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ABSTRACT
In this paper, an approach on analysis of the pathologic cardiac murmurs for congenital heart
defects was proposed based on the wavelet packet (WP) technique. Considering the difference of
the energy intensity distributions for the innocent and pathologic murmurs in frequency domain,
the WP decomposition was introduced and the WP energies at each frequency band were
calculated and compared. Based on the analysis of a large amount of clinic heart sound data, the
murmurs energy distributions were divided into five frequency bands, and the relative evaluation
indexes for cardiac murmurs (ICM) were proposed for analysis of the pathologic murmurs.
Finally, the threshold values between the innocent and pathologic cardiac murmurs were
determined based on the statistical results of the normal heart sounds. The analysis results
validate the proposed evaluation indexes and the corresponding thresholds.

Keywords: cardiac murmurs analysis, energy distribution, wavelet decomposition, evaluation
index, congenital heart defects

1. INTRODUCTION
Congenital heart defects (CHDs) are problems with the heart’s structure or function
that is formed before birth [1], with a rate of eight out of every 1,000 newborns. It
is known that this kind of defects can be cured with a high probability if the diseases
could be detected in an early stage. Therefore, the research on the early detection of
CHDs is one of the most important medical research areas [2]. There are many types
of congenital heart defects. Some are simple and some are more complex. Atrial
septal defect (ASD) is one of the CHDs, a hole in the part of the septum that
separates the atria. The hole makes oxygen-rich blood from the left atrium to flow
into the right atrium, instead of flowing into the left ventricle as it should. ASDs can
be small, medium, or large. Medium and large ASDs allow more blood to leak from
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one atrium to the other. Ventricular septal defect (VSD) is another type of CHD, 
with a hole in the part of the septum that separates the ventricles. Small VSDs do 
not cause problems and may close on their own. However, large VSDs allow much
blood to flow from the left ventricle to the right ventricle. As a result, the left side
of the heart must work harder than normal and extra blood flow increases blood
pressure in the right side of the heart and the lungs. Furthermore, the most common
complex heart defect is tetralogy of Fallot (TOF), which is a combination of 
four defects: Pulmonary valve stenosis, a large VSD, an overriding aorta and 
right ventricular hypertrophy. ASD, VSD and TOF account for the majority of 
the CHD [3].

Heart murmurs are pathological sounds produced by turbulent blood flow due to
certain cardiac defects, and they are the most common reasons for referral to the
pediatric cardiologist. In children, about 50-70% of these murmurs are clinically
insignificant [4], but if the child is crying, uncooperative to the examiner or breathing
loudly, some other murmurs may occur. Because of the difficulty of mastering
auscultation skills, innocent and organic heart murmurs cannot be readily
distinguished. Therefore, heart murmur quantitative analysis is necessary. Recently,
the demand for evaluation of the murmurs from auscultation of cardiac sounds has
been addressed by researchers and clinicians [5-8]. To detect and analyze the heart
sound (HS) murmurs, many approaches have been carried out, including a multivariate
matching pursuit method [7] used to model the murmurs by decomposing them into a
series of parametric time-frequency atoms, and then the model parameters used to
identify the cardiac sound signals. An adaptive singular spectrum analysis approach
[8] was applied to the changes in the statistical properties of the sound data for
detection of murmurs.

Since the heart murmurs show clearly different characteristics in the frequency
domain compared with the time domain, many researchers have focused on the
characteristic extraction by local frequency analysis method, such as the wavelet
decomposition (WD) or WPD [9-14, 23], the neural network [6, 15-18], support vector
machine(SVM) [19-21]. Sepehri, et al. [18], studied a method for automatic screening
of CHD in children with neural network classifier. The pathological murmurs of CHD
were identified by examining the HS energy over special frequency bands called Arash-
Bands. However, the Arash-Bands determined for each CHD in the study were
overlapped with the frequencies 16-121 Hz. Based on our study, the main energy
distributions either for normal or abnormal HSs are concentrated in the frequency range
of 10-100Hz. We also found that frequency band is much influenced by measurement
situations, ages, body types, mixed heart defects, etc. We have tried many methods but
it seems difficult to identify some murmurs by the Arash-Bands. Furthermore, Samjin
Choi, et al. [9, 23] proposed insufficiency murmur identification and valvular disorders
detection using wavelet packet decomposition, and HS signals with frequency range 20-
700Hz were preferred; furthermore, the features were extracted from WP coefficient
calculated for each subdivision. However, the subjects in these two studies were from
the medical text book [26] or internet web [27]. It is not clear whether WP coefficient
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calculated for each subdivision with the frequency range 20-700Hz can identify the
CHD signals in general auscultation environment in hospital.

In our study, a novel approach is investigated for analysis of the pathologic cardiac
murmurs of CHD with the energy distributions over special frequency bands. The
clinical CHD including the most common CHD of children (3 month to 10 years old,
several are 24~27 years old) is investigated. In collecting the clinical signals from
children in hospital, we found that children’s thoracic cavities are very thin, and
during clinical auscultation, high frequency (344-1378Hz) HS components produced
by blood flow through the valves are easy to collect through the thin chest, and the
heart beat activity always cause chest vibration through the thin chest. Hence, the
very low frequency (5-21Hz) component from chest vibration or body movement can
be collected. Therefore, in our study, we preferred the heart signals with the
frequency range with 5-1378Hz. According to the analysis results, we also found that
frequency division too small would highlight breathe sound component and other
noises from body moving or environment, which would influence the identification
result. Therefore, in our study five frequency band divisions were employed; the
wavelet packet decomposition (WPD) is introduced and the WP energy distributions
at these five frequency bands are calculated and compared. The evaluation indexes
for cardiac murmurs are proposed for the analysis of the pathologic murmurs. Finally,
the threshold values between the innocent and pathologic murmurs are determined
based on the statistical results of the HSs. The analysis results demonstrate the
validation and efficiency by using the proposed evaluation indexes and the
corresponding thresholds.

2. METHOD
Auscultation denotes the act of analyzing sounds from the body, which is produced
by the mechanical vibrations generated in the organs. The HSs are primarily
generated from blood turbulence. Heart defects can cause heart murmurs (extra or
unusual sounds heard during a heartbeat). Doctors can hear heart murmurs using a
stethoscope. In CHD patients, a pulmonary ejection click or/and soft and scratchy
systolic ejection murmurs are audible [22]. HS auscultation is usually performed at
four locations (aortic, pulmonic, tricuspid and mitral areas) in front of the chest. In
this paper, the cardiac sound signals auscultated from the pulmonic area were
selected as the analysis signals because the HS is most audible in this area. The 
use of the data in this study has been approved by local data collection ethics
committee.

The cardiac murmurs for different heart defects usually contain different
frequency components. If the sound signal can be decomposed in different requested
frequency ranges in a suitable way, the corresponding energy intensities can be
evaluated quantitatively. In this study, the cardiac signal is decomposed and
reconstructed at each requested frequency band by the WPD technique and their
murmurs energy intensities are calculated and used for the cardiac murmurs
evaluation. The block diagram for murmurs analysis is depicted in Figure 1 and the
detail is described below.
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2.1. Pre-processing
The original HS signals were recorded by an electric stethoscope with 16-bit accuracy
and 44.1 kHz sampling frequency. The recorded signal x(i) is first down-sampled to
11025 Hz to reduce the calculation time. Next, WPD implementation is applied to the
signal with MATLAB software. Daubechies 10 (DB10) wavelet was used as the mother
wavelet because it very well addresses biomedical signals [9, 20, 24]. The original
signal x(i) is first preprocessed by the WPD-based filter with frequency band of 5.38-
1378.1 Hz. The obtained signal xm(i) is then normalized by Eqn. (1) and used in the
following analysis:

(1)

2.2. Frequency Band Definition
By considering the frequency ranges of the innocent and pathologic murmurs in the
frequency domain, in this study, the wavelet packet decomposition at level 10 is employed
to split frequency bandwidths of HS signals. Through clinical auscultation observation
and energy intensities analysis at each level (d10~d3), the interested parts and useful
combinations are implemented, and five frequency bands are defined and shown in Table
1; they are named as very low frequency (VLF), standard frequency (SF), low frequency
(LF), middle frequency (MF) and high frequency (HF). Their corresponding wavelet
detail coefficient levels and center frequencies are also presented in Table 1.
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Figure 1. The block diagram for murmurs analysis.

Table 1. Murmurs frequency bands definition.

Frequency band number (j) 1 2 3 4 5

Frequency band VLF SF LF MF HF
Wavelet detail coefficients d10+d9 d8+d7 d6 d5 d4+d3
Frequency band 
corresponded 
to sampling 
frequency (Hz) 5.38-21.53 21.53-86.1 86.1-172.2 172.2-344.4 344.4-1378
Center frequency (Hz) 7-14 29-59 117 235 471-942
(Measured center frequency) (6-12.5) (25-50) (100) (200) (400-800)
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2.3. WPD Implementation
The wavelet packet analysis is an extension of the discrete wavelet transform (DWT)
and is one of the most efficient decomposition that could be performed on the signal.
Daubechies type wavelet (DB10) is used to build a wavelet filter. The center
frequencies are calculated from the mother wavelet (DB10) at the corresponding detail
levels (Table 1). Further the reconstructed signals at each decomposition level are
applied by FFT and their peak frequencies are measured and named as measured center
frequency (Table 1) just for reference. Figure 2 shows the plots of some typical HSs
treated by WP analysis method. Figure 2(a)-(d) are the examples of NHS, ASD, VSD
and TOF signals obtained by reconstruction of the components at VLF, SF, LF, MF and
HF band as defined in Table 1. A simple sum of all the VLF, SF, LF, MF and HF
components represent the original HS signal.

The NHS signal plots at each frequency band show the 1st and 2nd sounds clearly and
the energy is mainly distributed at the SF band. As for ASD, the signal plots show that
the murmurs appeared mainly at LF and MF bands. As for VSD and TOF, the murmurs
have stronger energy distributions at MF and HF frequency bands.

2.4. WP Energy (WPE) Ratios
Figure 2(a)-(d) show that the energy of all types of HS signals is mainly concentrated
at SF band. Further, compared to NHS, CHD signals have higher energy intensities at
the higher frequency bands. To quantify the cardiac murmurs, WP energy ratio Êj is
proposed and defined as the following:

(2)

x̂j (i) is the reconstructed signal at the corresponding frequency band j, N is the signal
length and j = 1, 2, 3, 4, 5 are corresponding to frequency bands VLF, SF, LF, MF and
HF respectively.

3. DATA ANALYSIS
The original HS signals were recorded by an electric stethoscope with 16-bit
accuracy and 44.1 kHz sampling frequency. HS data were collected from 85 test
subjects who have signed an informed consent. The subjects included 21 healthy
young college students and 64 CHD patients. CHDs patients included 17 ASD, 29
VSD and 18 TOF.

The energy distributions for these four conditions (NHS, ASD, VSD and TOF) are
calculated at each frequency band defined in Table 1. The energy distribution
histograms at SF, LF, MF and HF frequency bands are plotted in Figure 3 to Figure 6.
The y-axis shows the number of samples or frequency of the observations in the interval
and the x-axis is the energy ratio Êj in percentage. There are about 40% to 90% energy
distributed at SF frequency band, 5% to 30% at LF band, 1% to 10% at MF and 0.1%
to 4% at HF band.
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Figure 2. (Continued)
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Figure 2. HS signal examples of NHS, ASD, VSD, TOF and their reconstructed
signals at different corresponding frequency band, Original, VLF, SF, LF,
MF and HF.
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Figure 4. Energy distribution at LF frequency.
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Figure 3. Energy distribution at SF frequency.
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Figure 6. Energy distribution at HF frequency.
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Figure 5. Energy distribution at MF frequency.

The averages and the standard deviations for these four conditions are summarized
in Table 2. Statistical analysis was performed to show whether there is a significant
difference in means among these four conditions (NHS, ASD, VSD and TOF) using the



one-way ANOVA F-test. The very low P-values (<0.0001) were taken as statistically
significant. It is obvious that the distributions of NHS are following the normal
probability distribution. The energy distributions of ASD are similar to NHS.
Furthermore, the energy distributions of other CHDs are spread over a wide range and
the energies maintain higher values at MF and HF bands compared to those in NHS.

Table 2 shows over 50% of energy in average concentrated at SF band for all
conditions. This shows that the main component of HS is in the SF band. Further,
Figure 2 and Table 2 indicate that the pathologic murmurs feature high energy
distributions at LF, MF and HF.

On the other hand, the energy distribution at VLF band is considered to be a
vibration or systaltic movement in the body due to the heartbeat. The energy
distribution histograms at VLF band are shown in Figure 7. For NHS, the energy is
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Figure 7. Energy distribution at VLF frequency.

Table 2. Means and variances of the energy ratios at four frequency bands 
(P < 0.0001)

Group
(Eave±Estd) NHS ASD VSD TOF P-value

EVLF(%) 15.67±4.45 20.30±19.18 13.31±13.33 30.69±19.84 <0.0001
ESF(%) 76.16±4.33 68.67±18.95 66.90±9.94 53.45±13.63 <0.0001
ELF(%) 6.05±1.66 7.51±3.89 13.58±6.91 9.60±5.41 <0.0001
EMF(%) 1.82±0.792 2.65±1.76 4.692±2.83 4.58±2.86 <0.0001
EHF(%) 0.29±0.12 0.84±0.74 1.52±0.99 1.68±1.26 <0.0001
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Figure 8. Distributions of the indexes of cardiac murmurs at LF band (ICMLF).

usually lower than 25% but for CHDs, the energies sometimes are higher than 30%. It
was found that the HSs recorded from the infant usually contain high energy
components at VLF band and some of them account for more than 40% of the total
energy. Because the infant has little fat, the pulsation of the heart easily leads to a
movement of the whole chest region. This movement, especially due to the abnormal
heart pulsation is captured by another stethoscope which shows the high energy
component at VLF band. Since there are still many uncertainties for this VLF band, this
study has mainly concentrated on the four bands, SF, LF, MF and HF.

4. RESULTS AND DISCUSSIONS
As discussed above, the main energy of HS is concentrated at SF band and the
pathologic murmurs represent the high energy density at LF, MF and HF bands. Based
on this fact and our investigation, the evaluation indexes of cardiac murmurs are
proposed and defined as the following:

(3)

Figure 8 shows the plots of ICMLF for NHS and CHDs. The average and standard
deviation of ICMLF for NHS are obtained as 8.01±2.44. The threshold for cardiac
murmurs (TCM) at LF band is defined by TCMLF = 8.01+2.44 = 10.45, depicted as a
broken line in the figure. It means that it could be diagnosed to be the pathologic
murmurs if the obtained energy level is higher than this threshold TCMLF. From Figure
8, it is found that nine of the 17 ASD samples are below the threshold TCMLF,
indicating nine subjects in false diagnosis. On the other hand, only four of the 29 VSD
and three of the 18 TOF samples are below the threshold.

Point in Figure 8 has the highest value of ICMLF in NHS at LF band, which is
beyond the threshold of TCMLF. This HS signal is further analysed and the results are
plotted in Figure 9. It is confirmed that the strong energy component at LF band is the
pulmonary sound due to a normal breath. The breath component can also be found at
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MF band but its intensity is much weaker than the one at LF band. General auscultation
of HS, usually includes respiratory sound, and the pulmonary sound components are
mainly distributed at LF and MF bands.

Regarding the MF band, Figure 10 shows the plots of ICMMF for NHS and CHDs.
The average and standard deviation of NHS’s ICMMF is 2.39±1.03 and the threshold of
the cardiac murmurs at MF band is set as TCMMF = 3.42. It is found that there are 11
ASD, four VSD and no TOF samples below the level of TCMMF indicating more than
half ASD patients are misdiagnosed. However, the misdiagnosed number for TOF has
been improved with the comparison of the results obtained at LF band.
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Figure 9. Example of pulmonary sound due to a normal breath, indicated by in
Figure 8.
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Point in Figure 10 has the highest value of ICMMF in NHS. Its time waveforms
reconstructed at four expected frequency bands are plotted in Figure 11. It is clear that
the breath sounds represent the strong components in LF, MF and HF bands. The energy
distributions of the breath component have almost the same intensity at both LF and MF
frequency bands.

The plots of ICMHF are shown in Figure 12. The average and standard deviation of
ICMHF for NHS is 0.38±0.16 and the corresponding threhold of the cardiac murmurs is
given as TCMHF = 0.54. The numbers of CHD samples below the threhold TCMHF are two

B
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in ASD(i,ii) (▼), two in VSD(iii,iv) (*) and none in TOF samples shown in Figure 12.
The misdiagnosed cases are reduced significantly. This indicates that the cardiac murmurs
evaluation index at HF band ICMHF can be an evaluable index for quantitative diagnosis
of HS murmurs. It is also evident that the diagnosis accuracy could be improved if the HS
is recorded by a momentary stop of the breath, and in a quiet environment.

Based on the experimental investigation, the evaluation indexes of cardiac murmurs
(ICMLF, ICMMF and ICMHF) are discussed. Performance measures such as True
Positives (TP), False Negatives (FN), True Negatives (TN), and False Positives (FP),
accuracy, sensitivity (Sn) and specificity (Sp) are evaluated. TN is the number of
normal cases correctly identified as normal. FN is the number of CHD cases incorrectly
identified as normal. TP is the number of CHD cases correctly identified as they are,
and FP is the number of normal cases incorrectly identified as CHD. Sensitivity
(TP/(TP+FN)) is the ratio of CHD samples that are correctly identified to the total
CHD. Specificity (TN/(TN+FP)) is the ratio of normal samples are correctly identified
to total normal HS. Accuracy (TP+TN)/(TP+FN+TN+FP) which is the ratio of the
number of correctly identified samples to total number of samples [25]. The
performance measures for the evaluation indexes of cardiac murmurs are shown in
Table 3. It can be seen that performance measures of ICMHF yielded the highest
sensitivity of 93.8% (the correct rate of CHD cases), specificity of 100% (the correct
rate of normal cases) and accuracy of 95.3% (the correct rate of total cases),
respectively, significantly better than those with ICMMF and ICMLF.

As mentioned above, the energy distribution at VLF band is considered to be a
vibration or systaltic movement in the body due to the heartbeat shown in Figure 7. In
Figure 12, the four samples below the threshold of TCMHF = 0.54 might be
misdiagnosed as normal samples. Further analysis on these 4 CHD samples and
comparing with NHS revealed that the energy ratio EVLF of ASD(i), VSD(iii, iv) are
over 20%, which are higher than that of NHS (see Table 4). This means ASD(i) and
VSD(iii,iv) can be distinguished from NHS by EVLF (%).

Therefore, only the energy distribution of ASD(ii) is close to NHS. However, based
on the records of ASD(ii), the patient was diagnosed as a single ostium primum atrial
septal defect without mitral regurgitation or left ventricle to right atrium shunting, while
the other ASD cases in this study are ostium secundum atrial septal defects. Patients
with smaller ostium primum atrial septal defects (little or no mitral regurgitation or left
ventricle to right atrium shunting) are usually asymptomatic. Considering the analysis
result of evaluation indexes ICMHF and the four special cases of CHD (ASD(i,ii) and
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Table 3. TN, FN, TP, FP, sensitivity (Sn), specificity (Sp) and accuracy (Acc) of
evaluation indexes of cardiac murmurs ICML

ICML TN FN TP FP Sn (%) Sp (%) Acc (%)

ICMLF 20 16 48 1 75 95.2 80
ICMMF 20 15 49 1 76.6 95.2 81.2
ICMHF 21 4 60 0 93.8 100 95.3



VSD(iii, iv)) at VLF band, we can attain improved performance measures with
sensitivity of 98.4%, specificity of 100% and accuracy of 98.8%, respectively.

5. CONCLUSION
CHDs are abnormalities in the heart’s structure present at birth, which can range from
mild to severe. Heart murmurs are pathological sounds produced by turbulent blood
flow due to cardiac defects. This paper has described a new approach on analysis of
the pathologic cardiac murmurs based on the WPD technique which analyses both
low and high frequency sub-bands of HS signals, collected from clinical subjects in
general environment. The HS signal was divided into five bands and the energy
intensity at each frequency band was calculated and compared. Based on the analysis
of clinic HS data, three evaluation indexes for cardiac murmurs were proposed for the
analysis of the pathologic murmurs. Finally, the threshold values between the
innocent and pathologic murmurs were determined based on the statistical results of
the normal HSs. A case study on the NHS and CHD signals was performed to validate
the usefulness and performance of the proposed method. The performance measures
of ICMHF yielded the highest sensitivity of 93.8%, specificity of 100% and accuracy
of 95.3%, respectively. Furthermore, considering the analysis result of evaluation
indexes ICMHF at HF (344-1378Hz) and the four special cases at VLF band (5-21Hz),
we can obtain the improved performance measures with a sensitivity of 98.4%,
specificity of 100% and accuracy of 98.8%, respectively.
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Table 4. Energy ratios values at different frequency bands of CHD heart sound
below the threhold TCMHF.

Sample No. EVLF (%) ESF (%) ELF (%) EMF (%) EHF (%)

NHS (Eave±Estd) 15.67±4.45 76.16±4.33 6.05±1.66 1.82±0.792 0.29±0.12
ASD(i) 22.79 72.23 4.10 0.76 0.11
ASD(ii) 9.48 83.72 5.59 0.98 0.22
VSD(iii) 50.21 44.81 3.84 0.88 0.23
VSD(iv) 38.93 54.75 4.84 1.20 0.27
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