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ABSTRACT
The feasibility of a novel system to reliably estimate the normalized central blood pressure (CBPN)
from the radial photoplethysmogram (PPG) is investigated. Right-wrist radial blood pressure and
left-wrist PPG were simultaneously recorded in five different days. An industry-standard
applanation tonometer was employed for recording radial blood pressure. The CBP waveform was
amplitude-normalized to determine CBPN. A total of fifteen second-order autoregressive models
with exogenous input were investigated using system identification techniques. Among these 15
models, the model producing the lowest coefficient of variation (CV) of the fitness during the five
days was selected as the reference model. Results show that the proposed model is able to
faithfully reproduce CBPN (mean fitness = 85.2% ± 2.5%) from the radial PPG for all 15 segments
during the five recording days. The low CV value of 3.35% suggests a stable model valid for
different recording days.

Keywords: central blood pressure, radial photoplethsymography, dynamic linear model, system
identification

1. INTRODUCTION
Cardiovascular diseases (CVD’s) continue to remain one of the biggest health issues
despite progress in medicine and development of new diagnostic tools. Besides
hereditary factors, sedentary life-style and work-related stress contribute to the risk of
CVD’s in aging populations. Among health conditions, hypertension has probably the
most dramatic outlook, especially when occurring with other diseases such as diabetes.
The net result is a heavy financial burden, estimated to be USD 2.3 trillion in the USA
alone in 2008, with similar trends in other parts of the world [1]. Another unenviable
impact is the increase in the dependency ratio, defined as the number of individuals who
are retired or too young to work divided by the number of individuals who are in the
working age range. This dependency ratio is poised to jump from its current value of
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just above 20% to more than 35% in 2030 [1]. In this context, any step towards
prevention of CVD’s may lighten the amount of healthcare efforts necessary to maintain
an adequate quality of life for the population in general and the elderly in particular. As
one of the main indicators of cardiovascular health is blood pressure (BP), a myriad of
devices are commercially available for the indirect measurement of systolic blood
pressure (SBP) and diastolic blood pressure (DBP). Although the two major
characteristics of the BP are the peak (SBP) and valley (DBP) leading to their weighted
mean arterial pressure (MAP = (1/3) × SBP + (2/3) × DBP), the time-varying waveform
of the BP (BP(t)) has received considerable interest due to the rich amount of
cardiovascular-related information [2]. Furthermore, the central BP (CBP(t)) waveform
has proven to be very relevant to the diagnostic of CVD [3]. The measurement of
CBP(t), done by inserting a catheter through a femoral, carotid or radial artery, is both
technically and clinically challenging, especially when long-term measurements are
sought [4]. Being invasive, this direct way of blood pressure measurement is strictly
limited to the operating theater.

Fortunately, other devices have been made commercially available based on the
principle of arterial tonometry and generalized transfer function (GTF) [5]. The
principle of operation of these devices is based on a pressure sensitive applanation
tonometer which is placed over an artery (generally the radial artery). Upon application
of an external pressure equal to the mean arterial pressure, the arterial wall becomes
flattened, eliminating radial forces due to the artery wall distension [6]. Under such
conditions, the pressure exerted to the tonometer is equal to the blood pressure value in
the ‘unloaded’ artery beneath. In order to get the CBP, an empirically derived GTF is
employed [5]. The most established of such devices is the SphygmoCor [7], although
other devices using the same principle are also commercially available [8]. Our group
investigated the advantages and limitations of these devices. After consideration of all
parameters, finally the SphygmoCor was identified as having a stronger validation pool
of academic publications [8].

Despite being non-invasive, proper positioning and steadfastly keeping the
applanation tonometer over the radial artery proves to be difficult and requires a skilled
operator. Another limitation in deployment of continuous blood pressure waveform
recording systems using tonometers is their relatively high cost, in the range of dozens
of USD. The tonometer is generally made of a very sensitive Mylar pressure transducer,
and this expensive transducer is easily prone to malfunction by mishandling especially
in developing countries, making the adoption of such devices even more limited in a
budget-constrained clinical environment.

To remedy these problems, attempts have been made to non-invasively estimate
BP(t) using alternative transduction mechanisms. One such approach is based on the
photoplethysmogram (PPG), which is the signal corresponding to the amount of light
after it has been attenuated by the vascular bed and surrounding tissues [9]. One of the
earliest works in this field has been reported by Millasseau et al. [10] where BP(t) is
measured using a finger pressure monitoring device (Finapres) and the PPG is recorded
from another finger of the same hand. A limitation of the approach in [10] is the use of
the empirical Fourier transform estimate (EFTE), which is known to be sensitive to
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measurement noise [11]. To minimize the effect of noise and error in the EFTE
technique, in a previous study, all heart cycles’ duration are normalized to exactly one
second. As a result, useful information related to the frequency components of BP(t)
may have been lost. A more recent work [12] has adopted a similar approach but under
a different condition where subjects were asked to do a predefined set of exercises so
that their BP varies considerably.

In this work, we propose to investigate the possibility of using the radial PPG to
derive CBPN(t), the amplitude-normalized CBP(t), using a linear dynamic model
(transfer function). Being a conduit artery, the radial artery offers the advantage of not
being affected by any local auto-regulation mechanism. In order to ascertain the
reproducibility of our technique, the estimated CBP is evaluated in the course of 
5 different days for the same subject. The rest of this paper is organized as follows:
Section 1.1 will introduce a brief theoretical background. In Section 2, the data
acquisition setup and methods employed to estimate the models are described. Results
are presented in Section 3, followed by an interpretation of these results and
conclusions in Sections 4 and 5, respectively.

1.1. Theoretical Background
1.1.1. Arterial Diameter Variations with Blood Pressure
The arterial wall is essentially composed of viscoelastic tissues consisting mainly of
elastin and collagen [13], exhibiting a non-linear behavior in response to the arterial
pressure Part [14]. Each left ventricle contraction generates a pulse pressure wave which
propagates from the aorta and reaches the extremities through the arterial tree. The
incidence of the front-end of this pulse pressure causes the arterial diameter to increase
and the thickness of the strained arterial wall to decrease accordingly [13]. Eventually,
the arterial wall will induce enough force to balance the internal pressure (Figure 1) and
a dynamic equilibrium is rapidly reached. A pressure cuff will apply an external
pressure Pext, whereas the relationship between the artery diameter d and the transmural
pressure (Ptr = Part – Pext) is given in eqn. 1 [14], where dn is the diameter difference
from a fully collapsed state to the inflection point, dp is the diameter difference from the
inflection point to a fully expanded size, and Cmax is the slope of the pressure-diameter
curve at the inflection point.

(1)

for Ptr < 0

for Ptr ≥ 0

A typical static response of the arterial diameter under the effect of Ptr (eqn. 1) is
illustrated in Figure 2, with the following physiologically meaningful parameters’
values [15]: Cmax = 0.15 mm/(mmHg); dmax = 3.22 mm; dn = 2.00 mm; dp = dmax – dn =
1.22 mm. When Pext = Pmean, i.e. Ptr = 0, the artery is at its maximum compliance
(change in vessel volume per unit change of blood pressure).
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Figure 1. Conceptual cross-section of the arterial wall subjected to the arterial
pressure (Part) counter-balanced by the pressure emanating from the
distension of the arterial wall (arrows). Large diameter artery with thin wall
at systole (left). Small diameter artery with thick wall at diastole (right).
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Figure 2. Typical behavior of the arterial diameter (top) and compliance (bottom)
versus transmural pressure Ptr. See text for parameter values.



It is clear that the dynamic response of the artery diameter depends on the operating
point set by the transmural pressure (Ptr). Setting Pext equal to the mean arterial pressure
will place the operating point at the maximum arterial wall compliance. Under such a
condition, Ptr will oscillate around zero and maximum amplitude oscillations are
obtained. During applanation tonometry, the operator strives to reach this point by
adjusting the exerted force on the probe so that amplitude variations become maximal,
an indication that Pext = Part.

1.1.2. Genesis of the Photoplethysmogram
When a beam of monochromatic light of intensity I0 at wave length λ passes through a
distance d of tissues consisting of muscle, fat, venous and arterial blood, and if
reflection and scattering can be neglected, the resulting amount of light intensity known
as PPG(t) can be roughly approximated by the Beer-Lambert’s law (2):

(2) 

where {αm, αf, αv, αa} are the wavelength-dependent optical extinction coefficients,
and {dm(t), df(t), dv(t), da(t)} are the time (t) varying path lengths for muscle, fat, venous
and arterial blood, respectively. For the rest of this paper, we will refer to PPG(t) as
PPG.

As biological tissues are far from being homogenous, in reality, the light beam will
also undergo reflections caused by various layers of tissue, arterial and venous blood,
bone and arterial wall(s) [9]. The net result of this combination is a pulsatile (alternate)
component (AC) superposed to a constant amplitude intensity (DC). The source of the
AC signal is the arterial blood; therefore, it is synchronized with the heart pumping
cycle. Under normal perfusion circumstances, the peak-to-peak amplitude of the AC
component of the finger PPG is approximately 10% of the DC. At the systolic instant,
the arterial diameter is maximum (Figure 1); therefore, the amount of collected light
after the light beam has traveled through the tissue layers is minimum (eqn. 2).
Similarly, the amount of collected light will be at its maximum at the diastolic instant.
It is common practice to negate the AC part of the PPG so that the systolic instant
corresponds to a peak and the diastolic to a valley (Figure 3).

1.1.3. Linear, Dynamic Relationship Approximation
A simple consideration of eqns. 1 and 2 indicates clearly that the relationship between
BP(t) and PPG is highly non-linear. However, when operation around Ptr = 0 is
considered, a linear approximation may be assumed. Therefore, it may be plausible to
propose a linear, dynamic (due to arterial elasticity) relationship between BP(t) and
PPG as long as the pulse pressure (SBP - DBP) does remain within the linear range of
variation of the arterial diameter d versus Ptr. For example, under the conditions for the
graph in Figure 2 and an operating point defined by Ptr = 0, a pulse-pressure of less than
15 mmHg would satisfy this condition. In practice, however, the pulse pressure is
generally more than 15 mmHg and such a deviation from the 15 mmHg zone will
reduce the fitness of the model output.

= × × × ×α α α α− − − −PPG t I e e e e( ) d t d t d t d t
0

( ) ( ) ( ) ( )m m f f v v a a
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The main hypothesis of our work is the existence of a linear, dynamic relationship
between the normalized-amplitude radial CBP (CBPN) and the radial PPG. The
verification of the existence of such a relationship will therefore be our objective in this
paper. Furthermore, we will investigate the stability of such a relationship over different
days for the same subject.

2. METHODS
2.1. Data Acquisition Protocol
This study conforms to the Declaration of Helsinki [16] was approved by the ethical
committee of the university hospital (Hospital Universiti Kebangsaan Malaysia) with
reference number: UKM 1.5.3.5/244/FF-2013-409. Data were acquired from a healthy,
non-smoking male (25 years) who did not have any cardiovascular risk factor. The
subject was briefed by introducing him to the setup one week prior to the experiment.

The subject gave informed consent, fasted overnight and refrained from any heavy
physical activity. The subject was placed in a temperature controlled, noise-free room
with constant illumination for 15 minutes. Then he was made to lie in the supine
position on a low-rise bed for two minutes. To avoid any motion artifact, the subject
was instructed to refrain from talking or moving during data acquisition. The subject
was called for a total of five different days spread over 2 weeks. On each day, the same
protocol (as described above) was strictly followed, and a set consisting of five records
were obtained. The setup was operated by a person trained by the manufacturer (AtCor
Medical, Australia).

2.2. Recording Setup
Figure 4 shows the setup where a reflective-type PPG sensor (g.PULSEsensor, g.Tec
Medical Engineering, Austria) was attached to the left wrist of the subject. The output
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Figure 3. Sample of a radial PPG from sensor output. Left panel: raw data. Right
panel: after low-pass filtering (15 Hz), detrending and peak amplitude
normalization to unity by dividing the signal by its maximum value.



of this sensor and associated amplifier circuit is the AC component of the PPG. A
tonometer (AtCor Medical, Australia) was attached to the right wrist. Two arm rests
were specially fabricated to reach the bed’s height where the subject laid on the
supine position. This ensured that the subject’s arms remained comfortably extended
during data acquisition. The wrist tonometer output was connected to a SphygmoCor
unit (AtCor Medical, Australia), measuring the radial BP. The CBP is internally
computed by the SphygmoCor using the manufacturer’s proprietary algorithm;
therefore, it is a derived CBP. Care was taken to attach each sensor as close to the
bone prominence as possible over the respective left and right radial arteries. Both
PPG and tonometer positions were manually adjusted with great care so as to receive
the maximum amplitude signal, resulting in the best quality in terms of signal-to-
noise ratio. The SphygmoCor device has two analog outputs: the measured radial
pressure and reconstructed CBP. These signals as well as the wrist PPG sensor output
were digitized by a 24-bit analog-to-digital data acquisition module (NI 9239,
National Instruments, USA). A LabView program (National Instruments, USA) was
utilized to record 180 s (three minutes) of data at a sampling rate of 1613 Hz (default
setting). All data were saved under ASCII format on a personal computer hard disk
for off-line processing.

2.3. Signal Processing
In order to prepare the data for identifying the model structure and parameters, the
following steps were implemented using MATLAB (The Mathworks, Inc.,
Massachusetts, USA) according to the standard guidelines [11].
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Figure 4. Schematic of the data acquisition setup.



2.3.1. Low-Pass Filtering
Using an in-house developed code, a linear phase finite impulse response (FIR) low-
pass filter (LPF) was implemented with a cut-off frequency of 15 Hz. The choice of the
cut-off frequency is based on the useful frequency components of the CBP and PPG [9].
All recorded signals were low-pass filtered using the same LPF. The code of this LPF
is presented in Appendix A.

2.3.2. Time Alignment
To be able to record the signals of interest on a long term basis, the SphygmoCor device
was put in the pulse wave analysis (PWA) mode. According to the manufacturer, the
reconstructed CBP output signal available from the SphygmoCor device has been
aligned in time, making the absolute value of time arbitrary. Therefore, we performed a
time alignment of the PPG with the CBP. This approach allowed us to simplify delay
estimation during model identification by simply setting the value of the delay
parameter nk to zero. Details of the model identification procedures are explained in
section 2.4.

2.3.3. Resampling
The high sampling rate of 1613 Hz clearly oversamples the data as the useful signal
frequency is only up to 15 Hz. Oversampling produces an unnecessarily large size of
the data records, requires more computation time, and results in the compaction of the
poles and zeros [11]. To avoid these problems, all signals were resampled at 100 Hz.

2.3.4. Data Segment Selection
For model identification purposes, two types of data are required: estimation and
validation [11]. In our study, these input data were selected through careful visual
inspection, the criteria being to avoid any occurrence of motion artifact or extraneous
measurement noise. For each recording session, three non-overlapping segments were
selected. The duration of all selected segments (estimation and validation) was five
seconds, corresponding approximately to five heartbeats. Given that the signals were
recorded during five different days, the above segment selection exercise resulted in a
total of 15 (3 segments × 5 days) data segments. We observed that there was no
significant difference in the model parameters if a much larger segment was selected,
as long as the mentioned segment remained noise-free. The major advantage of
choosing smaller segments is shorter computation time and more uniform (5-sec
segments) approach towards all data records.

2.3.5. Detrending Procedure
As any existing trend in the signal will affect the performance of the system
identification procedure [11], the linear trend was independently eliminated from each
of the data segments.

2.3.6. Amplitude Normalization
As a final preprocessing step, the recorded data sample values of the signals were
divided by their own segment maximum. This ensured that for both CBP and PPG, the
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peak value during each segment was one. The most negative value of each of the signals
depends on the particular waveform. Figure 5 shows a typical 5-second segment of the
PPG and CBPN after preprocessing.

2.4. Model Determination
The procedure for signal processing is shown in Figure 6. The preprocessing steps have
been explained in Section 2.3 and the remaining parts will be discussed in detail here.
The System Identification Toolbox in MATLAB was utilized to perform the necessary
processing in this section. Our aim is to determine the best linear, parametric model
(Figure 7) giving the closest output y(t) to the observed signal defined by:

(3)

where t is the discrete time, h(k) is the impulse response of the model, x(t) is the input
and ε(t) is an additive noise term which reflects the inaccuracies of the model.

2.4.1. Model Structure
The first step in the model determination is to find the adequate model structure.
Considering a linear, parametric relationship between the input (CBPN) and the output
(PPG), the auto-regressive with exogenous (ARX) input was naturally our first choice.
Although the auto-regressive moving-average with exogenous (ARMAX) input model
was also investigated, our preliminary tests showed that ARX outperformed ARMAX
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(PPG) the output.



in terms of goodness of fit and residual noise density. Furthermore, the ARX model is
known to have good numerical stability properties and less bias during estimation of the
model’s parameters [11]. In the ARX model, the input x(t) and output y(t) at the discrete
sample time t are related by the following equation:

(4)

where na is the order of the denominator (number of poles) in the ARX transfer
function, nb is the order of the numerator (number of zeros plus one), nk is the input-
output delay, a(k) and b(k) are the numerator and denominator coefficients of the
transfer function, respectively, and ε(t) is the residual noise. By convention, we will
refer to the above model as ARX [na nb nk].

2.4.2. Model Order
Orders from 1 to 4 have been investigated using the following goodness of fit indices:

a) Fitness value
The Fitness value is defined as [11]:

(5)

where
y(t) is the measured signal at instant t,
ŷ(t) is the estimated model output at instant t,
ӯ is the mean of the measured signal, and
N is the number of data samples.

b) Final prediction error (FPE)
An alternative way to assess the goodness of fit is to use the Akaike’s Final Prediction
Error (FPE) [11] given by:

(6)

where p is the number of estimated parameters and the loss function V is defined as:

(7)

= ×
+

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

V

p

N
p

N

FPE
1

1

∑

∑

( )

( )
= × −

−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

=

y t y t

y t y

Fitness 100 1

( ) ˆ( )

( )

t

N

t

N

2

1

2

1

∑ ∑ ε= × − − + × − +
= =

y t a k x t k n b k y t k t( ) ( ) ( ) ( ) ( ) ( )k
k

n

k

n

0 1

a b

∑= ε θ ε θ
⎛

⎝⎜
⎞

⎠⎟=

V
N

k kdet
1

( , )( ( , ))N N
T

k

N

1

Journal of Healthcare Engineering · Vol. 6 · No. 1 · 2015 131



where θN represents the vector of estimated parameters from the N data samples, ε is the
residual error and det() is the matrix determinant operator [7]. In brief, eqn. 6 shows that
as long as the number of the model’s parameters is very small compared to the number
of samples (p/N << 1), the FPE is close to the loss function. Adding more parameters
will penalize the FPE so that different model orders can be fairly compared, avoiding a
model with numerous parameters to apparently outperform another model with a lesser
number of parameters.

Figure 8 shows typical Fitness and FPE values obtained for various ARX [na nb nk]
model orders ranging from ARX [1 1 0] to ARX [4 4 0]. In all models, the delay has
been fixed to zero (refer to Section 2.3.2); therefore, nk = 0. For nb ≥ 2, the values of the
Fitness (eqn. 5) become similar as soon as na ≥ 2 (Figure 8, top panel). It can also be
seen (Figure 8, bottom panel) that for values of nb ≥ 2, increasing na above 2 does not
significantly impact the FPE.
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As choosing a high order for a particular model would only make the model better
fit the noise instead of the signal of interest [11], the 95% confidence interval of the
poles-zero plots was investigated for orders above two (e.g., ARX [3 3 0]). See
Appendix B for details of computation of the confidence interval.

It was observed that for higher orders, a clear pole-zero cancellation occurred
irrespective of the selected data segment (Figure 9). Therefore, the ARX [2 2 0] model
was selected as having the optimum numbers of poles and zeros.

2.4.3. Goodness of Fit Matrix
Each one of the 15 CBPN/PPG data segments was utilized to estimate the parameters of
a separate ARX [2 2 0] model. For each of these 15 models, the Fitness (eqn. 5) values
were computed on all 15 data segments, resulting in a 15×15 goodness of fit matrix.
Each row in this Fitness matrix corresponds to a segment and each column to a different
ARX [2 2 0] model.

2.4.4. Reproducibility of the Models
Using the goodness of fit matrix as defined in the previous section, the average, median
and coefficient of variation (CV) of the Fitness were computed on each column for each
of the 15 models:

(8)

where σ  and μ are the standard deviation and mean of the Fitness values for a particular
model, respectively.

= σ
μ

CV
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structure). The contours (horizontal on the real axis) represent the 95%
confidence interval. The pole-zero cancellation is caused by order
overestimation. Blue (x): poles, Red (o): zeros. 



2.4.5. CBPN Estimation from Radial PPG
Once model parameters were determined using the 15 data segments, the model
giving the lowest CV value was selected as the reference model (TFRef). This choice
has been preferred over selecting the model with the highest average Fitness. Indeed,
our preliminary results indicated that the values of the Fitness obtained for all 15
models were close; thus we gave more weight to the reproducibility of the models
rather than the absolute value of their Fitness in the selection of TFRef. As all zeros
of TFRef were located within the unit circle, the inverse of the TFRef (ITFRef) was
easily obtained by interchanging the numerator with the denominator of the transfer
function. Finally, by using ITFRef, CBPN was estimated from the radial PPG for all
15 segments.

3. RESULTS
3.1. Model Determination for a Single Day: [CBPN → PPG]
In order to ascertain the validity of our approach, an ARX [2 2 0] model was obtained
for the records obtained on the first day. The estimation segment was used to determine
the model parameters. The input of this model consisted of the CBPN and the output was
the PPG. Figure 10 shows the predicted PPG and the measured PPG for the two
validation data segments. The respective values for Fitness are 88% and 90% (mean of
89%). The frequency response and 95% confidence interval for this particular model
are shown in Figure 11.
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3.1.1. [CBPN → PPG] Models Obtained for all Five Days
The procedure explained in Section 3.1 was implemented and the parameters of the 15
models were obtained (3 segments for each of the 5 days). Figure 12 shows the
magnitude and phase of the frequency response of these 15 models.
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3.1.2. Determination of the Reference [CBPN →PPG] Model
Results shown in Figure 12 suggests a relatively reproducible model as the magnitudes
and phases of all 15 models estimated over five days seem consistent. However, the
question of variability of the extracted model can only be answered when the Fitness
value of each particular model is obtained for all segments recorded throughout the five
days.

The CV of the Fitness value for all 15 models are exhibited in Figure 13. Models
estimated using the 7th, 8th, 13th, 14th and 15th segments (marked by “*” in Figure 13)
have all their CV’s less than or equal to 4%. The lowest CV (3.1%) was observed for
the last model (Model 3 Day 5) with a Fitness value of 84.7%. Therefore, this particular
model was selected as our reference model (TFRef). The Fitness of TFRef (84.7%) is
very close to the mean value of the Fitness for all 15 models (84.8 %). The values of
the parameters for TFRef are given in Table 1.

3.1.3. [PPG → CBPN] Model
Using the reference model TFRef as determined in the previous section, the inverse
transfer function ITFRef was obtained by exchanging the numerator and the
denominator. The pole-zero plot of this reference model (Figure 14) shows that the
poles are within the unit circle ensuring a stable model. A sample of the reconstructed
CBPN when the radial PPG is the input is shown in Figure 15. The values of the Fitness

136 Experimental Feasibility Study of Estimation of the Normalized 
Central Blood Pressure Waveform from Radial Photoplethysmogram

7.0

6.0

5.0

4.0

3.0

2.0

1.0

Mean = 4.6%
M

od
el 

1 
Day

 1
M

od
el 

2 
Day

 1
M

od
el 

3 
Day

 1
M

od
el 

1 
Day

 2
M

od
el 

2 
Day

 2
M

od
el 

3 
Day

 2
M

od
el 

1 
Day

 3
M

od
el 

3 
Day

 3

M
od

el 
2 

Day
 3

M
od

el 
1 

Day
 4

M
od

el 
2 

Day
 4

M
od

el 
3 

Day
 4

M
od

el 
1 

Day
 5

M
od

el 
2 

Day
 5

M
od

el 
3 

Day
 5

C
V

(%
)

Figure 13. [CBPN → PPG] models: coefficient of variation (CV) of the Fitness
values computed over 5 different days. *CV ≤ 4%.



Journal of Healthcare Engineering · Vol. 6 · No. 1 · 2015 137

Table 1. Coefficients of the selected reference model TFRef among all 15 models.
TFRef corresponds to the last model (Model 3 Day 5) in Figure 13.

Model [a0 a1 a2] [b0 b1]

ARX[2 2 0] [1    -1.597    0.6702] [0.3571    0.2931]

1
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Figure 14. Locus of the poles (×) and zeros (•) of the inverse reference model ITFRef

for [PPG → CBPN] model
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the considered data segment is different from the one on which the
reference model has been obtained.



of the predicted output CBPN using ITFRef with the radial PPG as input are shown in
Figure 16. The mean ± 1 SD of Fitness is 85.2% ± 2.5% (CV of 3.35%). The average
and standard deviation differences between the model output and the maximums
(peaks) of the CBPN signal are 0.10 and 0.03, respectively (normalized arbitrary units).
The average and standard deviation differences between the model output and the
minimums (valleys) of the CBPN signal are 0.08 and 0.03, respectively.

4. DISCUSSION
4.1. Main Contributions
Reliable estimation of the central blood pressure (CBP) has proven to be a key element
in the diagnosis of cardiovascular diseases (CVD) [2]. Unfortunately, limitations in
budget and skilled man-power often impede access to this vital information. However,
valuable vascular indices can still be determined from the shape of the CBP waveform
without knowledge of the absolute amplitude.

The proposed approach in this work can be considered a positive step towards
providing the physician with relevant clinical indices, allowing for a more confident
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diagnosis. Compared to an applanation tonometer, the proposed technique is low-cost
as it requires only a reflective photoplethysmography probe. Not requiring a skilled
operator, it is also relatively easy to operate. Once the proper location with maximum
PPG amplitude is identified, the probe remains secured in position via its wrist strap.
Given the high degree of similarity of the shape of the reconstructed waveform to the
estimated CBP by the de-facto standard device (SphygmoCor), one possible application
could be to determine vascular indices [2] which do not require the absolute values of
the waveform. A comparison of these indices using these two signals (CBP from
SphygmoCor and CBPN as estimated via radial PPG) constitutes one of the future
directions of our work.

4.2. Study Limitations
In the present paper we have only considered one subject, thus an important question to
be addressed is the degree of similarity of the ARX models for different subjects. Our
literature review shows the possibility of using either generalized (GTF) [17, 18] or
individualized (ITF) [19] transfer functions to assess CBPN based on the non-invasive
radial pressure. Using a GTF, there will be no need for individual calibration. However,
these two techniques have been recently compared by Hahn et al. [20] showing that the
ITF yields more accurate results. Regarding the sources of variation in the model’s
parameters, these can be categorized into three main groups: the inherent variations
during numerical estimation of the model parameters due to the presence of
measurement noise, the effects of the probe position/contact pressure on the PPG
waveform and physiological factors. The effect of measurement noise on the ARX
modeling has been mitigated by carefully limiting the frequency bandwidth to 15 Hz and
keeping the data acquisition conditions relatively stable (subject at rest, fasting and in a
controlled environment). It was demonstrated that compliance with these conditions
produced satisfactory results (mean Fitness of 85.2 %).

In order to reduce the effect of the position of PPG probe over the respective radial
arteries, an automatic system should be designed allowing for the determination and
selection of the optimum probe position by switching an array of LED photodetectors.
It is also well known that the probe contact pressure plays an important role in the
genesis of the PPG [21]. At zero transmural pressure, the radial forces are eliminated
and compliance is maximum (Figure 2), producing maximum amplitude PPG. In
practice, this position is found with trial and error. Our experience is that if the operator
is patient enough, the position of the probes (either tonometer or PPG) can be close to
the optimum location. This is a routine practice with the clinical standard SphygmoCor
System [22]. However, there is room for improvement as the time spent to find this
optimum position is not negligible. Another factor affecting the quality of the signal is
the battery voltage supplied to the PPG sensor. In our experience, the amplitude of the
recorded PPG decreases whenever the battery approaches depletion. Since it is difficult
to use a DC power supply due to extra power-line noise, the battery voltage must be
frequently checked by the operator to ensure that the nominal voltage is supplied
throughout the entire recording session.

Finally, physiological factors need to be considered in a realistic clinical setting
where subjects would be selected from healthy as well as populations with risk
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factor(s). An interesting question would be to evaluate the effect of health conditions
known to affect the vascular system on the models. To this end, it is necessary to extend
this study with a pool of subjects chosen, for example, from the healthy, hypertensive,
and diabetic subjects. Furthermore, the effects of age and gender on model variability
need to be investigated.

4.3. Future Directions
In order to better evaluate the real potential of this method in clinical applications, the
subject sample size can be increased. We are currently focusing on developing this
model with more candidates among different age groups, gender and health conditions.
Our primary results prove the possibility of introducing besides an individualized
transfer function (ITF), and a generalized one (GTF). The question to be addressed is
the amount of loss of accuracy when switching from an ITF to a GTF.

In order to better differentiate between various vascular conditions, it is also possible
to elucidate a response from the radial artery by using a non-invasive stimulus such as
temporary occlusion of the artery (such as flow-mediated dilation-FMD [23, 24]. This
stimulus can be used to create a characteristic response from the endothelium layer, and
it is logical to expect that this response will affect the transfer function (TF) between
CBPN and PPG. An interesting area would be to investigate the possibility of evaluating
the endothelial function using the changes of the parameters of this TF caused by FMD.

Millasseau et al. [10] proposed a similar approach for modeling the relationship
between finger PPG and BP. However, the tip of the finger may inherently be affected
by the natural auto-regulation mechanism. An interesting topic would be to compare the
models obtained by the two methods with the objective of inferring a more exact auto-
regulation mechanism in the finger. Indeed, the finger contains a microvascular bed,
and it is well known that blood circulation in arterioles is prone to the effects of auto-
regulation [25]. The role of this auto-regulation control loop is to maintain the perfusion
of the tissues independent from the blood pressure. Therefore, any time-invariant
dynamic model (or transfer function if the system is considered linear) aiming at
establishing a relationship between the PPG and BP(t) at an anatomical location which
is under the effect of auto-regulation can only remain accurate for a short period of time.
As the output becomes quasi-independent from the input, it is clear that auto-regulation
effects on the finger blood micro-circulation are difficult to account for by the TF,
contributing to errors in the estimated BP(t). The above statement may also explain why
the recommended position for the tonometer is a conduit vascular structure such as the
radial artery for a faithful measurement of BP(t). Moreover, higher order of ARX
models may provide better results in some of the subjects; therefore, this fact should be
investigated to find the optimum order reflecting best model fitness for all subjects.
Exploiting these features could minimize the FPE and consequently enhance the overall
model fitness for a sizeable population of subjects.

Finally, it is interesting to note the difference in the frequency bands reported by
various researchers. Whereas our results point to a resonance around 4 Hz (Figure 11
and Figure 12), Segers et al. [26] reported a frequency response with a low-impedance
phenomena occurring at around 5 Hz. Millasseau [10] reported a higher resonance at
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above 6 Hz. Despite acknowledging the fact that the modeling and experimental
conditions were different in these studies, proper interpretation of these differences will
certainly shine more light on vascular dynamics.

5. CONCLUSION
Reliable estimation of the amplitude-normalized waveform of the central blood
pressure by radial PPG has been proven to be possible using an autoregressive with
exogenous input (ARX) model. It was shown that the parameters of the obtained model
over five different days remain stable and the mean value of the Fitness was greater
than 85% for the same subject. This technique is considerably more cost effective
compared to the tonometer-based systems, and may be rendered independent from the
operator’s skills level in the near future with an array sensor. Our group will focus on
studying the effects of age, gender as well as health conditions and the possibility of
defining a single model for different subjects. Clearly, as an immediate future step, it is
also possible to convert, through an appropriate calibration equation, the available
estimated signal into mmHg dimension, to improve the practical clinical application
and value of the proposed system.
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NOMENCLATURE
AC Alternating Current
ARMAX Autoregressive moving-average with exogenous input
ARX Autoregressive with exogenous input
BP Blood Pressure 
CBP Central Blood Pressure
CBPN Normalized Central Blood Pressure 
CV Coefficient of Variation
CVD Cardiovascular Disease
DBP Diastolic Blood Pressure 
DC Direct Current
ECG Electrocardiogram
EFTE Empirical Fourier Transform Estimate
FPE Final Prediction Error
FIR Finite Impulse Response 
FMD Flow Mediated Dilation
GTF General Transfer Function
ITF Individualized Transfer Function
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LPF Low Pass Filter
MAP Mean Arterial Pressure 
NI National Instruments
Part Arterial Pressure
Pext External Pressure 
PPG Photoplethysmogrm
Ptr Transmural Pressure 
PWA Pulse Wave Analysis
SBP Systolic Blood Pressure 
SD Standard Deviation
TF Transfer Function
TFRef Reference Transfer Function 
UKM Universiti Kebangsaan Malaysia
US Ultrasound
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APPENDIX A. LOW-PASS FILTER CODE IN MATLAB
Fs = 1613; % Sampling Frequency
Fpass = 10; % Passband Frequency
Fstop = 40; % Stopband Frequency
Dpass = 0.057501127785; % Passband Ripple
Dstop = 0.0001; % Stopband Attenuation
dens = 20; % Density Factor
% Calculate the order from the parameters using FIRPMORD.
[N, Fo, Ao, W] = firpmord ([Fpass, Fstop]/(Fs/2), [1 0], [Dpass, Dstop]);
% Calculate the coefficients using the FIRPM function.
b = firpm(N, Fo, Ao, W, {dens});
Hd = dfilt.dffir(b);
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APPENDIX B. COMPUTATION OF THE CONFIDENCE INTERVAL
Given the general weighted least square error and the covariance matrix of

, the confidence interval is defined as [11]:

where N (0, pN) is the zero mean normal distribution with variance pN. For the ith

component of ,

where pN
ii indicates the ith diagonal element of PN. In fact the last equation defines an

ellipsoidal shape with a width determined by pN.
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