A. Supplementary Material | Algorithm for Identification of IFD

Study Conditions

$$\begin{split} EMG_{param} &= [\text{EMG parameters of Table 1}] \\ HRV_{param} &= [\text{HRV parameters of Table 1}] \\ WS_{EMG} &= [5, 10, 15, 20, 25] \text{ muscular activation periods} \\ WS_{HRV} &= [30, 40, 50, 60, 70, 80, 90, 100, 110, 120] \text{ s} \\ \#Participants_{EMG} &= 14 \\ \#Participants_{HRV} &= 11 \end{split}$$

Study Conditions Applied to the Algorithm $\{signal\} = EMG \text{ or } HRV$

Generic Algorithm

for each P_k in $\{signal\}_{param}$ do $WS_{best} = None$ $TS_{best} = None$ $CV_{best} = \infty$ $\begin{array}{l} \textbf{foreach } WS_z \textbf{ in } WS_{\{signal\}} \textbf{ do} \\ \mid \quad TS = [0, 10, 25, 50, 75, 90]\% \text{ of } WS_z \end{array}$ for each TS_y in TS do $m_{array} = []$ $\sigma_{array}^2 = []$ for n = 1 to $#Participants_{\{signal\}}$ do if $CV[WS_z; TS_y] < CV_{best}$ then 1) Generation of the evolution time series of P_k for a sliding window configuration of window size WS_z and time-step TS_y 2) Determination of the regression curve that best fits the time series generated in 1 **3)** Storage of slope m_n inside m_{array} 4) Storage of variance σ_n^2 inside σ_{array}^2 end \mathbf{end} 1) Determination of m_{comb} and σ^2_{comb} , accordingly to the mathematical formalism defined in equations 4 and 5 $\,$ **2)** Determination of $CV[WS_z; TS_y]$ (equation 8) if $CV[WS_z; TS_y] < CV_{best}$ then $WS_{best} = WS_z$ $TS_{best} = TS_y$ $CV_{best} = CV[WS_z; TS_y]$ \mathbf{end} \mathbf{end} \mathbf{end} For the combination $[WS_{best}; TS_{best}]$, application of criteria \mathcal{C} (section 2.3.2) in order to verify if P_k is and Individual Fatigue Descriptor (IFD) \mathbf{end}