0

TABLE 5: Steady state productivity indexes for Example 1.

Square reservoir Inscribed circular reservoir

Xw (ft) PI (STB/day/psi) R0=Re−Xw (ft) PI (STB/day/psi)

100 5.38 900 5.42
200 4.84 800 4.89
300 4.59 700 4.65
400 4.44 600 4.50
500 4.35 500 4.40
600 4.28 400 4.33
700 4.24 300 4.29
800 4.21 200 4.26
900 4.20 100 4.24
1,000 4.20 0 4.24

TABLE 6: Pseudosteady state productivity indexes for Example 2.

Square reservoir Inscribed circular reservoir

Xw (ft) PI (STB/day/psi) R0=Re−Xw (ft) PI (STB/day/psi)

100 3.90 900 3.45
200 4.03 800 3.78
300 4.15 700 4.02
400 4.27 600 4.20
500 4.37 500 4.36
600 4.45 400 4.48
700 4.52 300 4.58
800 4.57 200 4.64
900 4.60 100 4.69
1,000 4.61 0 4.70
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the off-center well is near the constant pressure outer bound-
ary, under the same pressure drop, the fluid moves through a
short distance into the off-center well, consequently the pro-
ductivity index is higher [8].

Pseudosteady state is dominated by a closed outer bound-
ary flow regime, the produced fluid is evenly distributed in the
reservoir. There is a zero flow rate at the closed outer bound-
ary and maximum flow rate at the wellbore. Table 6 indicates
that in pseudosteady state, for a given well, when the off-
center distance increases, (when R0 increases and Xw
decreases), the productivity index decreases. Because in pseu-
dosteady state, no driving force is from the closed outer
boundary, for a well located at the center of a closed reservoir,
all flowlines toward the wellbore are radial or parallel to each
other, no curved flowlines; but for an off-center well, the
flowlines toward the wellbore are curved, more energy is dis-
sipated under the same pressure drop, and consequently the
productivity index is smaller [18].

5.2. Effects of Drainage Area

Example 3. A fully penetrating vertical well is located on the
bisector line of a sector fault reservoir.

The sector radius Re ¼ 1000 ft, the off-vertex distance
R0 ¼ 500 ft, wellbore radius Rw ¼ 0:5 ft, other reservoir,
and fluid properties data are the same as those given in
Table 4. Mechanical skin factor Sm ¼ 0. Calculate the steady
state and pseudosteady state productivity index when the
sector angle Φ ¼ π; π=2; π=3:

5.2.1. Solution. The equations in Table 2 and 3 are used in
Equations (22) and (60), the productivity indexes are given
in Table 7. Table 7 indicates that in steady state and in
pseudosteady state, the productivity index is a strong func-
tion of drainage area.

As shown in Table 7, when the sector angle Φ decreases,
steady state productivity index decreases. Because when Φ
decreases, the drainage area also decreases, the length of the
constant pressure outer boundary decreases, the driving
force from the outer boundary decreases, and consequently
the productivity index decreases.

Table 7 also indicates that in pseudosteady state, when
the sector angle Φ decreases, the productivity index
increases. No driving force is on the closed outer boundary,
the produced fluid is evenly distributed in the reservoir.
When Φ decreases, the drainage area also decreases, the fluid
moves through a shorter distance into the wellbore, less
energy is dissipated under the same pressure drop, and con-
sequently the productivity index increases.

5.3. Effects of Reservoir Boundary Conditions
Example 4. A fully penetrating vertical well is located at the
center of a square reservoir. Reservoir and fluid properties
data are the same as those given in Table 4. Mechanical skin
factor Sm ¼ 0. Calculate the steady state productivity index
for each case in Figure 4.

5.3.1. Solution. The well is located at the center of the square
reservoir, we have Xw ¼ Yw ¼ Ye=2 ¼ Xe=2 ¼ 1000 ft; for
the five cases in Figure 4, by using Equations (23), (32),
(33), (38), and (43), we can obtain the productivity indexes
shown in Table 8.

Table 8 indicates that reservoir boundary conditions
have significant effects on the production performance of
a well.

As shown in Table 8, the productivity index of Case 1 is
the biggest in the five cases as shown in Figure 4, and the
productivity index of Case 3 is the smallest. Because all outer
boundaries are at constant pressure for Case 1, the driving
forces are from four boundaries, consequently the produc-
tivity index is the biggest. For Case 3, only one constant
pressure outer boundary, the driving force is only from
one outer boundary, thus the productivity index is the smal-
lest in the five cases. Three constant pressure outer bound-
aries for Case 4, thus the productivity index is the second
biggest. For Case 2 and Case 5, only two outer boundaries are
at constant pressure, thus their productivity indexes are with
intermediate values.

5.4. The Comparisons of Lu’s Method and Dietz’s Method
Example 5. A fully penetrating vertical well is located at the
center of a closed rectangular reservoir. Reservoir width
Ye= 2000 ft, other reservoir data and fluid properties data
are the same as those given in Table 4. Mechanical skin factor
Sm ¼ 0. If aspect ratio Xe=Ye ¼ 1; 2; 4; 5; 4:5, calculate the
pseudosteady state productivity index by Lu’s method and
Dietz’s method.

5.4.1. Solution. When Xe=Ye ¼ 1; we use Equation (67) to
calculate the productivity index, then

TABLE 8: Steady state productivity indexes for Example 4.

PI (STB/day/psi)

Case 1 4.20
Case 2 4.01
Case 3 3.40
Case 4 4.05
Case 5 3.85

TABLE 7: Steady state and pseudosteady state productivity indexes
for Example 3.

Steady State Pseudo-steady state

Φ PI (STB/day/psi) Φ PI (STB/day/psi)

π 4.27 π 4.83
π/2 3.88 π/2 5.11
π/3 3.47 π/3 5.13
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PI ¼ 0:001127 × 2πkh= μBð Þ½ �
π=6 − ln 4 sin πRw= 2Yeð Þ½ �f g

¼ 0:001127 × 2π × 200 × 50= 2:0 × 1:1ð Þ½ �
π=6 − ln 4 sin π × 0:5= 2 × 2000ð Þ½ �f g

¼ 4:612 STB=day=psið Þ:

ð71Þ

For a well located at the center of a closed square reservoir,
shape factor CA is equal to 30.9 (Dietz, 1965), Equation (68) is
used to calculate the productivity index,

PI ¼ 0:001127 × 2πkh= μBð Þ½ �
1=2ð Þ ln 2:2458 XeYeð Þ= CAr2wð Þ½ �

¼ 0:001127 × 2π × 200 × 50= 2 × 1:1ð Þ½ �
0:5 × ln 2:2458 × 20002= 30:9 × 0:52ð Þ½ �

¼ 4:609 STB=day=psið Þ:

ð72Þ

When Xe=Ye ¼ 2; we use Equation (66),

PI ¼ 0:001127 × 2πkh= μBð Þ½ �
πXe= 6Yeð Þ − ln 4 sin πRw= 2Yeð Þ½ �f g

¼ 0:001127 × 2π × 200 × 50= 2:0 × 1:1ð Þ½ �
2π=6 − ln 4 sin π × 0:5= 2 × 2000ð Þ½ �f g

¼ 4:289 STB=day=psið Þ:

ð73Þ

When Xe=Ye ¼ 2; shape factor CA is equal to 22.6 [6],
then

PI ¼ 0:001127 × 2πkh= μBð Þ½ �
1=2ð Þ ln 2:2458 XeYeð Þ= CAr2wð Þ½ �

¼ 0:001127 × 2π × 200 × 50= 2 × 1:1ð Þ½ �
0:5 × ln 2:2458 × 4000 × 2000= 20:6 × 0:52ð Þ½ �

¼ 4:299 STB=day=psið Þ:

ð74Þ

When aspect ratio Xe=Ye ¼ 4; 5, the calculation results
are shown in Table 9, we can find that little difference
between the results in each case obtained by the two
methods.

If Xe=Ye ¼ 4:5, we have

PI ¼ 0:001127 × 2πkh= μBð Þ½ �
πXe= 6Yeð Þ − ln 4 sin πRw= 2Yeð Þ½ �f g

¼ 0:001127 × 2π × 200 × 50= 2:0 × 1:1ð Þ½ �
4:5π=6 − ln 4 sin π × 0:5= 2 × 2000ð Þ½ �f g

¼ 3:653 STB=day=psið Þ:

ð75Þ

Dietz’s method can not be used to calculate PI when
Xe=Ye ¼ 4:5.

It must be pointed out the shape factors obtained by
Dietz are only applicable to rectangular shapes whose sides
are integral ratios, that is Xe=Ye ¼ 1; 2; 4; 5, but our pro-
posed equations are applicable to a rectangular reservoir
with arbitrary aspect ratio, shape factors are not required.

6. Summary

The disadvantage of steady state and pseudosteady state pro-
ductivity equations in the literature is that those equations
are only applicable to permeability isotropic reservoirs. The
advantage of the productivity equations given by the authors
of this paper is that the proposed equations are applicable to
permeability anisotropic reservoir and can be used to study
the effects of drainage area, reservoir boundary conditions,
drainage shape, and well location on steady state and pseu-
dosteady state productivity.

Another advantage of the productivity equations given
by the authors is that the proposed equations are applicable
to a well arbitrarily located in a circular reservoir and a
rectangular reservoir. A summary of productivity equations
for a permeability isotropic reservoir is given in Table 10.

The disadvantage of the productivity equation and the
shape factors obtained by Dietz [6] is that Dietz’s equation
and shape factors are only applicable to rectangular shapes
whose sides are integral ratios. The advantage of the equa-
tions given by the authors of this paper is that the proposed
equations are applicable to a rectangular reservoir with arbi-
trary aspect ratio. The equations proposed by the authors can
calculate the productivity of a well directly, shape factors are
not required, thus shape factors for a rectangular reservoir is
out of date.

TABLE 9: Comparisons of productivity index of a well at the center of a closed rectangular reservoir calculated by Dietz’s method and Lu’s
method.

Aspect ratio Shape factor
PI calculated by Dietz’s Method
(Equation 68) (STB/day/psi)

PI calculated by Lu’s Method
(Equation 66) (STB/day/psi)

1 30.9 4.609 4.612
2 22.6 4.299 4.289
4 5.38 3.764 3.764
5 2.36 3.547 3.547
4.5 N/A N/A 3.653

12 Journal of GeoEnergy



7. Conclusions

(1) Drainage area and reservoir boundary conditions
have significant effects on productivity, and the pro-
ductivity index is a weak function of drainage shape
and well location.

(2) In steady state, for a well in a circular reservoir or
a rectangular reservoir, when off-center distance
increases, the productivity index also increases.

(3) In pseudosteady state, for a well in a circular reservoir
or a rectangular reservoir, when off-center distance
increases, the productivity index decreases.

(4) In steady state, for a well in a sector fault reservoir,
when sector angle decreases, the productivity index
decreases.

(5) In pseudosteady state, for a well in a sector fault
reservoir, when sector angle decreases, the productiv-
ity index increases.

(6) In steady state, for a given well in a square reservoir,
when the number of constant pressure outer bound-
aries increases, the productivity index will also
increase.

Nomenclature

B: Formation volume factor, bbl=STB
cos(.): Cosine function
cosh :ð Þ: Hyperbolic cosine function
exp(.): Exponential function
FD: Unit conversion factor, dimensionless
h: Pay zone thickness, ft
k: Permeability, mD
P: Pressure, psi
PI: Productivity index, STB=day=psi
Qw: Well flow rate, STB=day
R0: Off-center (off-vertex) distance, ft
Rw: Wellbore radius, ft

Re: Drainage radius, ft
Sm: Mechanical skin factor, fraction
sin (.): Sine function
sinh :ð Þ: Hyperbolic sine function
Xe: Length of rectangular reservoir, ft
Xw: Well location in X direction in rectangular reser-

voir, ft
Ye: Width of rectangular reservoir, ft
Yw: Well location in Y direction in rectangular reser-

voir, ft.

Greek Symbols

φ: Porosity, fraction
μ: Fluid viscosity, cp
θw: Well location angle, radians
τ1: A function defined by Equation (29)
τ2: A function defined by Equation (30)
τ3: A function defined by Equation (31)
τ4: A function defined by Equation (31)
Ώ: Drainage domain
Γ: Steady state sector shape function defined by Equations

(20) and (21)
Ψ: A function defined by Equations (53) and (54)
Θ: A function defined by Equations (62) and (64)
Φ: Sector angle, radians
Λ: pseudosteady state sector shape function defined by

Equations (58) and (59).

Subscripts

a: Average
D: Dimensionless
e: External
i: Initial
r: Radial
w: Well.

TABLE 10: Summary of productivity equations for permeability isotropic reservoirs.

Circular reservoir Rectangular reservoir

Steady state, off-center well Equation (16)
Steady state, four boundaries at constant

pressure
Equations (23), (24)–(27)

Steady state, centered well Equation (18)
Steady state, two opposite boundaries at

constant pressure
Equations (32), (24)–(27)

Pseudosteady state, off-center well Equations (54) and (55)
Steady state, only one boundary at

constant pressure
Equations (33), (34)–(37)

Pseudo-steady state, centered well Equation (56)
Steady state, three boundaries at constant

pressure
Equations (38), (39)–(42)

Sector fault reservoir
Steady state, two adjacent boundaries at

constant pressure
Equations (43), (44)–(51)

Steady state, well on bisector line Equations (21) and (22) Pseudosteady state, off-center well
Equations (63) and

Eq. (64)
Pseudosteady state, well on bisector line Equations (59) and (60) Pseudosteady state, centered well Equation (66)
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Appendix

A. Definition of Dimensionless Parameters

For a circular reservoir and a sector fault reservoir, define
average permeability as below:

ka ¼ k2=3r k1=3v ; ðA:1Þ

where kr is radial permeability and kv is vertical permeability.
And define

ReD ¼ ka
kr

� �
1=2

; R0D ¼ R0

Re

� �
ka
kr

� �
1=2

; RwD ¼ Rw

Re

� �
ka
kr

� �
1=2

:

ðA:2Þ

For a rectangular reservoir, define average permeability
and radial permeability as below:

ka ¼ kxkykz
À Á

1=3; ðA:3Þ

kr ¼ kxky
À Á

1=2: ðA:4Þ

And define

XwD ¼ Xw

h

� �
ka
kx

� �
1=2

; YwD ¼ Yw

h

� �
ka
ky

� �
1=2

; ðA:5Þ

XeD ¼ Xe

h

� �
ka
kx

� �
1=2

; YeD ¼ Ye

h

� �
ka
ky

� �
1=2

; ðA:6Þ

RwD ¼ Rw

h

� �
kaffiffiffiffiffiffi
kxky

p
� �

1=2
: ðA:7Þ
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