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Diagnosis of liver disease principally depends on physician’s subjective knowledge. Automatic prediction of the disease is a critical
real-world medical problem. This work presents an EHC-ERF-based intelligence-integrated model purposive to predict different
types of liver disease including alcoholic liver damage, primary hepatoma, liver cirrhosis, and cholelithiasis. These diseases cause
many clinical complications, and their accurate assessment is the only way for providing efficient treatment facilities to patients.
EHC is deployed to divide the data into a hierarchy structure that is more informative for the disease predictions carried out by
ERF. The occurrence of ERF error rate was dependent on correlation and strength of each individual tree where correlation is
directly proportional to forest error rate and strength is inversely proportional to the forest rate. In total, two individual and
three integrated classification models are developed to achieve enhanced predictions for the liver disease types. Analysis of
results showed that the proposed framework achieved better outcomes in terms of accuracy, true positive rate, precision, F-
measure, kappa statistic, mean absolute error, and root mean squared error. Furthermore, it achieved the highest accuracy rates
when compared with the state-of-the-art techniques. Results also indicated that the weighted distance function employed in
EHC has improved the efficiency of proposed system and has shown the capability to be used by physicians for diagnostic advice.

1. Introduction

The use of automatic diagnostic systems in medicine is
increasing gradually [1]. Effectiveness of these systems has
improved the judgment of physicians in predicting the sick-
ness. Similar is the case with liver disease, whose occurrence
has increased significantly in recent years. Applicability of
intelligent computing algorithms to liver disorders has taken
an enormous interest. Artificial neural network, fuzzy logic,
rule-based reasoning, case-based reasoning, Fisher discrimi-
nant analysis, artificial immune recognition system, and
decision tree algorithms have been widely applied in evaluat-
ing liver damage [2–26]. Development of these techniques

has reduced the liver death rates and increased survival years
in many patients.

Liver is the largest internal organ in the human body. It
performs various metabolic functions such as detoxifying
harmful chemicals, producing proteins, metabolizing drugs,
clotting blood, storing glucose, producing cholesterol, and
clearing bilirubin. Damage to any of the aforesaid function
leads to liver disease [4]. Early symptoms of the disease are
abdominal pain, nausea, poor appetite, fatigue, energy
trouncing, and weight loss. Once the disease progresses,
symptoms become more severe like edema, jaundice, ascites,
abnormal bleeding, easy bruising, redness on the palms of
hands, and sometimes memory confusion [3, 13, 16]. Most
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common causes of the disease are alcohol abuse, hepatitis
viruses, iron overloading, abnormal genes, and Epstein-Barr
virus [16, 27]. Liver disease can be classified into more
than hundred types out of which viral hepatitis, liver cancer,
primary biliary cirrhosis, liver fibrosis, neonatal hepatitis,
primary hepatoma, alcoholic liver damage, nonalcoholic liver
disease, cholelithiasis, liver cirrhosis, hemochromatosis,
primary sclerosing cholangitis, tyrosinemia, and Wilson dis-
ease are usually prevalent [28].

This study is working on the classification of hepatobili-
ary disorders which include alcoholic liver damage, liver cir-
rhosis, primary hepatoma, and cholelithiasis. Alcoholic liver
damage is an injury caused by high alcohol consumption. It
starts occurring after an edge measurement of liquor intake
is expended [29, 30]. Liver cirrhosis is a condition where
the damage is irreversible. People with cirrhosis may create
jaundice, itching, and outrageous tiredness. It is a dynamic
infection, growing gradually over numerous years until, in
the long run, it stops liver capacity [31, 32]. Primary hepa-
toma is a perilous tumor made out of cells that look like
hepatocytes. It is ordinarily attached with cirrhosis and is
currently the third major reason for liver cancer worldwide.
It is often analyzed later because of the absence of patho-
gnomonic side effects [33, 34]. Cholelithiasis is one of the
most widely recognized surgical tissue around the world.
Typically, a delicate balance exists between levels of choles-
terol, phospholipids, and bile acids. When this balance is
upset, there is predisposition for the expansion of lithogenic
bile and the subsequent development of cholesterol-sort
gallstones [35, 36].

A lot of work has been done on liver disease predictions
using intelligent computing techniques but a very few studies
have been found on classification of hepatobiliary disorders
[28]. For these disorders, neurolinear and neurorule extrac-
tion techniques are developed where piece-wise linear dis-
criminant functions are generated by the former and
symbolic classification rules by later. Feedforward neural net-
work with single hidden layer is selected for training and
cross-entropy error function for improving the convergence.
In comparison, NeuroLinear rules are found to be more con-
cise and accurate [37]. Fuzzy multilayer perceptron network
is built where the combination of membership values is given
as input to MLP in the set categorization as low, medium,
and high. The fuzziness incorporated enhanced neural net-
work weights through backpropagating the errors [38]. An
ensemble of neural networks is created where the output
of the first level networks is used to train the second level
networks [39]. A fuzzy model based on enhanced super-
vised fuzzy clustering algorithm is presented where global
k-means method is used to initialize the fuzzy model. This
method overcomes the limitation of simple k-means, that
is, unknown number of clusters and random generation
of initial positions of clusters [40]. Directed acyclic graph
is integrated with neural network models to increase the
diagnostic efficiency. The models include multilayer percep-
tron, support vector machines, radial basis function net-
work, and random and pseudoinverse [41]. The structure
of neural network is established using Darwinian genetic
inheritance-based evolutionary process. Genetic search is

being carried out for each generation in deciding network
structure. Backpropagation learning determined the learn-
ing parameters and connection weights [42]. It is observed
from the literature that a very limited work has been done
on diagnosis of hepatobiliary disorders using intelligent
computing algorithms.

This work proposes an intelligent medical decision sup-
port system for the classification of hepatobiliary disorders
including alcoholic liver damage, primary hepatoma, liver
cirrhosis, and cholelithiasis. The system is built using integra-
tion of data clustering and classification performed by
enhanced hierarchical clustering and random decision forest
algorithms, respectively. In total, two individuals and three
integrated classification models are developed to achieve
enhanced predictions for the disorders which include ran-
dom decision forest, improved random decision forest, hier-
archical clustering with random decision forest, hierarchical
clustering with improved random decision forest, and
enhanced hierarchical clustering with improved random
decision forest. Performance of all aforesaid models is com-
pared in terms of accuracy, true positive rate, precision, F-
measure, kappa statistic, mean absolute error, and root mean
squared error. Simulation results show that enhanced hierar-
chical clustering with improved random decision forest
based-intelligence-integrated approach achieved better pre-
diction outcomes than other individual and integrated
models. Furthermore, it obtained higher accuracy rates when
compared with the state-of-the-art techniques.

The paper is organized as follows. Section 2 describes
the proposed methodology developed to classify alcoholic
liver damage, primary hepatoma, liver cirrhosis, and chole-
lithiasis. Section 3 details the dataset used, discusses the
experimental results, and compares the prediction perfor-
mance of proposed approach with other classification models
developed in this work and mentioned in literature. Finally,
Section 4 briefly concludes the paper.

2. Proposed Methodology

The section aims to develop an intelligent medical decision
support system based on hierarchical clustering and random
decision forest algorithms for the classification of alcoholic
liver damage, primary hepatoma, liver cirrhosis, and choleli-
thiasis. The prediction models deployed in the research work
are represented as RF, ERF, HC-RF, HC-ERF, and EHC-ERF.
RF stands for random decision forest with classification
and regression tree algorithm as the learning model. ERF
indicates improved random forest algorithm with random
decision tree as the learning model. HC signifies hierarchi-
cal clustering algorithm with Euclidean distance function,
and EHC denotes enhanced hierarchical clustering which
used weighted distance function. HC-RF and HC-ERF
indicate integration of hierarchical clustering with RF and
ERF, respectively. EHC-ERF symbolizes the integration of
enhanced hierarchical clustering with ERF which is the best
classification model among all. Figure 1 illustrates the block
diagram of the proposed intelligence-integrated model.
Firstly, the hepatobiliary disorder data is taken as input in
form of raw instances. The data incorporates five hundred
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Figure 1: Block diagram of the proposed intelligence-integrated model for the classification of alcoholic liver damage, primary hepatoma,
liver cirrhosis, and cholelithiasis.
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and thirty-six instances with nine attributes and four target
classes which are randomized first and then the sample
values are converted from numeric to nominal format for
giving input to the system. Secondly, enhanced hierarchical
clustering algorithm is deployed to cluster the data. Then,
the improved random forest algorithm with random deci-
sion tree as the learning model is used to predict alcoholic
liver damage, primary hepatoma, liver cirrhosis, and choleli-
thiasis. Advantages of deploying hierarchical clustering and
random decision forest algorithms include small cluster
generation for better prediction, efficient handling of input
variables, internal unbiased estimate of generalization error,
deduction of key variables in classification, resistance to
overtraining, and no apriori information needed about num-
ber of clusters. Owing to enhanced hierarchical clustering,
the random decision forest predicts hepatobiliary disorder
cases efficiently. Description of intelligent clustering and
classification algorithms used in the proposed diagnostic
model EHC-ERF is as follows.

Hierarchical clustering algorithm represents information
by grouping data objects into hierarchy. Its structure is more
instructive than the unstructured set of clusters returned by
flat clustering. There is no apriori information needed about
number of clusters required. It develops a sequence of nested
clusters, and the range is from individual clusters of single
points to all-together cluster [43–45]. This sequence of
nested clusters is graphically represented by dendrogram
where objects are grouped together step-by-step. For the
hepatobiliary disorders data, a set ofM data objects are given
and M×M similarity matrix is calculated. Each item is
assigned to a cluster. For M number of items, M clusters
are formed. It finds the nearest cluster and joins them into
a new single cluster. This decreases one cluster each time.
Then, it calculates similarities between new cluster and each
of old clusters. This process is repeated until there is only sin-
gle cluster of size M×M is left. Before performing any clus-
tering, it determines the proximity matrix which contains
distance between each point using distance function. The
procedure is described in Table 1 and Algorithm 1.

Where Euclidean function given in (1) is used to compute
the distance in hierarchal clustering and a weighted distance
function given in (2) is used in enhanced hierarchical cluster-
ing. For instance, the Euclidean distance (d) between vectors
p = p1, p2,… , pn and q = q1, q2,… , qn in n space is repre-
sented as

d = 〠
n

j=1
pj − qj

2
, 1

and the improved distance between vectors p = p1, p2,… , pn
and q = q1, q2,… , qn in n space is as follows:

d = v −1 〠
n

j=1
pj − qj

2
2

where v denotes weight, p indicates mean of attributes, and
v is computed using the formula v =∑n

j=1 pj − p 2/n − 1

Random forest algorithm constructs number of decision
trees at training time and returns the output of class based
on prediction of individual trees. The basic principle behind
the classifier is forming a strong learner by a group of weak
learners. It has the capability to create efficient classifiers by
generating right kind of randomness. It resolves the problem
of high bias and variance by finding average between two
extremes [46–48]. Random forest formed with random input
selection is called forest-RI. Occurrence of forest error rate is
dependent on two factors: first is correlation and second is
strength of each individual tree. Correlation is directly
proportional to forest error rate, and strength is inversely
proportional to forest rate. A tree acts as a strong classifier
where error rate is low. Each tree is grown as per the follow-
ing steps. In step 1, takeM and N which represent number of
training cases and number of variables, respectively. Step 2
finds a decision at node of tree, n of input variables are used
where n<N. In step 3, training set for tree is picked m times
with substitution from M training cases that are accessible.
By predicting their classes, left cases are utilized to estimate
the error of tree. In step 4, n factors are arbitrarily picked
for every node of tree on which to make the choice at that
node. On the basis of n variables presented in training
data, calculate the finest split. Finally in step 5, each tree
is grown to the maximum extent and there is no pruning.

Table 1: The attributes of hepatobiliary disorder dataset.

Attribute Description
Unit

measurement

GOT Glutamic oxaloacetic transaminase Karmen unit

GPT Glutamic pyruvic transaminase Karmen unit

LDH Lactate dehydrogenase iu/l

GGT Gamma glutamyl transpeptidase μ/ml

BUN Blood urea nitrogen mg/dl

MCV
Mean corpuscular volume of red blood

cells
fl

MCH Mean corpuscular hemoglobin pg

TBIL Total bilirubin mg/dl

CRTNN Creatinine mg/dl

A set Y of objects y1,… , ym //set of data point
A distance function dist k1, k2
for j=1 to m

kj = yj
end for
K = k1,… , km //set of clusters
p =m + 1 //sequence number
while K.size > 1 do

- kmin 1, kmin 2 =minimum dist kj, ki for all kj, ki in K
- remove kmin 1 and kmin 2 from K
- add kmin 1, kmin 2 to K
- p = p + 1

end while

Algorithm 1
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For predicting a new instance, the tree is traversed from
top to bottom and then assigned a label associated with
the training terminal node. This process is iterated over
all trees, and the random forest classifier is obtained with
majority vote among these classification trees. For
instance, the hepatobiliary training data is represented as
Dm = Y1, Z1 ,… , Ym, Zm where Y and Z are indepen-
dent random variables which are the same as the autono-
mous sample pair Y , Z . This training set Dm is used to
give estimation of f m 0, 1 k → R of function f. Mean
square error f m is consistent if H f m Y − f Y 2 → 0 as

m→∞. Input random vector y ∈ 0, 1 k, the aim is to pre-
dict response Z ∈ R by regression function approximation,
that is, f y =H Z ∣ Y = y . Random forest predictor con-
sists of F randomized regression trees. The value predicted
at query point y for pth tree in family is actually denoted
by f m y θp,Dm where θ1,… , θf are independent random
variables. Before growing of individual trees, θ is used to
resample the training data and to select the consecutive
directions for partitioning. At this stage, different trees
are combined to make finite forest estimate.

f F,m y θ1,… , θf ,Dm = 1
F
〠
F

p=1
f m y θp,Dm 3

Since F may be chosen randomly high then let us assume
F tends to infinity and the forest estimate is denoted as

f∞,m y Dm =Hθ f m y θp,Dm 4

Here, Hθ denotes probability with respect to arbitrary
factor θ which is conditional on Dm. The process “F →∞”
is acceptable by large numbers and is conditional on Dm.

lim
F→∞

f F,m y θ1,… , θf ,Dm = f∞,m y Dm 5

In classification, response variable Z takes value in
range [0, 1] and the value of Z is calculated with known
variable Y. Classifier f m is a measureable function of y
and Dm and the label of Z is also approximated from y
and Dm. Classification and regression tree is used as the
learning model in random forest algorithm, and random
decision tree is used as the learning model in improved ran-
dom decision forest. The classifier f m is said to be consistent
if conditional possibility of error E f m = K f m Y ≠ Z ∣Dm
satisfies lim

m→∞
HE f m = E∗ where E∗ is an unknown error

but optimal bayes classifier is

f ∗ y =
1, if K Z = 1 Y = y > K Z = 0 Y = y ,
0, otherwise

6

The random forest classifier is obtained with majority
vote among classification trees, that is,

f F,m y θ1,… , θf ,Dm =
1, if 1

F
〠
F

p=1
f m y θp,Dm > 1

2 ,

0, otherwise
7

3. Results and Discussion

The hepatobiliary disorder dataset obtained from a
university-affiliated hospital in Japan is used for experimen-
tation. The dataset includes nine attributes (continuous
real-valued measurements from biomedical test), four clas-
ses, and five hundred and thirty-six instances. Attributes con-
tain information about glutamic oxaloacetic transaminase,
glutamic pyruvic transaminase, lactate dehydrogenase,
gamma-glutamyl transpeptidase, blood urea nitrogen, mean
corpuscular volume of red blood cells, mean corpuscular
hemoglobin, total bilirubin, and creatinine. Four target clas-
ses include alcoholic liver damage, primary hepatoma, liver
cirrhosis, and cholelithiasis. Each instance in the data repre-
sents information of a single male or female. The dataset is
randomly split into training set containing seventy percent
of data and test set containing remaining thirty percent. This
division validates the proposed diagnostic model and reduces
the biasness associated with instances. Table 1 details the
description of biomedical test attributes and their measure-
ment unit.

Obtained results of the developed individual and inte-
grated classification models are compared using accuracy,
true positive rate, precision, F-measure, kappa statistic, mean
absolute error, and root mean squared error. Principally, the
output of a classification model is produced in the form of
TP, TN, FP, and FN; and then, the aforesaid parameters are
calculated using these values. TP indicates true positive (dis-
eased people correctly recognized as diseased), TN is true
negative (normal people correctly recognized as normal),
FN is false negative (diseased people incorrectly identified
as normal), and FP expresses false positive (normal people
incorrectly identified as diseased). Accuracy is the ability to
distinguish target classes correctly. It is calculated using the
ratio of sum of all TP and TN to sum of all TP, TN, FP,
and FN. True positive rate is also known as sensitivity or
recall which measures the proportion of instances that are
correctly classified as class A, among all truly class A
instances. It is computed using the ratio of TP to sum of TP
and FN. Precision is also known as positive predictive value
which measures the proportion of instances that truly belong
to class A, among all classified class A instances. It is calcu-
lated using ratio of TP to sum of TP and FP. F-measure is also
known as F-score which computes performance of a model
for positive class. It is calculated using the ratio of multiplica-
tion of both precision and recall with 2 to sum of precision
and recall. Kappa statistic computes the agreement of predic-
tion with true class. Agreement is scaled between 0.0 and 1.0
where the later value signifies complete agreement. Mean
absolute error is an average of absolute errors which is not
squared before averaging and it is used to quantify the close-
ness of predictions to the eventual outcomes. Unlike MAE,
root mean squared error squares the difference between
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predictions and eventual outcomes before averaging absolute
errors in order to assign more weight to large errors.

The intelligent diagnostic approaches built for predicting
hepatobiliary disorders are represented as RF, ERF, HC-RF,
HC-ERF, and EHC-ERF. RF stands for random forest algo-
rithm, ERF signifies improved random forest algorithm,
HC-RF indicates integration of hierarchical clustering with
RF, HC-ERF stands for integration of hierarchical clustering
with ERF, and EHC-ERF symbolizes the integration of
enhanced hierarchical clustering with ERF. Figures 2, 3, 4,
5, 6, 7, and 8 illustrate the performance comparison among
build classification models using accuracy, true positive rate,
precision, F-measure, kappa statistic, mean absolute error,
and root mean squared error rates, respectively.

Figure 2 depicts that RF had 85.71% accuracy, ERF had
86.96% accuracy, HC-RF had 91.3% accuracy, HC-ERF had
93.79% accuracy, and EHC-ERF had 96.27% accuracy.
Figure 3 shows that RF had 85.7% true positive rate, ERF
had 87% true positive rate, HC-RF had 91.3% true positive
rate, HC-ERF had 93.8% true positive rate, and EHC-ERF
had 96.3% true positive rate. Figure 4 portrays that RF had
86.9% precision, ERF had 87.7% precision, HC-RF had

91.1% precision, HC-ERF had 93.8% precision, and EHC-
ERF had 96.4% precision. Figure 5 describes that RF had
86% F-measure, ERF had 87% F-measure, HC-RF had
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91.1% F-measure, HC-ERF had 93.6% F-measure, and EHC-
ERF had 96.1% F-measure. Figure 6 represents that RF had
80.92% kappa statistic, ERF had 82.57% kappa statistic,
HC-RF had 76.27% kappa statistic, HC-ERF had 82.75%
kappa statistic, and EHC-ERF had 88.23% kappa statistic.
Figure 7 depicts that RF had 13.52% mean absolute error,
ERF had 12.41% mean absolute error, HC-RF had 6.04%
mean absolute error, HC-ERF had 6.27% mean absolute
error, and EHC-ERF had 5.99% mean absolute error.
Figure 8 presents that RF had 24.68% root mean squared
error, ERF had 22.17% root mean squared error, HC-RF
had 19.56% root mean squared error, HC-ERF had 14.74%
root mean squared error, and EHC-ERF had 14.9% root
mean squared error.

To select the most efficient medical decision support
system for the classification of alcoholic liver damage, pri-
mary hepatoma, liver cirrhosis, and cholelithiasis; results
of all developed models are compared (Table 2). It is
observed that RF- and ERF-based models have not shown
significant prediction performance. Although HC-RF and
HC-ERF attained enhanced accuracy rates than the afore-
said models, EHC-ERF achieved the highest among all and
is selected as the best classification model. Prediction results
of EHC-ERF are also compared to other hepatobiliary classi-
fication methods mentioned in the literature. Hayashi et al.
[37] stated that LDA, fuzzy neural network, NeuroRule,
and NeuroLinear achieved accuracy rates of 63.2%, 77.3%,

88.3%, and 90.2%, respectively. In FNN, the backpropagation
neural network model is applied where the input data is in
the form of fuzzy arithmetic and fuzzy numbers. Pal and
Mitra [38] mentioned that fuzzy multilayer perceptron net-
work attained 76.0% and 88.9% accuracies for the best and
second best choice criteria where the combination of mem-
bership values is given as input to MLP in the set categoriza-
tion as low, medium, and high. The fuzziness incorporated
enhanced neural network weights through backpropagating
the errors. Hayashi and Setiono [39] mentioned that average
accuracy rates of 30, 5, 10, and 15 neural networks are
90.27%, 90.92%, 91.78%, and 91.92%; average accuracy rates
of developed biased neural networks are 92.64%, 92.02%,
93.25%, and 94.48%; average accuracy rates of applying neu-
ral networks as the second level model are 87.73%, 90.18%,
84.66%, 87.12%, 91.41%, 88.34%, and 89.57%. Ming et al.
[40] presented a fuzzy model based on enhanced supervised
fuzzy clustering algorithm where global k-means method is
used to initialize the fuzzy model. This method overcomes
the limitation of simple k-means, that is, unknown number
of clusters and random generation of initial positions of clus-
ters. Supervised fuzzy clustering with random initialization
had 58.57% accuracy and enhanced supervised fuzzy cluster-
ing with global k-means had 58.78% accuracy. The proposed
system also outperforms methods developed in the literature.
The intelligence-integrated approach combines advantages
of hierarchical clustering and random decision forest such
as enhanced prediction results through generation of smaller
clusters, consistency of cluster results on different algorithms
runs, precise learning, estimation of key variables, fine com-
putation of proximities between pairs of cases, and no apriori
information required about cluster numbers.

4. Conclusions

Diagnosing a disease is one of the most difficult responsibil-
ity a clinician does have as one minute error can endanger
patient life. Implementation of intelligent techniques has
done a major transformation in predicting health examina-
tion data, and the medical domain has also been widely
affected by this renovation. Classification of alcoholic liver
damage, primary hepatoma, liver cirrhosis, and cholelithiasis
disease is also an intricate task. As a part of constant efforts
for making hepatobiliary disorder classification process
well-organized and proficient, this research work devel-
oped an intelligence-integrated model based on enhanced
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Table 2: The simulation results of intelligence-integrated models.

Classification
model

RF ERF HC-RF HC-ERF EHC-ERF

Accuracy 85.71% 86.96% 91.3% 93.79% 96.27%

TPR 85.7% 87% 91.3% 93.8% 96.3%

Precision 86.9% 87.7% 91.1% 93.8% 96.4%

F-measure 86% 87% 91.1% 93.6% 96.1%

Kappa statistic 80.92% 82.57% 76.27% 82.75% 88.23%

MAE 13.52% 12.41% 6.04% 6.27% 5.99%

RMSE 24.68% 22.17% 19.56% 14.74% 14.9%
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hierarchical clustering and random decision forest algo-
rithms. The model has advantages of both hierarchical clus-
tering and random decision forest such as enhanced
prediction results through generation of smaller clusters,
consistency of cluster results on different algorithms runs,
precise learning, estimation of key variables, fine computa-
tion of proximities between pairs of cases, and no apriori
information required about cluster numbers. The integrated
approach showed capability of improving complex medical
decisions through clustered data. The prediction was carried
out using a data of five hundred and thirty-six cases of hepa-
tobiliary disorder. Simulation results confirmed the superior-
ity of the proposed approach to other diagnostic models
implemented in the study andmentioned in literature as well.
Mean absolute error and root mean squared error rates were
also small. Thousands people lose their lives because of erro-
neous evaluation and inappropriate treatment of alcoholic
liver damage, primary hepatoma, liver cirrhosis, and chole-
lithiasis as the medical cases are still largely influenced by
subjectivity of physicians. The proposed medical decision
support system can be applied as a liver specialist assistant
or as a model to train novice medical students. The system
will also help physicians in evaluating complex cases that
are otherwise hard to perceive. It has also shown the capabil-
ity to reduce the need of liver biopsy to a possible extent.
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