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)e topdown determined visual object perception refers to the ability of a person to identify a prespecified visual target.)is paper
studies the technical foundation for measuring the target-perceptual ability in a guided visual search task, using the EEG-based
brain imaging technique. Specifically, it focuses on the feature representation learning problem for single-trial classification of
fixation-related potentials (FRPs). )e existing methods either capture only first-order statistics while ignoring second-order
statistics in data, or directly extract second-order statistics with covariance matrices estimated with raw FRPs that suffer from low
signal-to-noise ratio. In this paper, we propose a new representation learning pipeline involving a low-level convolution
subnetwork followed by a high-level Riemannian manifold subnetwork, with a novel midlevel pooling layer bridging them. In this
way, the discriminative power of the first-order features can be increased by the convolution subnetwork, while the second-order
information in the convolutional features could further be deeply learned with the subsequent Riemannian subnetwork. In
particular, the temporal ordering of FRPs is well preserved for the components in our pipeline, which is considered to be a valuable
source of discriminant information. )e experimental results show that proposed approach leads to improved classification
performance and robustness to lack of data over the state-of-the-art ones, thus making it appealing for practical applications in
measuring the target-perceptual ability of cognitively impaired patients with the FRP technique.

1. Introduction

)e topdown determined visual object perception refers to
the ability of a person to identify a prespecified target in view
based on visual input [1]. Subjects suffering from Alz-
heimer’s disease (AD) generally have difficulties in dis-
tinction between target and nontarget. An objective and
effective way for early assessing such a functional deficit in
suspected AD patients could be examining the brain re-
sponses, i.e., event-related potentials (ERPs), acquired by an
electroencephalographic (EEG) device, during the engage-
ment of human subjects in a visual perception task [2, 3]. In
specific, the P300 ERPs are usually used to infer whether the

subject is looking at a target or not, without the need for
overt conscious behavioral/verbal reports by the subject.
Common practice in lab-grade P300 research experiments is
that the subject is asked to restrict the eye movements by
fixating his/her eyes on a fixed space for avoiding ocular
artifacts, while stimuli are presented in an oddball paradigm.
However, in real-world P300 applications, it is difficult for
keeping uncooperative AD patients maintain their eyes
fixated on the fixed space after each stimulus onset, which is
unnatural and easily leads to quit of tasks. A technologically
more advanced approach that has gained popularity in re-
cent years is the simultaneous recording of eye movements
and EEG signals during the viewing of stimuli. In such
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coregistration studies, the EEG signals can then be aligned to
the subject self-generated fixation onset, yielding fixation-
related potentials (FRPs) [4, 5]. Moreover, it has already
been revealed that FRPs following fixation of a target are
different than FRPs following fixation of a nontarget [6]. All
in all, compared to traditional ERP studies without eye
movements, the FRP technique offers AD patients the op-
portunity to conduct tasks that embrace rather than limit eye
movements, opening up the possibility of practical appli-
cations for target-perceptual ability measurement by ana-
lyzing brain responses in a visual search task.

Since the raw FRPs are multichannel time series pos-
sessing a strong underlying structure and a complex distri-
bution, the measurement of target-perceptual ability highly
depends on a good feature representation for FRPs, which
should discriminate between the fixation onto target and the
fixation onto nontarget from single-trial FRPs. )ereby, this
issue is generally formulated as the feature extraction or
feature learning problem for single-trial classification of FRPs.
Early FRP studies [7–9] often directly utilize the raw temporal
form concatenated into a vector as the feature for a single-trial
FRPs, whereas some latter efforts [10–12] have applied spatial
filters (e.g., PCA and xDAWN [13]) on FRPs, in order to
obtain a representation with higher signal-to-noise ratio
(SNR) and thus improved classification performance. Al-
though the majority of FRP-based systems still rely on the
manually extracted features, recent works have explored the
application of deep learning [14]. In particular, the con-
volutional neural networks (CNNs) introduce the nonline-
arity and hierarchy into the feature extraction, by learning
local nonlinear features (through convolutions and nonlin-
earities) and representing higher-level features as composi-
tions of lower level features (through multiple layers of
processing), having achieved state-of-the-art performance
[15, 16]. Since all the shallow feature extraction methods and
the deep CNNs mentioned above capture only first-order
statistics (e.g., mean and maximum) from the input FRP
trials, we call them first-order models.

To characterize the complex underlying structure of ERPs,
recent endeavors have also resorted to extract second-order
statistics. )e second-order statistics such as sample covari-
ance matrix estimated with input ERP trials allows to capture
relevant information (e.g., correlations) for groups of chan-
nels, whose temporal structures show high statistical de-
pendency among them [17, 18]. Besides, the representational
richness of covariance is also rooted in its Riemannian
manifold structure. Namely, the covariance matrix is sym-
metric positive definite (SPD), lying on the curved Rie-
mannian manifold instead of the Euclidean space. By taking
the Riemannian geometry of the input covariance into ac-
count, several ERPs studies have developed shallow Rie-
mannian models, such as minimum distance to Riemannian
mean (MDRM) [19] and tangent space linear discriminant
analysis (TSLDA) [19]. )ey have yielded better classification
performance than methods that ignore the geometry infor-
mation by simply reshaping the covariance matrix into a
vector. Moreover, our previous work [20] applies the recently
proposed deep Riemannian model SPDNet [21], which is
similar in architecture to CNNs but with layers designed for

SPD matrix, to the single-trial FRPs classification problem.
)e results show that it leads to advantageous performance
over the shallow Riemannian models [20]. As both the
shallow and deep Riemannian models deal with the covari-
ance of data, they are called second-order models.

Up to now, it is not difficult to notice the following
possible limitations of current efforts exploring deep neural
network (DNN) techniques for classifying FRPs. On one
hand, the CNN-based approaches have ignored the exploiting
of second-order statistics such as correlations among feature
maps from convolutional layers. On the other hand, the input
covariance matrix has been confined to the one computed
from raw signals of low SNR in SPDNet-based study. To this
end, we propose a novel feature representation learning
model within DNN framework. More specifically, to extract
the discriminative and robust representation for single-trial
classification of FRPs, the encoding of first-order and second-
order statistical information of data is performed sequentially,
i.e., using a low-level fully temporal convolution and then a
high-level deep Riemannian geometric processing. Further-
more, catering to the FRP classification problem, we propose a
new midlevel second-order pooling layer to bridge the low-
level convolution and high-level SPD representation learning,
where the convolutional features are aggregated across time
into an SPD matrix of a rich representation capability. In
particular, both the low-level convolution subnetwork and the
midlevel pooling layer are designed to preserve the temporal
ordering of the FRP dynamics, which is known to be crucial
for classifying FRPs. We evaluate the performance of the
proposed model on FRP datasets collected from a guided
visual search task. )e experimental results show that the
proposed approach leads to improved classification perfor-
mance and robustness to data scarcity (by reducing the size of
the dataset to only 25% of its original size) over the state-of-
the-art DNNs. In addition to the role of the overall model
architecture, the model ablation study is also performed to
validate our temporal ordering persevering designs for
pipeline components. )e results presented in this paper are
the first step toward practical applications in measuring the
target-perceptual ability of suspected AD patients with FRP
techniques.

In summary, the contribution of our paper is two-fold:

(1) For the problem of single-trial FRP classification, the
present study is, to the best of our knowledge, the
first to introduce a deep learning pipeline involving a
low-level convolution subnetwork followed by a
high-level Riemannian manifold subnetwork, with a
novel midlevel pooling layer bridging them. )e
proposed pipeline goes beyond the existing models
consisting of first-order only or second-order only
subnetworks, yielding more discriminative andmore
robust feature representations.

(2) We propose the temporal ordering persevering de-
signs for both the low-level first-order convolution
subnetwork and the midlevel second-order pooling
layer. Such designs allow to capture intrinsic tem-
poral information of FRP dynamics, being in favor of
the single-trial classification of FRPs.
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)e remainder of our paper is organized as follows.
Section 2 gives the description of the collected FRP dataset in
a guided visual search task for validating our proposed
model. Section 3 illustrates the details of the proposed
model. )e performance evaluation settings are introduced
in Section 4, followed by extensive results obtained on
various amounts of data presented in Section 5. We discuss
our findings in Section 6. Finally, a conclusion is provided in
Section 7.

2. Materials

2.1. Participants. )ere were 4 female and 6 male volunteers
from the Southeast University, with normal or corrected to
normal vision, no report of eye or neurological diseases, and
ages ranging from 21 to 26 yr (median of 23 yr), participated
the study. )e experimental procedure and written consent
form for this study were approved by the ethics committee at
the Southeast University, and adhered to the ethical stan-
dards of the sixth revision of the Declaration of Helsinki. All
participants gave their informed written consent to par-
ticipate in the study.

2.2. Guided Visual Search Task. Participants were asked to
perform a guided visual search task on a 5× 5 grid of
equiluminant, equally spaced 25 capital English letters (i.e.,
A, B, C, D, E, E, E, F, F, F, G, H, J, K, L, N, O, P, Q, R, S, T, U,
X, and Z) of 2∘ visual angle in white presented on a back-
ground in black (see Figure 1). )e task was performed in 4
blocks for each subject. Before the presence of grid letters for
each block, the prompt for the designated target (either “E”
or “F”) was displayed on the screen for 3 seconds. During the
display of grid letters, eye fixations were guided across the
grid by a red circle (3.8∘ visual angle) that randomly sur-
rounded one of the letters. Such a guiding circle remained
visible for one second (i.e., a trial) after which it moved to a
different letter location. Participants were instructed to
saccade to and fixate on the letter in the center of the red
circle for 1 second and press the space bar of a keyboard with
their forefinger of the right hand only when the visual target
was present (for keeping subjects engaged in the task). A 2-
second short rest gap and a 10-second long rest gap dis-
playing a blank screen in black were intersected between
every 5 movements and 25 movements of the guiding circle,
respectively. )e grid of letters was updated every 5
movements of the guiding circle by randomly changing the
locations of the 25 letters. A single block of guided visual
search task consisted 250 movements of the red circle,
lasting about 10minutes. A 5-miniute rest period was
inserted between each block. Since there were always 3 target
letters out of the 25 letters for each grid, the target ap-
pearance probability is 3/25�12% in each block. )e pre-
sentation program was developed with Matlab
Psychtoolbox, and the grid was displayed on Dell
1280×1024 LCD monitor with the refresh rate at 60Hz.

2.3. Eye Movements and EEG Recordings. )e experimental
setup of the guided visual search task is depicted in Figure 2.

Eye movements were recorded with an EyeLink 1000 system
(SR Research, Ontario, Canada). )e eye tracker worked in
monocular mode, where it recorded the subjects’ dominant
eye with the sampling rate of 1000Hz. For moderate head
movement reduction, subjects were positioned in a chinrest
at a distance of 57 cm from the LCDmonitor.)e nine-point
calibration was conducted prior to the experimental blocks,
and drift corrections were performed every 25 movements of
the red guiding circle (trials) during the experiments.

)e EEG signals were sampled at 1000Hz with a 64-
channel 10–20 montage active electrode cap (ActiCap,
BrainAmp, BrainProducts, Munich, Germany) and an EEG
amplifier (SynAmps II, Neuroscan, Compumedics, Victoria,
Australia). Signals collected from 19 electrodes (Fz, FCz, Cz,
C3, C4, CPz, Pz, P3, P4, P7, P8, POz, PO3, PO4, PO7, PO8,
Oz, O1, and O2) were referenced to the left mastoid, and the
ground electrode was placed on the forehead. EOG elec-
trodes were sticked to the outer canthi of dominant eye, as
well as below the eye. All the electrodes impedance was kept
below 10 kΩ during the experiments.

Data from the stimuli presentation, EEG, and eye-
tracking acquisition systems were synchronized using the
custom software during the experiments. In specific, the
stimuli presentation computer sent an event message to the
eye tracker host computer through the Ethernet port, once
the red guiding circle moved to a new letter; the eye tracker
host computer then transmitted a TTL trigger to the EEG
amplifier via the parallel port. )e synchronization lag be-
tween EEG and eye-tracking acquisition systems was about
1ms, which is neglectable.

2.4. Generation of FRP Datasets. )e single-trial FRPs were
then extracted from the synchronized EEG and eye-tracking
recordings with the following steps implemented in Matlab
(Release 2014b). Firstly, the fixation onset in the raw eye-
tracking data was detected using three thresholds: velocity
(30∘/s), acceleration (8000∘/s2), and saccadic motion (0.15∘)
[22]. Moreover, only valid fixations were kept in the analysis,
which were the first exact fixations without blinking landed
on a circular area of 3∘ visual angle from the center of the
guiding circle and lasted longer than 350ms [23]. Secondly,
EEG signals were filtered using a second-order zero-phase
Butterworth filter with a 1–40Hz passband. Furthermore,
although the eye remained relatively stable during a fixation,
there were still micro eye movement-related artifacts that
contaminated the neural response. Infomax independent
component analysis (ICA) was then performed to identify
sources of ocular artifact, and the independent components
were rejected based on their covariance with the eye-
tracking data (components with a ratio of 1.1 or greater were
removed) [24]. )irdly, EEG signals were aligned to fixation
onset and segmented between −200 ms and 1000ms from
the fixation onset. )e baseline correction were applied to
each epoch in the time window (–200–100) ms from fixation
onset. Furthermore, single-trial FRPs in the time window
(0 1000) ms were used for the latter analysis. Next, we
rejected fixation-locked trials if peak-to-peak activity sur-
passed a 100 μV threshold using a window size of 50ms and
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a sliding step of 25ms. )e visual inspection of the EEG
signals confirmed that artifacts were clearly reduced. Lastly,
EEG data were downsampled at 128Hz and labeled
according to fixations on target or nontarget. )e resulting
FRP dataset for each subject is summarized in Table 1.

3. Methods

Firstly, the recently proposed first-order deep model
EEGNet [16] and the second-order deepmodel SPDNet [21],
based on which our work is developed, are briefly reviewed.
)ey consist of first-order only and second-order only
subnetworks, respectively. Afterward, we describe the pro-
posed approach that builds the first-order and second-order
subnetworks in sequence, aiming at better capturing relevant
statistics for the single-trial classification of FRPs.

3.1. EEGNet. Due to the physical origin of the noninvasive
EEG, there would be no obvious hierarchical spatial local
and global modulations [15]. By contrast, EEG is consis-
tently found to be organized across multiple time scales [25],
indicating that there are temporal hierarchies of local and
global modulations. Based on the facts stated above, EEGNet
has been proposed in [16], which is a compact convolutional
neural network tailored to the classification of EEG signals.
It takes the raw temporal form as input, i.e., the 2D-array of
size C × T, for C channels and T time instances.)e EEGNet
architecture is visualized in Figure 3, consisting of three
blocks. )e first block performs temporal convolutions
(Conv-T in Figure 3) to mimic bandpass frequency filters,
followed by depthwise spatial convolutions (Conv-S in
Figure 3) that act as spatial filters. Such depthwise spatial
convolutions are not fully connected to all the previous
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layers, so as to learn spatial filters for each temporal filter,
which together improve SNR and reduce the number of
trainable parameters to fit. )e second block involves
depthwise temporal convolution to individually summarize
each local, low-level feature map from the previous block in
a larger time scale, followed by pointwise convolutions to
optimally merge the outputs afterward for capturing global
and high-level features. )e third block directly passes the
flattened features to a softmax classification with K units (K
is the number of classes in the data). Each convolution layer
is followed by batch normalization. )ere is no activation
function between the two convolution layers within a block,
but the exponential linear unit (ELU) nonlinearity is
employed between blocks, followed by 2D average pooling
and dropout layers. In a word, by performing linear com-
binations, average pooling, and elementwise nonlinear op-
erations, EEGNet can be thought of as extracting solely first-
order statistics from FRP trials.

3.2. SPDNet. )e SPD matrices reside on the curved Rie-
mannian manifold S+, and thus, it leads to loss of geo-
metric information and poor results by directly flattening
and applying classification models devised in Euclidean
space. SPDNet is a deep learning model for SPD matrix as
input, which learns the nonlinear transformation projec-
ting an SPD matrix into a more discriminative one [21]. In
specific, an input matrix Xl−1 ∈ S+

dl−1
at the layer yields

Bl ∈ Rdl×dl via a bilinear mapping (the BiMap layer), which
in turn yields Xl ∈ S+

dl
at the layer l through the nonlinear

activation, i.e., rectified eigenvalues (ReEig layer) activa-
tion, by the following steps:

Bl � W⊤l Xl−1Wl withWl ∈ ST
dl−1×dl ,

Xl � Ul max Λl, ϵI( U⊤l withBl � UlΛlU
⊤
l ,

(1)

where STdl−1×dl is the compact Stiefel manifold of semi-
orthogonal rectangular matrices, Bl � UlΛlU⊤l represents
the eigenvalue decomposition of Bl, and ϵ is a small positive
threshold for the eigenvalues. )e final LogEig layer endows
elements in Riemannian manifold with a Lie group structure
so that matrices can be flattened and conventional Euclidean
classifications can be applied. )e BiMap and ReEig layers
are used together as a block (abbreviated as BiRe), and such

BiRe blocks can be repeated as many as wanted, to achieve a
high-performance deep learning model. Figure 4 depicts the
architecture of SPDNet with two BiRe blocks as the feature
extractor and one LogEig layer on the top. )e covariance
matrix estimated from single-trial FRPs is SPD, and thus,
SPDNet could be applied on such SPD matrices to deeply
learn the discriminative second-order statistics from the
single-trial FRPs.

3.3. <e Proposed Classification Pipeline. )e pipeline of the
proposed model is shown in Figure 5, consisting of three
stages. FRPs are known to suffer from external noises in the
environment and internal interfering cerebral activities that
are irrelevant to the brain responses to fixations on targets.
Due to this, minimally processed time-series single-trial FRPs
are fed into the first convolutional block of EEGNet (denoted
as CONV-Net in Figure 5), which performs multiple-fre-
quency-specific spatial filtering on the raw EEG. Next, we
propose to conduct augmented covariance pooling on the
convolutional feature maps, for obtaining an SPD matrix as a
powerful representation (referred to as ACOVP in Figure 5).
Lastly, the manifold network SPDNet is employed to deeply
learn the second-order statistics and for the classification
(denoted as SPDC-Net in Figure 5). )e details of each stage
for the proposed model are explained below.

3.3.1. Fully Temporal Convolutional Subnetwork (CONV-
Net). )e temporal structure of the amplitude changes within
a trial has been found to be important for detecting target-
related ERPs [16]. Recall that the fully temporal convolutional
layers in the first block of EEGNet facilitate the extraction of
frequency-specific, spatially localized time-series representa-
tion of FRPs, while EEGNet further utilizes another block of
convolutional layers to summarize such features into global
high-level descriptive representation for the task. It indicates
that the first block of EEGNet preserves the temporal
structure within raw FRP trials, whereas such temporal in-
formation may be largely lost for the second block. )erefore,
to build a powerful SPD matrix as a temporal representation
of FRPs for further extracting second-order statistics, instead
of the output feature maps from activation functions of the
second block, those from activation functions of the first block
in EEGNet are utilized. In specific, we learn 8 temporal filters
of size 1 × 64 and further 2 spatial filters of size C × 1 (C � 19
channels) per temporal filter, as it has been shown to perform
well for P300 classification in [16].

3.3.2. Augmented Covariance Pooling Layer (ACOVP).
To deeply learn the second-order information, we introduce
the augmented covariance pooling after fully temporal
convolutional layers. Given a single-trial EEG, let the acti-
vation map of the fully temporal convolutional layers be a
D × H × W tensor with feature channel D (D � 16, i.e.,
output of 8 temporal filters and 2 spatial filters per temporal
filter), height H (H � 1), and width W (W � 128, i.e., the no.
of time instances in a single convolutional feature map). We
reshape it into a matrix Xi ∈ RD×N with N � H × W and

Table 1: Summary of FRP datasets for the ten participants.

Subject #Nontarget #Target #Trials
1 717 115 832
2 616 95 711
3 436 82 518
4 660 108 768
5 739 106 845
6 802 98 900
7 735 104 839
8 834 120 954
9 605 78 683
10 659 109 768
Total 6803 1015 7818

Journal of Healthcare Engineering 5



further center it along row, and the centered matrix is
denoted as Xi. We then perform the covariance pooling by
estimating the sample covariance matrix as

Ci �
1

N − 1
XiX
⊤
i . (2)

However, if the time instants within a trial was randomly
shuffled, the estimate of its covariance matrix does not
change. In other words, using the covariance matrix for the
classification would probably lead to the loss of the precise

temporal information carried in learned convolutional
features. To effectively capture the temporal ordering of
convolutional features within a trial, we calculate the aug-
mented covariance matrix by following the ERP template
concatenation method suggested in [26]. Specifically, an
augmented trial Xi ∈ R2D×N is built by concatenating Xtar
and Xi:

Xi �
Xtar

Xi

⎡⎣ ⎤⎦, (3)

Kernel Output Kernel OutputOutputKernel

Input

...... ... ... ... ...

C × T

F1@1 × 64

F1 × C × T

S1
∗F1@C × 1

(S1
∗F1) × 1 × T

S1
∗F1@1 × 16 +

(S1
∗F1)2@1 × 1

(S1
∗F1) × (T/4)

Conv-T Conv-S Conv-S-T Classification

...

Block 1 Block 2 Block 3

Figure 3: )e architecture of EEGNet-F1, S1 model (F1 and S1 represent the number of temporal filters and spatial filters in convolutional
block 1, respectively). Conv-T, Conv-S, and Conv-S-Tdenote the temporal, spatial, and spatiotemporal convolution, respectively.)e batch
normalization, average pooling, dropout, and activation layers are not depicted for clarity. )e size of the output is the one from either the
convolution or the activation.
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Target/

nontarget
ReEig BiMap ReEig
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Figure 4: )e architecture of SPDNet with two BiRe blocks.
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Figure 5: )e pipeline of the proposed model. BN and ELU stand for batch normalization and ELU activation, respectively.

6 Journal of Healthcare Engineering



where Xtar stands for the centered Xtar, i.e., the prototyped
target FRP response, obtained by averaging trials in the
learned convolutional representation from the target class:

Xtar �
1
K

+





Xi∈K
+

Xi, (4)

and K+ designates the group of target FRPs trials. )e
augmented covariance pooling is thus carried out by

AugCi �
1

N − 1
Xi

X⊤i , (5)

where AugCi ∈ R2D×2D. In our experiments, we found that
augmented covariance AugCi is always SPD since more
samples are observed than their dimension (2D � 2 × 16 is
less than N � 128). Even if the matrices are only positive
semidefinite, they can be made SPD by adding small positive
constants to the diagonal entries of the augmented co-
variance matrix:

AugC+
i � AugCi + λtrace AugCi( I, (6)

where λ is a small positive constant and I is the identity
matrix.

In essence, the obtained SPD matrix AugCi acts as a
midlevel representation bridging the local low-level fully
temporal convolutional features and the global high-level
task-specific features.

3.3.3. SPD Matrix Learning and Classification Subnetwork
(SPDC-Net). We further perform the end-to-end learning
on the SPDmatrixAugCi with SPDNet. Considering the size
of the SPD matrix transformation 32 × 32 is not big enough,
an SPDNet architecture consisting of two BiRe blocks
without dimension reduction (i.e., dl ≡ dl−1 in equation (1))
is adopted in this paper, according to the preliminary ex-
periments on the training set. )e two BiRe blocks are
followed by a LogEig layer for mapping into Euclidean space,
a flatten layer, and a softmax layer for classification.

4. Experiments

4.1. ImplementationDetails. )eoutput sizes of each stage in
the pipeline are given in Table 2. To build the CONV-Net, we
use the EEGNet source code provided by the authors in [16]
1. )e EEGNet-8, 2 model (8 temporal filters followed by 2
spatial filters per temporal filer) is trained on NIVIDA GTX
1060ti GPU in TensorFlow [27], using Keras API [28]. To
handle the imbalanced data issue in our problem (there is a
6803 :1015 odds between nontargets and targets, see Ta-
ble 1), a class-weight is applied to the loss function. Spe-
cifically, the class-weight applied is the inverse of the
proportion in the training data, with the majority class set to
1. )e Adam algorithm with default parameter settings [29]
is used to optimize the class-weighted cross-entropy loss
function. )e dropout probability is 0.25 for all layers. We
train the model for 100 iterations and perform early stop-
ping, saving the model weights producing the lowest vali-
dation loss.

)e fully temporal feature maps for each training trial are
then loaded for building the augmented covariance matrix of
size 32 × 32 in the ACOVP layer. )e SPDC-Net is imple-
mented based on the Matlab version source code of SPDNet in
the original paper [21], with defaulted parameters on an Intel
3.2GHz Core i5 PC with 12GB of RAM and Windows 10
operating system2. Again, the class-weight is applied to the cross-
entropy loss function.)e stochastic gradient descent algorithm
on Riemannian manifolds is exploited to train the network. We
train SPDC-Net for 100 iterations, and the validation stopping
strategy is adopted again.

4.2. Comparison between Existing Methods and Ours. )e
approaches that either extract the first-order or the second-
order statistics are compared with our method. )ese
compared methods are briefly introduced below.

4.2.1. First-Order Models

(1) PCA+LDA [11]: Finke et al. [11] first concatenate the
channelwise FRP trials to form a high-dimensional
vector, and then apply principal component analysis
(PCA) to reduce the dimensionality (99.9% of vari-
ance was kept). Finally, the classification is achieved
using Fisher’s linear discriminant analysis (LDA).)e
method denoted as PCA+LDA has been imple-
mented in Python using the scikit-learn library [30].

(2) xDAWN+LDA [10]: xDAWN is a commonly used
spatial filtering algorithm for enhancing ERP [13].
xDAWN is implemented in Python using the MNE
library [31] with the suggested parameter in its
original paper [13].

(3) DeepConvNet [15]: there are four convolutional-
max-pooling blocks in DeepConvNet, where the
structure of the first block is similar to that of the first
block of EEGNet. )e ShallowConvNet proposed by
the same authors in [15] has not been compared
because it is tailored for oscillatory EEG signal (e.g.,
motor imagery) classification. We have adopted the
source code (within TensorFlow framework) for
DeepConvNet reimplemented by the authors in [16]
with default parameter settings3.

(4) EEGNet [16]: the same EEGNet-8, 2 model is
compared, and its training configuration is the same
as for our model.

4.2.2. Second-Order Models

(1) MDRM [19]: the MDRM classifier computes a
geometric mean for each class using training SPD
data and then assigns an unlabeled trial in the SPD
representation to the class corresponding to the
closest mean. It has been implemented in Python
using the MNE library [31].

(2) TSLDA [19]: this model projects the input SPD
matrix to a tangent space followed by an LDA

Journal of Healthcare Engineering 7



classifier. It has been implemented in Pythonwith the
MNE library [31].

(3) SPDNet [21]: the same SPDNet-2BiRe model (2 BiRe
blocks) is compared, and its training configuration is
the same as for our model.

For the second-order models above, the ERP template
concatenation strategy [26] has also been adopted to build
the augmented covariance matrix using the raw EEG trial.
Besides, no particular processing is adopted for the LDA
classifier-based methods (i.e., PCA+LDA, xDAWN+LDA,
and TSLDA) and the Riemannian distance based method
(MDRM) regarding to the imbalanced data issue, since there
is no reliable evidence to support the claim that an imbal-
anced data set has a negative effect on the performance of
LDA [32], nor MDRM [19].

)e performance of the single-trial FRP classification
models is evaluated in a 5-fold chronological cross-valida-
tion (CV) using subject-specific data. For the training and
test data split through the cross-validation procedure, the
target-to-nontarget ratio has been kept the same as in the full
data. Furthermore, randomly selected 20% data from the
training set are used for model validation.

We assess the performance of classifiers using the area
under curve (AUC) measure. )e AUC measure is chosen
because it is not effected by the prior class probability as is
the classification accuracy measure, which is only mean-
ingful when both classes are balanced in the test set. )e
Friedman test is conducted to assess the effect of different
models on AUC. Post hoc analysis is conducted with
Fisher’s least significant difference (LSD) correction. )e
significant level is set at 0.05.

In order to study the robustness of models to the lack in
data volume (as it could happen in real applications), we
further report results on reduced sets of data, with the best
first-order model and the best second-order model among
the compared ones on full sets of data, as well as our
proposed one. Specifically, keeping the target-to-nontarget
ratio, the same as in the full set, 50% and 25% trials are
randomly selected for each subject, respectively. Such
random selections have repeated 10 times, resulting in 10
reduced sets consisting 50% and 25% of full set, respec-
tively. For such two types of reduced sets, the 5-fold cross-
validation classification is conducted per reduced set, and
then the mean and standard deviation of 5-fold cross-
validation AUC across 10 reduced sets and subjects are
reported. In the statistical analysis, the averaged 5-fold
cross-validation AUC across 10 reduced sets for each
subject acts as the repeated measure.

4.3. Comparison between Different Components for Our
Model. )rough the model ablation analysis, we further

examine the influence of different pipeline components of
our model on its performance. Specifically, different design
choices for CONV-Net/ACOVP are tested while keeping
other components unchanged. Besides, the training con-
figurations for different design choices are kept the same.
)e effects of different design choices are investigated by
comparing the 5-fold CV averaged AUC of resulted models
on full set of subject-specific data. )e Wilcoxon sign rank
test is applied for evaluating the statistical significance of the
performance difference between two design choices.

5. Results

5.1. Grand Average Analysis of FRPs. Figures 6 and 7 show
the time-evolved topographical maps and the grand average
(Fz, Cz and Pz) over all ten participants for target and
nontarget FRPs during the guided visual search task, re-
spectively. From such two figures, it can be observed that
only fixations to targets elicit a sustained positive P300
component starting from around 250∼300ms, with a cen-
troparietal topography. Moreover, in general, there is a clear
difference in the amplitude of FRPs between fixations to
target and nontarget in channel Fz, Cz, and Pz around
300 ∼ 500ms (Wilcoxon rank-sum test with a false dis-
covery rate correction for multiple comparisons).

5.2. Comparison Results between Existing Methods and Ours

5.2.1. Results on Full Set of Data. )e 5-fold cross-vali-
dation AUCmeasures for all the methods on full set of data
from 10 subjects are shown in Table 3. Different methods
have significant influence on the performance. For the
first-order models, the deep models, i.e., DeepConvNet
and EEGNet, significantly outperform the conventional
shallow models, i.e., PCA + LDA and xDAWN+LDA
(LSD correction of 6, p< 0.05), while not performing
significantly different between themselves. Regarding to
the second-order models, the deep model, i.e., SPDNet,
has achieved significantly superior performance to the
shallow models, i.e., MDRM and TSLDA (LSD correction
of 3, p< 0.05). )e optimal result (0.9317 ± 0.0236) is
obtained with our model, and it has obtained the highest
averaged AUC for 9 out of 10 subjects. )e performance
difference between our method and the state-of-the-art
first-order models (DeepConvNet and EEGNet), and that
between our method and the state-of-the-art second-order
model SPDNet are statistically significant (LSD correction
of 6, p< 0.05). In addition, we observe that the deep
models generally show smaller standard deviation of AUC
across subjects than shallow models, and our model
achieves the lowest one among all the methods, suggesting
our method being more robust to subject-dependent

Table 2: Output sizes of each stage in the pipeline.

Layer
CONV-Net

ACOVP
SPDC-Net

Conv-t + BN Conv-S + BN+ELU BiRe BiRe LogEig Flatten
Output size 8×19×128 16×1×128 32×32 32×32 32×32 32×32 1024×1
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differences than other methods. All these results indicate
that our method provides more reliable classification
performance, which may be due to the reason that our
model benefits from building the first-order and second-
order subnetworks in sequence.

5.2.2. Results on Reduced Set of Data. Figure 8 depicts the
performance of the best models (i.e., DeepConvNet and
EEGNet) among compared first-order ones, the best model
(i.e., SPDNet) among compared second-order ones, and our
model with decreasing amount of data. In fact, our model
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Figure 6: Topographical maps for the guided visual search task. )e neural correlates of target detection have generally appeared after
around 250ms with a strong P300 component only for the fixations on targets. Time “0” ms in the topographical plots corresponds to
fixation onset.
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Figure 7: Grand average over all ten participants for target and nontarget FRPs. Targets have generally elicited a clear P300 component in
the guided visual search task.)e significantly different time instances between target and nontarget are marked by “+” (Wilcoxon rank-sum
test, p< 0.05 corrected for multiple comparisons).

Table 3: Performance (5-fold CV AUC) comparison on full set of data.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean ± Std
PCA+LDA 0.8467 0.7596 0.8460 0.7678 0.8085 0.8324 0.8871 0.8733 0.7932 0.8353 0.8250 ± 0.0423
xDAWN+LDA 0.8531 0.7504 0.8711 0.8198 0.8366 0.8017 0.8808 0.8957 0.7971 0.8380 0.8344 ± 0.0439
DeepConvNet 0.9135 0.8603 0.9193 0.8456 0.9075 0.8634 0.9188 0.9071 0.8959 0.9167 0.8948 ± 0.0277
EEGNet 0.9307 0.8568 0.9214 0.8589 0.8970 0.8597 0.8999 0.9272 0.9188 0.9262 0.8997 ± 0.0305
MDRM 0.7901 0.6995 0.9170 0.7562 0.8858 0.8237 0.9377 0.8485 0.8996 0.9382 0.8496 ± 0.0813
TSLDA 0.9298 0.8587 0.9059 0.6931 0.8619 0.8118 0.9464 0.8946 0.7898 0.9270 0.8619 ± 0.0783
SPDNet 0.9453 0.8755 0.9307 0.8524 0.9366 0.8713 0.9480 0.9091 0.8999 0.9251 0.9094 ± 0.0336
Ours 0.9521 0.8907 0.9519 0.8895 0.9400 0.9236 0.9428 0.9324 0.9451 0.9489 0.9317 ± 0.0236
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consistently outperforms DeepConvNet, EEGNet, and
SPDNet with statistical significance (LSD correction of 6,
p< 0.05) across different amounts of data. Besides, there are
two remarks regarding the results shown in Figure 8. First, as
the number of training data decreases, the performance of
SPDNet deteriorates the most fast among the four methods.
It could be attributed to the fact that SPDNet takes the
augmented covariance matrix built with the raw EEG trial as
the input, suffering from a poor template estimation due to
insufficient target trials and the low SNR of them. In con-
trast, our model builds the midlevel SPD representation with
convolutional features of higher SNR. It thus may contribute
to amplifying the interclass difference, leading to signifi-
cantly upgraded robustness of the second-order deep
learning through SPDNet in the presence of limited data.
Second, the performance of DeepConvNet and EEGNet
drops less fast than SPDNet, but has still degraded faster
than our model. Moreover, even with 25% of full set of data,
the performance of our model (0.8999 ± 0.0384) is still
comparable to that of DeepConvNet (0.8948 ± 0.0277) and
EEGNet (0.8997 ± 0.0305) with full set of data. Possible
explanations for this discrepancy are given below. Although
the fully temporal first-order convolution is leveraged to
enhance the SNR in the first network block in DeepConvNet,
EEGNet, and ourmethod, the latency variability in raw FRPs
across trials has not been handled yet.)erefore, our method
further performs deep second-order covariance learning on
Riemannian manifold in subsequent network blocks. In
particular, the midlevel augmented covariance representa-
tion encodes the correlation of local convolutional temporal
features in a translationally invariant way. Besides, the FRP
template obtained by averaging across trials is utilized for
building the augmented covariance, which also contributes
to reduce the model sensitivity to the latency variability

across trials. In other words, the second-order deep network
following the fully temporal convolutional network (i.e., our
model) explicitly helps to reduce the intraclass variations,
whereas the first-order deep convolutional network fol-
lowing the fully temporal convolutional network (i.e.,
DeepConvNet and EEGNet) implicitly addresses such an
issue. Explicitly handling the intraclass variations may ef-
fectively reduce the model complexity, resulting in superior
robustness of our method to DeepConvNet and EEGNet in
case of limited data.

5.2.3. Data Visualization. We use t-distributed stochastic
neighbor embedding (t-SNE) technique [33] to project the
data with different representations into a 3-dimensional
space for visualization.)e t-SNE projections of the raw data
and the outputs from each layer of our model are plotted in
Figures 9 and 10 for 100% of full set data (subject 8) and 25%
of full set data (subject 3), respectively. As can be seen from
Figures 9(a) and 10(a), the target and nontarget trials overlap
significantly in the raw representation. Although
Figures 9(b) and 10(b) have revealed the aggregation of data
from different classes into clusters with the convolutional
feature representation, it is still hard to well separate target
and nontarget trials from each other. Subsequently, more
compact clusters are obtained with the midlevel augmented
covariance representation than with the convolutional fea-
ture representation (see Figures 9(c) and 10(c)), indicating
that the intraclass variations are reduced. After the geo-
metric processing with SPDC-Net, Figures 9(d) and 10(d)
have shown two coherent clusters with clearly visible in-
terclass discriminability. In a word, all these three stages
used in sequence contribute to the discrimination of target
and nontarget FRP trials.

5.3. Comparison Results between Different Components for
Our Model

5.3.1. Effect of the Fully Temporal Convolutional Subnetwork.
As shown in Section 5.2.1 and Section 5.2.2, our model with
the fully temporal convolutional subnetwork has generally
demonstrated better performance compared to SPDNet that
takes the raw EEG trial for building the augmented covari-
ance. To further study the effect of the fully temporal con-
volutional layers in our model, we have implemented a model
that takes the feature maps from the second convolutional
block of EEGNet for building the augmented covariance,
instead of the first fully temporal convolutional block of
EEGNet as in our model. )e comparison results are sum-
marized in Table 4. It leads to significantly inferior perfor-
mance by adopting the feature maps from the second
convolutional block of EEGNet for building the augmented
covariance, compared to adopting those from the first block as
in our approach (second block-first block: −0.0132 ± 0.0180,
p � 0.0488). Such results have revealed that the temporal
information is likely to be ruined for the feature maps from
the second block of EEGNet, whereas it is preserved by those
from the first block of EEGNet, validating the usage of the
fully temporal convolutional subnetwork in our model.
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Figure 8: Performance (5-fold CV AUC) comparison on reduced
sets of data.
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5.3.2. Effect of the Augmented Covariance Pooling Layer.
We have examined the influence of adopting the covariance
pooling layer instead of the augmented covariance layer in our
model on its performance. To this end, we fix the CONV-Net
and the SPDC-Net, but replacing the ACOVP layer with the
covariance pooling (COVP) one. Results shown in Table 5 have
revealed the advantage of ACOVP over COVP (COVP-
ACOVP: −0.0466 ± 0.0524), with statistically significant dif-
ference (p< 0.05). )is has confirmed the benefit of aug-
mented covariance pooling in our method, which embeds the
useful temporal ordering information when building the
midlevel SPD representation (i.e., the augmented covariance),
compared to the covariance pooling.

6. Discussion

In the deep learning framework, this study has proposed a
novel classificationmodel to discriminate the brain response to
fixation onto target from that onto nontarget with single-trial
FRPs. We evaluate the proposed approach against the baseline

shallow models as well as state-of-the-art deep models con-
sisting of first-order only or second-order only subnetworks.
)e experimental results obtained on different amounts of data
show that the compared ones are consistently outperformed by
our model, in which the first-order and second-order sub-
networks are built in sequence. Toward a deep understanding
of the proposed approach, the model architecture and pipeline
components design choices are discussed below, followed by
limitations and future work.

6.1. Model Architecture

6.1.1. Deep Models vs. Baseline Shallow Models. )e baseline
first-order models (PCA+LDA and xDAWN+LDA) and
second-order ones (MDRM and TSLDA) are widely adopted in
previous studies [10, 11, 19] for classification of single-trial
ERPs. However, our experimental results on full set of data have
demonstrated that the deep models statistically outperform
these shallowmodels by a significant margin (see Table 3). Such
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Figure 9: t-SNE of 100% raw data and outputs from each layer of our model. (a) Raw data; (b) outputs from CONV-Net; (c) outputs from
ACOVP layer; (d) outputs from SPDC-Net. Red and blue dots represent the target and nontarget trials, respectively.

Journal of Healthcare Engineering 11



a performance discrepancy is in accordance with the reports in
recent ERPs classification studies with deep models [16], ver-
ifying that the shallowmodels are less effective than deep ones in
discriminating single-trial target and nontarget FRPs.

6.1.2. Our Model vs. State-of-the-Art Deep Models. On one
hand, the compared state-of-the-art first-order deep models,
i.e., DeepConvNet and EEGNet, automatically learn dis-
criminative first-order statistics from multidomains (time,
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Figure 10: t-SNE of 25% raw data and outputs from each layer of our model. (a) Raw data; (b) outputs from CONV-Net; (c) outputs from
ACOVP layer; (d) outputs from SPDC-Net. Red and blue dots represent the target and nontarget trials, respectively.

Table 4: Performance (5-fold CVAUC) difference between themidlevel SPDmatrices, respectively, aggregated by outputs from the first and
the second convolutional blocks of EEGNet.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean ± Std
Second block-first
block (ours) −0.0306 −0.0032 0.0095 −0.0195 −0.0209 −0.0490 0.0070 −0.0088 −0.0163 −0.0002 −0.0132 ± 0.0180

Table 5: Classification performance (5-fold CV AUC) comparison between the augmented covariance pooling and the covariance pooling.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean ± Std
COVP-ACOVP
(ours) −0.0814 −0.0209 −0.0094 −0.0423 −0.0610 −0.1749 0.0106 −0.0126 −0.0280 −0.0462 −0.0466 ± 0.0524

12 Journal of Healthcare Engineering



frequency, and electrode location). Nevertheless, none of
them are able to leverage the second-order information in the
data. On the other hand, the compared state-of-the-art sec-
ond-order deep model SPDNet could effectively extract the
second-order statistics through deep Riemannian geometric
processing. However, it is found in our study that utilizing the
raw EEG trial to build the SPD matrix representation, on
which the deep Riemannian geometric processing is con-
ducted, suffers from low SNR due to the absence of first-order
frequency-specific spatial filtering operations, in particular for
cases lacking sufficient data. In contrast, our model takes
advantage of the first-order frequency-specific spatial filtering
with convolution operations and the following second-order
deep Riemannian geometric processing.

As shown in the experimental results (Section 5.2.2), the
proposed model has significantly outperformed the com-
pared state-of-the-art first-order and second-order deep
models on different amounts of data. In particular, with only
25% of data, our model has obtained comparable perfor-
mance to that of EEGNet and DeepConvNet trained on
100% of data, whereas the performance of data-intensive
SPDNet has degraded dramatically. All the findings in this
study indicate that the proposed model is effective in
learning a discriminative representation for single-trial
classification of FRPs, and it is robust in the presence of
limited data, thus making the approach appealing to use in
practice.

Note that the state-of-the-art deep models taking the
time-frequency representation of EEG scalp channels as
input (e.g., [34]) have not been compared, since the model
input often involves a significantly high dimensionality and
thus requires intensive data to train the model, making them
difficult to learn an effective feature representation with
limited data as in our study.

6.2. PipelineComponentDesignChoices. According to results
shown in Section 5.3.1, the abstraction in time scale by the
second convolution block of EEGNet is harmful to produce a
good SPD representation for characterizing the intrinsic
temporal structure of FRPs. )erefore, we have adopted the
first convolutional block of EEGNet rather than the two
convolutional blocks of EEGNet for the component CONV-
Net in our model. Moreover, as the results in Section 5.3.2
suggest, the temporal ordering information preserved in the
ACVOP layer appears to be crucial for producing improved
performance. To sum up, in order to capture discriminative
and robust high-level feature representations for single-trial
classification of FRPs, the temporal ordering information
should be well preserved in both the low-level and midlevel
representations within our proposed feature learning pipeline.

6.3. Limitations and Future Work. )e main limitation of
current approach is that the components in the pipeline of our
model are trained independently. )e outputs from the
trained fully temporal convolutional subnetwork CONV-Net
are used to build the augmented covariance SPD represen-
tation, on which the SPD matrix learning and classification
subnetwork SPDC-Net is trained without fine-tuning CONV-

Net through backpropagations. Future work will investigate
whether end-to-end joint training of CONV-Net and SPDC-
Net leads to further performance improvements.

)e guided visual search task employed in this study is
still a well-controlled paradigm, and we are currently de-
veloping a more natural one, i.e., a free viewing search task,
where a subject is free to fixate onto any space of the screen
without the guiding circle. Moreover, this paper has only
studied the technical foundation for measuring the target-
perceptual ability with the EEG-based brain imaging tech-
nique, i.e., how to obtain a discriminative and robust feature
representation for FRPs. In future, we plan to further apply
the proposed feature representation learning method in
early AD detection applications, where the target-perceptual
ability of a subject is assessed with FPRs.

7. Conclusions

As a preliminary study of the technical foundation for
measuring the target-perceptual ability using the EEG-based
brain imaging technique, this paper proposes a novel
method for extracting a good feature representation for
FRPs, which could differentiate between the fixation onto
target and the fixation onto nontarget from single-trial FRPs.
Firstly, by using 1D convolution along the time axis and 1D
convolution along the channel axis, the SNR of local features
is enhanced by the convolutional operations, which act as
tempo-spatial filtering on raw EEG signals. Secondly, the
augmented covariance pooling layer builds an SPD matrix
representation, encoding the second-order statistics (e.g.,
correlations) for the convolutional feature maps. Lastly, the
deep Riemannian network further extracts a maximally
separable global representation for classification from the
augmented covariance matrix. In particular, the temporal
ordering of FRPs is well preserved for the components in the
pipeline, which is considered to be a valuable source of
discriminant information.)e experimental results obtained
on different amounts of data show that our model has
outperformed state-of-the-art models consisting of first-
order only or second-order only subnetworks. )ereby, the
discriminative and robust FRP representation extracted by
our method may be potentially used for measuring the
target-perceptual ability in early detection of AD.
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