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Predicting the outcome after a cancer diagnosis is critical. Advances in high-throughput sequencing technologies provide
physicians with vast amounts of data, yet prognostication remains challenging because the data are greatly dimensional and
complex. We evaluated Wnt/β-catenin, carbohydrate metabolism, and PI3K-Akt signaling pathway-related genes as predictive
features for classifying tumors and normal samples. Using differentially expressed genes as controls, these pathway-related genes
were assessed for accuracy using support-vector machines and three other recommended machine learning models, namely, the
random forest, decision tree, and k-nearest neighbor algorithms. )e first two outperformed the others. All candidate pathway-
related genes yielded areas under the curve exceeding 95.00% for cancer outcomes, and they were most accurate in predicting
colorectal cancer.)ese results suggest that these pathway-related genes are useful and accurate biomarkers for understanding the
mechanisms behind cancer development.

1. Introduction

Cancer, associated with high mortality, is indeed a serious
threat to public health. One cause for the high mortality rate
is nonspecific symptoms in the early stages, resulting in a
poor prognosis and a high fatality rate. )us, accurately
predicting cancer is a most critical and urgent task for
physicians. Because cancer is fundamentally caused by gene
malfunction, utilizing their expression levels as relatively
direct methods of diagnoses has attracted a great deal of
research attention. To date, analyses of gene expression level
data have greatly benefited cancer diagnoses and treatments
[1–3]. However, the high dimensionality and noise associ-
ated with the data can make these analyses and applications
challenging. To reduce these challenges, data are initially
processed to identify a small subset of genes primarily

responsible for the disease [4, 5]. Feature selection is re-
portedly a very effective method for reducing the high di-
mensionality of gene expression datasets [6].

Cancer biology research is rapidly finding the recurring
roles of a small set of signaling cascades: the Wnt cascade,
metabolism, PI3K/AKT signaling pathway, and so on. )e
Wnt signaling pathway is prevalent in carcinogenesis,
playing an essential role in the development of various
tumors [7, 8]. Indeed, current evidence suggests that up to
80% of colorectal cancers are driven by an activating mu-
tation in the Wnt cascade [9]. Altered energy metabolism is
believed to be a hallmark characteristic of cancer [10, 11].
Even in the presence of oxygen, cancer cells can reprogram
their glucose metabolisms to produce energy, thus largely
limiting energy metabolism to glycolysis [12]. In addition,
glycolysis provides cancer cells with various metabolic
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precursors that promote the synthesis of amino acids, nu-
cleotides, and lipids, leading to cancer development. )e
PI3K-Akt signaling pathway is most frequently activated in a
variety of cancer lineages [13–15]. A range of malignancies,
including ovarian, breast, colorectal, and endometrial can-
cers, frequently exhibit activation of the PI3K pathway
through various mechanisms, including genomic mutations
or alterations involving PIK3CA, PIK3R1, PTEN, AKT,
TSC1, TSC2, LKB1 (also known as STK11), MTOR, and
other oncogenes or tumor suppressor genes [16, 17]. )is
regulates key biological processes, including proliferation,
the cell cycle, motility, metabolism, and genomic instability,
all of which support the survival, expansion, and dissemi-
nation of cancer [18].

In conjunction with the rapidly increasing amount of
gene expression data, state-of-the-art data analysis tools are
being developed. Of them, machine learning (ML) methods
such as random forest (RF), support-vector machine (SVM),
decision tree (DT), and k-nearest neighbor (KNN) have been
successfully applied to various areas of genomics research
[19, 20]. Included are the expression profiles of genes [21],
predicting the functional activity of genomic sequences [22],
and predicting the intrinsic molecular subtypes of breast
cancer [23]. Notably, RF uses highly dimensional data and
data that are unbalanced andmissing values [24]. An SVM is
an ML algorithm that separates entities into appropriate
classes using a hyperplane [25]. In cancer research, it has
been used successfully to classify people as those with and
without cancer based on microarray expression data [26].

)ese methods were used in this study to predict the
cancer state from gene expression data from various types of
cancer. Given the significant roles of these cancers, pathway-
related genes were used as alternative features.

2. Materials and Methods

2.1. Data Acquisition. Genetic data were downloaded from
)e Cancer Genome Atlas, a publicly accessible dataset
(https://cancergenome.nih.gov/).)emicroarray expression
data included colorectal cancer (1222 samples, 1109 tu-
morous), gastric cancer (407 samples, 375 tumorous), and
breast cancer (440 samples, 410 tumorous). Detailed in-
formation about the data is shown in Table 1, and the
number of pathway-related genes in the candidate cancers is
shown in Table 2.

2.2. Data Preprocessing. Data preprocessing is a crucial step
in ML, and errors at this stage can lead to misleading
prediction results. )is study included the following pre-
processing steps: Data were normalized for each sample by
first transforming the data using the log ratio base 2 and
then, for each probe, calculating the median of the log-
summarized values from all samples and subtracting it from
each sample. Missing values were replaced with the attribute
mean.

2.3. Feature Selection. For clinical use, the number of cancer
samples was unbalanced in comparison with the number of

features, possibly leading to a high risk of overfitting and
degrading the classification performance, thus significantly
affecting predication accuracy. However, effective feature
selection is a method used to address this challenge [27].
Considering the importance of pathways in tumorigenesis,
three pathway-related genes were selected as candidate
features. )ey were the Wnt/β-catenin, carbohydrate
metabolism, and PI3K-Akt signaling pathways. Simulta-
neously, significantly differentially expressed genes (DEGs)
were used as controls for comparing the features used for
cancer classification. )ese DEGs have been previously
employed in cancer prediction studies, and the findings
support their use as valid features.)e DESeq R package [28]
was used to identify DEGs. Our criteria were a P value of less
than 0.001 and a log 2 fold change of 4 or more. Notably, the
pathway-related genes were derived from the Kyoto Ency-
clopedia of Genes and Genomes (http://www.kegg.jp/)
analysis.

2.4. Conventional Machine Learning Algorithms. All four
widely used classification methods (SVM, RF, DT, and
KNN) were adopted. In the SVM method, the parameter C
was assigned a value of either 0.1, 1, 10, or 100, and the kernel
function was either “linear,” “rbf,” “poly,” or “sigmoid.”

In the KNN method, the number of neighbors was
assigned as 3, 5, or 7, and the Euclidean distance, Manhattan
distance, and Minkowski distance were combined to train
the model.

In the DTalgorithm, CARTwas used, and the maximum
tree depth was 5 or 10. In the RF model, the numbers of DTs
were 5, 10, or 50 and the numbers of features were 2, 4, 10, or
20.

3. Results

3.1. General Classification Workflow. Data were extracted
from the Kyoto Encyclopedia of Genes and Genomes da-
tabase. Specifically, 142, 356, and 350 elements (pathway-
related genes) were found for the Wnt, carbohydrate
metabolism, and PI3K-Akt signaling pathways, respectively.
In addition, 314, 241, and 133 DEG parameters were in-
cluded for colorectal, breast, and gastric cancer, respectively.
To evaluate the cancer predictive ability of these pathway-
related genes, the workflow shown in Figure 1 was imple-
mented. Before training the model, all data were subjected to
pretraining the model using an autoencoder without labels.
)is step was designed to improve model performance,
avoid random initialization of the weights, and select the
candidate model architecture associated with the minimum
mean square error.

3.2. Wnt Pathway-Related Genes Score as High as DEGs in
Predicting Colorectal Cancer. Detailed information about
the relative sample and pathway-related genes is shown in
Tables 1 and 2. )e prediction performances of the entire set
of Wnt pathway-related genes and of the DEGs were
evaluated using three commonmetrics: precision, recall, and
accuracy. Results are shown in Tables 3 and 4. Scores using
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Wnt pathway-related genes are comparable to those found
using DEGs, achieving approximately 95% accuracy for
classifying colorectal cancer regardless of the ML method
used (Figure 2).

3.3. Wnt Pathway-Related Genes Are Efficient Predictors of
Cancer. Based on these results, we hypothesized that the

Wnt pathway is potentially a feature that can be adopted for
cancer detection. To test this, it was evaluated with com-
mon cancers such as breast and gastric cancers. Similar
procedures and algorithms were selected, and DEGs were
used as controls. Not surprisingly, results using the Wnt
pathway-related genes were similar to those using the
control group: the area under the curve (AUC) exceeded
94.00%. It is worth noting that Wnt pathway-related genes
in breast cancer outperformed those in gastric cancer
(AUC values of approximately 98% and 95%, respectively
Figure 3).

3.4. Carbohydrate Metabolism and PI3K-Akt Signaling
Pathways Can Predict Cancer Status. It is unknown whether
other cancer-related pathways can predict cancer status.
)us, a set of carbohydrate metabolism and PI3K-Akt
signaling pathway-related genes were chosen to test their
abilities to predict our candidate cancers. )e carbohydrate
metabolism pathway-related genes scored highest for co-
lorectal cancer followed by breast cancer and gastric cancer.
Similar results were found using ML methods: AUC values
were 98.28%, 97.30%, 96.07%, and 96.31% when using SVM,
RF, DT, and KNN, respectively. Interestingly, the PI3K-Akt
signaling pathway-related genes performed similarly. Both
carbohydrate metabolism and PI3K-Akt signaling pathways
yielded AUCs above 96.00%, implying that both pathways
can detect cancer with great accuracy (Table 5). Of note, the
SVM and RF methods outperformed DTand KNN in cancer
detection (Figure 4). Taken together, these results indicate
that these three pathway-related genes can be vital features
for cancer prediction and that these pathways vary in
predictive power. We believe that most pathway-related
genes are promising features that could be used for early
cancer diagnoses.
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Figure 1: Average areas under the curve (AUCs) for Wnt signal
pathway-related genes and differentially expressed genes (DEGs)
using four machine learning algorithms to predict colorectal cancer
from gene expression data. For the pathway genes, support-vector
machine (SVM) yields an AUC of 99.49%, decision tree (DT) yields
89.45%, random forest (RF) yields 99.49%, and k-nearest neighbor
(KNN) yields 99.42%. For DEGs, SVM yields 99.49%, DT, 99.49%,
RF, 96.18%, and KNN, 97.85%.

Table 1: Clinical features of patients in )e Cancer Genome Atlas (TCGA) dataset.

Clinical factor
TCGA

COAD BRCA STAD PRAD
n� 440 n� 1222 n� 407 n� 550

Patient count (selected/original) 387/410 1089/1109 375/375 493/498
Age (years, mean± SD) 65.73± 13.06 58.46± 13.20 65.83± 10.65 65.83± 10.65
Sex (male/female/− ) 201/186 12/1077 241/134 493/0
Death (dead/alive/− ) 82/304/1 152/937 150/225 10/483
Overall survival (months, mean± SD) 28.46± 26.27 40.96± 30.17 19.32± 18.08 35.76± 25.89
Note. Selected patients included those with clinical characteristics after removing normal, replicate, and missing features from the total sample used in the
model.

Table 2: Elements of pathway-related genes in candidate cancers.

Datasets
Typical Nontypical

DEGs
Wnt Ca-Me PI3K TLR TH RPSC

COAD (total/selected) 143/142 356/356 351/350 104/102 116/116 139/139 314/314
BRCA (total/selected) 143/142 356/356 351/350 104/102 116/116 139/139 241/241
STAD (total/selected) 143/142 356/356 351/350 104/102 116/116 139/139 133/133
PRAD (total/selected) 143/142 356/356 351/350 104/102 116/116 139/139 169/169
Note. COAD, colorectal cancer; BRCA, breast cancer; STAD, gastric cancer; PRAD, prostate cancer; Wnt, Wnt signaling pathway; Ca-Me, carbohydrate
metabolism signaling pathway; PI3K, PI3K-Akt signaling pathway; TLR, toll-like receptor signaling pathway; TH, thyroid hormone signaling pathway; RPSC,
signaling pathways regulating pluripotency of stem cells; DEGs, differentially expressed genes.
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4. Discussion

Increasing evidence indicates that colorectal cancer is often
initiated by an activating mutation in the Wnt cascade. )e
correlation between the Wnt pathway and colorectal cancer
prompted our investigation into whether Wnt pathway-
related genes serve as features for detecting colorectal cancer.

)us, we designed this study to take advantage of various
conventional ML models and cancer-related pathways for
predicting cancer. Results show that these three pathway-
related genes could be used as features for cancer prediction;
they yielded results equal to those of DEGs.

Given the complexity and high mortality of cancer, the
accurate early diagnosis of a cancer type can facilitate clinical
management. Only relatively recently has cancer researchers
attempted to apply ML for cancer prediction and prognosis
[29–31]. Most previous work employed ML methods for
modeling cancer progression and then identified in-
formative factors used in a classification scheme and
attempted to develop a set of classifiers for feature selection.
Conventional ML algorithms require engineering domain
knowledge to identify features from raw data, whereas ML
automatically extracts simple features from the input data
using an all-purpose learning procedure. )ese simple
features are mapped into outputs using a complex archi-
tecture composed of a series of nonlinear functions (i.e.,
“hierarchical representations”) to maximize the predictive
accuracy of the model. )is measure can be improved using
rich information contained in the biological research. We
aimed to fill this void by assessing pathway-related genes for
their performances in cancer prediction and identification.

We demonstrated that three cancer-related pathways
(the Wnt signaling pathway, carbohydrate metabolism
signaling pathway, and PI3K-Akt signaling pathway) have
high predictive accuracy compared with DEGs for cancer

Table 3: Performances of pathway-related genes and DEGs in training set.

Genes

Training set
COAD (%) (normal/

tumor� 21/287)
BRCA (%) (normal/
tumor� 78/777)

STAD (%) (normal/
tumor� 21/263)

PRAD (%) (normal/
tumor� 36/349)

SVM RF DT KNN SVM RF DT KNN SVM RF DT KNN SVM RF DT KNN
Wnt 100.00 99.73 91.97 99.82 99.85 99.16 86.78 99.50 96.30 99.14 79.55 93.76 94.97 90.73 69.88 89.58
Ca-Me 100.00 99.82 97.15 100.00 99.78 98.10 93.21 99.10 99.42 95.30 74.56 95.31 97.15 91.89 77.56 89.18
PI3K 100.00 100.00 96.80 100.00 99.88 99.04 89.92 99.64 99.42 98.19 81.96 97.91 95.07 94.81 71.84 90.97
TLR 100.00 99.27 84.45 100.00 99.63 98.93 86.50 98.59 96.95 91.94 81.39 95.37 94.08 89.10 65.20 86.79
TH 100.00 99.91 90.54 100.00 99.81 98.21 88.77 98.78 99.23 94.79 86.93 97.51 94.85 92.20 69.92 90.62
RPSC 100.00 99.93 97.15 99.64 99.84 99.22 90.48 99.01 98.41 99.23 81.48 97.20 93.63 94.78 78.34 89.11
DEGs 100.00 99.96 96.95 100.00 99.85 99.89 96.94 98.68 99.32 99.66 88.81 97.61 96.48 95.53 83.60 94.33

Table 4: Performances of pathway-related genes and DEGs in test sets.

Genes

Test set
COAD (%) (normal/

tumor� 9/123)
BRCA (%) (normal/
tumor� 35/332)

STAD (%) (normal/
tumor� 11/112)

PRAD (%) (normal/
tumor� 16/149)

SVM RF DT KNN SVM RF DT KNN SVM RF DT KNN SVM RF DT KNN
Wnt 100.00 99.90 94.03 99.86 99.95 97.64 88.79 100.00 99.26 98.70 79.13 99.75 95.76 95.55 76.65 95.26
Ca-Me 100.00 100.00 99.18 100.00 99.96 99.50 88.42 100.00 99.10 97.88 75.04 97.44 94.75 96.95 79.67 95.11
PI3K 100.00 100.00 100.00 99.95 99.92 99.43 98.41 99.66 99.35 98.53 84.57 97.44 96.56 91.61 86.01 95.91
TLR 100.00 97.01 88.48 100.00 99.87 99.35 90.17 99.44 98.62 98.01 86.36 95.37 93.20 92.05 78.56 86.79
TH 100.00 99.72 99.18 99.86 99.93 98.86 83.38 99.57 99.43 98.45 80.92 97.93 96.60 89.53 64.91 91.42
RPSC 100.00 99.86 94.03 99.95 99.93 99.93 94.13 99.84 99.26 98.25 83.68 98.74 94.67 93.12 79.88 95.05
DEGs 100.00 100.00 100.00 100.00 100.00 99.96 99.03 99.29 99.35 99.10 88.67 96.02 93.37 92.76 85.48 91.23
Note. COAD, colorectal cancer; BRCA, breast cancer; STAD, gastric cancer; PRAD, prostate cancer; Wnt, Wnt signaling pathway; Ca-Me, carbohydrate
metabolism signaling pathway; PI3K, PI3K-Akt signaling pathway; TLR, toll-like receptor signaling pathway; TH, thyroid hormone signaling pathway; RPSC,
signaling pathways regulating pluripotency of stem cells.
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Figure 2: Performance of the Wnt signal pathway-related genes in
three types of cancers—colorectal cancer, breast cancer, and gastric
cancer—using four machine learning algorithms.
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prediction and identification. Furthermore, their perfor-
mances were similar regardless the ML algorithm used. )e
use of DEGs as features has been previously documented.
However, the outcomes suggest that all three pathway-

related genes can be used as features for cancer detection. By
assessing various cancer types, we observed that the features
perform best for colorectal cancer followed closely by breast
cancer and then gastric cancer. We speculated that the
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Figure 3: Receiver operating characteristic curves for the Wnt signaling pathway-, PI3K-Akt signaling pathway-, and carbohydrate
metabolism signal pathway-related genes for the three datasets.

Table 5: Performance of candidate pathway-related genes in cancer prediction.

Classifiers

Pathway-related genes
Wnt Carbohydrate metabolism PI3K-Akt

COAD
(%)

BRCA
(%)

STAD
(%)

COAD
(%)

BRCA
(%)

STAD
(%)

COAD
(%)

BRCA
(%)

STAD
(%)

SVM 99.49 99.49 98.84 99.49 99.39 99.13 99.49 99.48 99.43
RF 99.49 99.26 98.04 99.26 99.16 96.88 98.79 99.41 96.78
DT 89.45 92.56 78.51 99.39 91.24 74.65 94.51 93.34 76.85
KNN 99.42 98.85 93.54 97.83 99.44 93.27 97.81 99.45 94.71
Note. Tumor samples in the positive group versus the normal samples. COAD, colorectal cancer; BRCA, breast cancer; STAD, gastric cancer.
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function of pathway-related genes in various cancer types
can vary and are more serious in colorectal cancer. Results
also show that these three pathway-related genes achieved
different performances for one cancer type, and this can
result in contributions of their compositions that vary based
on the type of tumorigenesis.

Finally, these results demonstrate that the SVM and RF
algorithms are superior to those of DT and KNN in geno-
mics research. )is variation might be because the classifier
differs from one problem to another (e.g., the SVM model
tends to meet rule-matching well when hundreds of thou-
sands of dimensions exist, as in this study, whereas DT and
KNN depend largely on feature selection in nonlinearly
related variables). Unlike studies using other ML method-
ologies, this study offers additional insights on feature ex-
traction for cancer classification. Each of the novel
observations we found are worthy of further investigation.

5. Conclusions

We propose that pathway-related genes have the potential to
be used as biomarkers for cancer prediction. We demon-
strated that the Wnt signaling pathway, carbohydrate
metabolism signaling pathway, and PI3K-Akt signaling
pathway can be incorporated into ML models to achieve
better prediction performance. )e proposed features have
the potential to facilitate preoperative care of patients with
cancer.
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