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An approach is proposed to improve modeling for shale gas reservoirs, integrating key parameters such as total organic carbon
(TOC) and porosity. Seismic inversion uses seismic reflection data and well-log information to improve geological and geophysical
interpretation and estimate rock properties with high-resolution subsurface acoustic impedance, including low and high frequen-
cies. The Ranikot Formation in the Central Indus Basin, Pakistan, is a Paleocene-age formation with the potential to act as
reservoir, seal, and source rock. The porosity of the Lower Ranikot reservoir in the Mehar Block was calculated using seismic
inversion analysis with the Mehar-02 well. The petrophysical analysis yielded an effective porosity of 5.8%. Similarly, when
calculated using seismic inversion, the porosity fell within the 5.5%–6.0% range. Determining the TOC content is crucial in
evaluating unconventional shale resources. Petrophysical approaches, such as the ΔlogR method, offer a fast, convenient, and
cost-effective means of estimating TOC from well logs. This method is commonly used in conventional source rock evaluation and
applied to unconventional resource play evaluation. On the other hand, seismic inversion techniques were used to conduct TOC
analysis in the absence of core data in order to estimate the source potential of the Upper Ranikot Formation. To estimate the TOC
log for the Upper Ranikot shales in the Mehar Block, the Passey equation was used on the well logs of the Mehar-02 well. The
estimated TOC for the Upper Ranikot shales is around 2.0%, which falls within the fair TOC range.

1. Introduction

Shale gas is an unconventional gas occurring in dark muddy-
shale in adsorbed or free form. It has low porosity and per-
meability, lacks a gas–water boundary, and typically has low
natural production. Shale gas is found in thick shale hydro-
carbon source rocks and requires fracturing for commercial
gas flow [1]. Due to hydraulic fracturing, which raises the
natural bulk rock permeability andmakes it possible to extract
trapped gas from source rocks, gas shale plays have become
more significant in the last decade. However, quantifying the
potential resources of these unconventional petroleum sys-
tems is challenging due to limited data and physical tools,
and analytical techniques and numerical models designed
initially for conventional resources may not be suitable [2].
Shale plays require detailed characterization of the physical

properties of source rocks during burial and maturation to
estimate their economic potential. Recoverable oil and gas
reserves estimation is challenging due to the complex nature
of pore volume. Recent studies highlighted the importance of
organic porosity and gas adsorption mechanisms within ker-
ogen to evaluate the organic porous network in shale. The
distribution of organic carbon and thermal maturity control
hydrocarbons in place, including organic porosity creation
and adsorption in organic matter [1–5].

Estimation of total organic carbon (TOC) content is an
important step in geo-chemical assessment and rock Eval-
pyrolysis to measure source rock potential [6]. Measuring the
TOC content of rock samples directly is expensive and time-
consuming. Spatial coverage and vertical resolution can also
be limiting factors when creating quality resource potential
maps for potential sweet spots. Petrophysical approaches,
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such as using well logs, offer a faster, more convenient, and
cost-effective way to estimate TOC. Well logs are commonly
available in known petroleum-bearing basins worldwide and
are often used to evaluate source rock potential in conven-
tional petroleum systems [5, 7–10]. Well-logging data can be
used to evaluate various properties of shale gas reservoirs as
well as conventional reservoirs, including lithologic compo-
nents, TOC content, total porosity, gas content, and rock
geomechanical properties. While some evaluation methods
are well-established, there are few quantitative methods for
total porosity and micropore composition using logging data.
Recent studies provide references but have many parameters
that are difficult to evaluate accurately [10–13]. It is also very
important to incorporate the core-based results and geophys-
ical logs for detailed characterization of the rock properties for
any lithology of interest [14, 15].

From a geological standpoint, the study area is situated
within the Middle Indus Basin. The study area is situated in
the Mehar Block, which covers an area of 5,030 square kilo-
meters. PCPL PETRONAS Cargali Pakistan Limited was solely
responsible for all site activities, with 75% of its interest relating
to work and management. Additional partners include Orient
Petroleum Inc., which holds a 20% stake, and Government
Holding Pakistan Limited, which holds a 5% stake. The area’s
most interesting geological formations are the Sui Main Lime-
stone, an Eocene-aged limestone, and the Pab Sandstone, a Late
Cretaceous-aged sandstone. The gas reserves in the Pab Sand-
stone, known as gas columns, are considered one of the block’s
most valuable assets; this is demonstrated by the presence of gas
deposits in Bhit-2 and Zamzama-1, located south of the Mehar
Block. The Marzarani-1 rogue well also discovered gas deposits
in the Sui Main Limestone of the Mehar Block [16].

TheMehar Gas Field is a gas-producing field in the Central
Indus Basin. The field’s main reservoirs are represented in the
Pab Sandstone and Lower Ranikot Formation. As input data
for this study, a set of well logs from the Mehar-02 well and a
3D seismic data cube of the Mehar block were used. The main
objective of this study is to estimate the TOC and porosity of
Ranikot Formation. In the current study, we estimate the TOC
and porosity of the Ranikot Formation in the Central Indus
Basin, Pakistan, using seismic inversion and well-log analysis.
This method was applied to evaluate well-logging data in the
study area. The outcomes of this study will be beneficial for
future exploitation of target formation in the study region.

2. Tectonics, Geology, and Stratigraphy of the
Study Area

In the Ornach-Nal and Chamman Transform Faults area,
the Oligocene and Miocene periods were characterized by
plate collisions that formed numerous anticlinal structures
on the eastern side of the Kirthar Fold Belt. The occurrence
of ophiolites on the western slope of this belt suggests the
existence of an active plate boundary in the past, which is
further confirmed by seismic activity. Mafic to ultramafic
rocks are the dominant rock types along this active plate
boundary, according to Jadoon et al. [17]. The region being
studied, located south of the Central Indus Basin (Figure 1),

contains preexisting normal faults oriented in a NW–SE direc-
tion that runs parallel to the Jacobabad highs and disrupts the
foredeep region. The development of theMehar–Mazarani Trust
in this region is primarily attributed to the Mehar–Mazarani
Fold. This trust belt slopes westward in a north–south direction.
Additionally, extensional faults between the core of the
Mehar–Mazarani Fold structures have been reactivated. The
orientation of the Mehar–Mazarani Fold indicates that it is not
aligned with the preexisting normal faults. If it were, the orien-
tation of the Main Mantle Thrust would have followed the fault
plane of the preexisting NW–SE extensional faults [18].

From the Infra-Cambrian to the Late Cretaceous, a series
of tectonic events caused uplift, rifting, and erosion in the
Mehar–Mazarani Fold Belt. During these events, existing faults
in the basement of the region were reactivated. The principal
source and reservoirs of the Cretaceous age were deposited in a
passive margin environment, while Late Cretaceous drifting
caused the reactivation of preexisting normal faults and
uplifted the area. Late Cretaceous sediments were observed
to have eroded on the Jacobabad Highs. The wedge-shaped
Oligocene and Paleocene strata in the Mehar–Mazarani Fold
Belt indicate the occurrence of paleo-high phenomenon during
this time period [20].

The rocks that were drilled in the studied region range
from the Mesozoic era to the present day and are classified as
sedimentary. The sedimentation process in this area has been
affected by unconformities and other small sedimentary gaps,
resulting in frequent changes in facies [21]. Figure 2 shows a
generalized stratigraphic column of the Central Indus Basin.
Sediments were deposited in passive margin settings during
the Early Cretaceous due to the emergence of the Indian
continent. This uplift caused thick deposition of the Sembar
and Lower Goru formations along the passive margin, which
acted as the primary source for the overlying sand reservoirs.
The sands of the Lower Ranikot Formation were also depos-
ited in these environments [22–27], which are the main target
reservoirs in the Mehar Gas Field.

3. Methodology

Seismic and well logs can be used to estimate TOC content in
a geological formation. By analyzing seismic data, one can
identify areas with high acoustic impedance (AI), indicating
higher TOC content. Well logs can also be used to measure
TOC, as they provide direct measurements of the rock prop-
erties. Combining the two datasets can give one a more accu-
rate picture of the TOC content in a given geological
formation. The initial dataset used in this study consisted of
3D seismic data that had been processed for the purpose of
interpreting the subsurface structures [28]. Seismic interpre-
tation is a valuable tool for identifying subsurface structures,
fault types, and trends in the Mehar Block on the eastern side
of the Kirthar Fold Belt. This fold belt is one of the largest in
South Asia and is characterized by a compressional regime
resulting in reverse and thrust faults. The seismic interpreta-
tion’s purpose was to determine the structures, fault types,
and depth of the primary reservoir within the studied region
[29, 30].
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High-resolution seismic data help to identify the potential
shale zones for hydrocarbon exploration. Poststack inversion
quantitatively describes geological formations by analyzing
porosity, TOC, impedance, and lithology. This technique is
widely used to characterize conventional and unconventional
hydrocarbon reservoirs. Seismic data are transformed into
impedance values, allowing for the creation of a geologic struc-
ture using seismic and well data. In the study area, model-based
seismic inversion produced images of AI translated into reser-
voir properties using algorithms based on various assumptions.
Seismic inversion also created an AI cube for organic geochem-
ical analysis [31–33].

Successful exploration and production of shale rely on
identifying major organic components and total porosity. As
seismic data are often the only available source of informa-
tion in most exploration phases, it is crucial to use them to
indirectly identify TOC content and total porosity in prom-
ising shale formations [33]. Seismic inversion is converting
seismic amplitude values into seismic impedance values.
Deconvolution procedures are used to transform seismic
traces into earth reflectivity. Inversion is a subsurface

modeling technique that employs seismic data as input and
well data as control. The ultimate goal of the subsurface
modeling technique is to create a subsurface geological struc-
ture.
Poststack seismic inversion techniques utilize stacked (zero-
offset) seismic data to construct artificial intelligence depth
or temporal images [34].

The Passey method, also referred to as the ΔLogR technique
(Equation (1)), utilizes wireline log data to quantitatively esti-
mate the TOC of source rock intervals or unconventional reser-
voirs while determining their maturity and organic richness.
This technique examines the overlap of sonic log values and
resistivity values [35]. Broadhead et al. [36] studied the relation-
ship between the TOC and the amplitude of seismic data. By
using the seismic (reflectivity) data obtained from inversion, it is
possible to get information about the TOC [36]. Impedance and
TOC have an inverse relation with each other [37]. Total poros-
ity is the total available space in the rock for fluids such as water,
gas, and oil to occupy. Since AI is the product of density and
velocity, porosity can be calculated from the AI [33, 38]. Thus,
the relation established at the well location between the AI and
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FIGURE 1: Generalized tectonic map, which shows the main features of the Central Indus Basin, with the study area highlighted by a red square
(modified after [19]).
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porosity can then be used to extrapolate it over the entire imped-
ance volume.

ΔlogR¼ log10
R

Rbaseline

� �
þ 0:02 × Δt − Δtbaselineð Þ; ð1Þ

where R is the resistivity; Δt is the transit time measured in
μs/ft; Rbaseline is the resistivity corresponding to the Δtbaseline
when the curves are baseline in nonsource rocks.

TOC¼ ΔlogR × 10 2:297−0:1688 × LOMð Þ; ð2Þ
where LOM is the amount of level of organic metamorphism.
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The estimation of shale volume relies on the data obtained
from a GR [39].

Vshl¼ GRlog − GRmin

GRmax − GRmin
: ð3Þ

Therefore, the mathematical expression for estimating
density-derived porosity is provided in Equation (4).

ϕD ¼ ρm − ρb
ρm − ρf

; ð4Þ

where ρm =matrix density, ρb = bulk density, and ρf = value
of density of fluid.

To calculate the average porosity, both neutron and density
porosity values were integrated. Themathematical Equation (5)
was used for this purpose [40].

ϕA ¼ ϕD þ ϕN

2
; ð5Þ

where ϕD = density derived porosity and ϕN = porosity from
neutron log.

The effective porosity (ϕE) was calculated by using
Equation (6) [40].

ϕE ¼ ϕA 1 − Vshlð Þ: ð6Þ

4. Results and Discussions

4.1. Well-Logs Interpretation. Predicting the distribution of
porosity in sandstone reservoirs can be challenging due to varia-
tions in depositional conditions, the presence of heterogeneous
lithofacies, and the repetition of pore size variations [41, 42].
Gamma-ray, density, resistivity, and neutron logs are commonly
used for formation evaluation [43]. The well-log data of the
Mehar-02 well was analyzed to determine the subdivisions of
the Ranikot Formation. The Lower Ranikot is one of the primary
reservoirs of the Central Indus Basin, while the Upper Ranikot
consists of shale with interbedded sand, serving as a source for
younger reservoirs in the area and as a seal for the Lower Ranikot
reservoir. GR log allowed to mark the boundary between the
Upper and Lower Ranikot Formations, as shown in Figure 3 and
estimate their respective thicknesses using GR log, which is a key
log used for lithology determination. This information was use-
ful during inversion analysis, where we estimated TOC for the
Upper Ranikot Formation and porosity for the Lower Ranikot
Formation (Figure 4).

First, porosity was calculated using the well-log suite,
which was then used for correlation during seismic porosity
inversion analysis. The zone of interest lies at a depth of
3,671–3,679m and is 11m thick. This zone exhibits a
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significant difference between the MSFL and LLD values.
The average apparent porosity for this zone is 10%, and
the effective porosity is calculated to be 5.9%. The hydrocar-
bon saturation in this zone is calculated to be 69%, as shown
in Figure 5.

4.2. Seismic Data Structural Interpretation. Accurately delin-
eating stratigraphic and structural traps requires a thorough
understanding of subsurface configurations. The seismic data
show the existence of a thrusted anticline with accompanying
thrust faults [23]. The seismic profile reveals two prominent
structures in the study area: the Zamzama structure in the
south and the Mehar structure in the north. The Zamzama
structure is relatively shallower than the Mehar structure, and
they are separated by a broad syncline. The seismic data indi-
cate that the investigated region comprises of north–south
oriented anticlines, which are deformed by westward dipping
thrust faults with a throw of over a 100m near the core of the
structure. Additionally, two minor faults (a thrust fault and a
back-thrust fault) with a throw of a few meters are present on
the western side of the hanging wall. The Cretaceous shale
seems to have provided the decollement for these reverse
faults [44].

Subsurface analysis of the Ranikot horizon in the Mehar
block reveals the presence of a massive fault-bounded anti-
cline. All reflectors are steeply descending westward. There is

a significant reversing fault to the east of the presented data
that cuts through the entire Eocene to Cretaceous layers. This
large fault appears younger because it sliced through layers of
varying ages. The available seismic cube is limited making it
impossible to determine the precise extent of the fault up
until recent times. The fault from north to south extends
throughout the entire seismic cube and exhibits a consider-
able displacement. As it descends toward the basement, the
fault also bends. The fault’s movement has caused multiple
fractures to form within the fault zone, which complicates the
identification of the horizon near the fault zone. Additionally,
a distinct fracture affecting only the Cretaceous strata appears
to have formed toward the end of the Cretaceous period and is
currently concealed by more recent deposits. Figure 6 shows
the structural analysis of the Ranikot Formation in the Mehar
Block.

4.3. Seismic Inversion Analysis. The conversion of seismic
data into AI through seismic inversion has gained widespread
acceptance in both industry and academia. This process
involves using seismic data to extract the physical properties
of rocks and fluids. Various algorithms have been created in
the past few years for generating AI maps from poststack
seismic data and subsequently correlating them with the dis-
tribution of reservoir properties. This paper aims to assess the
hydrocarbon potential of the reservoir formation in the study
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area. This evaluation procedure utilizes poststack seismic
inversion in conjunction with wireline log analysis. The wire-
line log analysis, conducted directly within the borehole,
serves as a method of investigation to determine reservoir
properties such as P and S-wave velocities, shale volume,
porosity, density, AI contrast, and saturation [45, 46].

Seismic inversion analysis was done for the same 3D
cube of Mehar block data. The inversion analysis showed
variations based on AI between the lithologies. A wavelet
was generated, and a well correlation was done, followed
by the generation of a low-frequency impedance model.
Quality control analysis was performed prior to completing
the inversion, as shown in Figure 7. After running 20 itera-
tions, the results were very appropriate. The blue curves
represent the original log, and the red curve represents the
inverted result. The correlation between seismic in (black)
and synthetic in (red) is 0.98%, with an error of 0.081.

Figure 8 presents the final impedance model for the
Mehar-02 well. The Pab Sandstone and Lower Ranikot For-
mation are the primary gas-producing reservoirs of Mehar
Field, and the results of the final impedance model suggest
low to moderate impedance values across these reservoir
zones, with increased porosity, particularly at the well loca-
tion, which is dependent on the hydrocarbon content. The

inversion model also reflects the same subsurface geometry,
including a thrust fault and some high variations in imped-
ance along faulted zones due to fractures and lithological
intermixing.

4.3.1. Porosity Estimation. To determine the reservoir poten-
tial of the Ranikot Formation in the Mehar Field, the porosity
of the Lower Ranikot Formation was estimated by conduct-
ing an inversion analysis on seismic data. The log correlation
method was used to perform this estimation, which indicated
the trend of changing porosity in the sandy portion of the
Ranikot Formation by associating the porosity log and
impedance log of the Mehar-02 well with a regression line
from linear regression (Figure 9 (a)). The estimated porosity
in the Lower Ranikot Formation ranged from 5% to 6%, as
shown in Figure 9(b).

4.3.2. TOC Estimation. TOC is the organic carbon concen-
tration in source rock, such as shale. TOC is usually found in
higher amounts in source rocks, and its degree of maturation
is variable and dependent on several factors, including pres-
sure, temperature, and time. The quality of source rocks can
be determined by the type of TOC present [37]. The lab
technique used for estimating TOC is called vitrinite
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reflection, where a rock sample is crushed and examined, but
this requires the core sample of the rock and is then inte-
grated with the subsurface model [47, 48]. The correlation of
logs makes it easy-to-get a general estimation of rock prop-
erties and helps in initial modeling, such as using a density

log reciprocal model for TOC estimation [14]. Figure 10(a)
shows a correlation between the impedance log and the TOC
log for computing the TOC model of the Upper Ranikot.
Figure 10(b) shows the final model and distribution of TOC for
the Upper Ranikot, which indicates values of TOC around 2.0%.

FIGURE 8: The impedance model on well line (Mehar-02) with marked horizons.
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5. Conclusions

The Ranikot Formation of the Central Indus Basin, which
contains both sands and shales due to fluctuating sea levels,
has significant porosity for the accumulation of hydrocar-
bons in its Lower Ranikot. In contrast, its Upper Ranikot
shales form a seal for the hydrocarbon pool and potentially
serve as source rock for younger reservoirs with high TOC
concentration. Seismic data were utilized to assess the poros-
ity and TOC content of the most significant formation in the
Mehar Block of the Middle Indus Basin; these were estimated
to be between 5.5% and 6.0% and TOC values around 2.0%,
indicating good potential. However, if available, seismic esti-
mation is usually higher than actual values obtained from
more precise laboratory analysis of core samples and high-
efficiency well logs.
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