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Since fall is happening with increasing frequency, it has been a major public health problem in an aging society. .ere are
considerable demands to distinguish fall down events of seniors with the characteristics of accurate detection and real-time alarm.
However, some daily activities are erroneously signaled as falls and there are too many false alarms in actual application. In order
to resolve this problem, this paper designs and implements a comprehensive fall detection framework on the basis of inertial
posture sensors and surveillance cameras. In the proposed system framework, data sources representing behavior characteristics
to indicate potential fall are derived from wearable triaxial accelerometers and monitoring videos of surveillance cameras.
Moreover, the NB-IoT based communication mode is adopted to transmit wearable sensory data to the Internet for subsequent
analysis. Furthermore, a Gradient Boosting Decision Tree (GBDT) classifier-based fall detection algorithm (GBDT-FD in short)
with comprehensive data fusion of posture sensor and human video skeleton is proposed to improve detection accuracy.
Experimental results verify the good performance of the proposed GBDT-FD algorithm compared to six kinds of existing fall
detection algorithms, including SVM-based fall detection, NN-based fall detection, etc. Finally, we implement the proposed
integrated systems including wearable posture sensors and monitoring software on the Cloud Server.

1. Introduction

An increased aging population in the world is forcing rapid
rises in healthcare requirements [1]. Everyone knows that older
people have poor balance ability and slow response ability. Falls
are amajor cause of injury for the elderly and a huge obstacle in
the independent living of the seniors. Once the elderly falls
down alone at home without help, the injured elderly may be
lying on the ground for several hours or even days. More
seriously, it is very likely to extended injury and be life-
threatening if he did not get treatment timely..erefore, timely
fall incident detection andmedical assistance for the elderly are
intuitively important. However, due to different application
scenarios and various body activities, satisfactory and reliable
fall detection results are too hard to guarantee [2].

Some related fall detection algorithms have been proposed
in the literature. Broadley et al. [3] review the latest reported

systems on activity monitoring of humans based on wearable
sensors and issues to be addressed to tackle the challenges. As
far as we know, there are three main categories of fall detection
technologies: fall detection using wearable sensors [4, 5], fall
detection using environmental sensors [6, 7], and video-based
fall detection [8, 9]. Although there are some other methods
such as radar-based fall detection [10], they are more com-
plicated compared to the above three methods.

Wearable sensor based fall detection methods mainly
depend on sensory data gathered from wearable acceler-
ometer and gyroscope. It is generally agreed that the use of
wearable sensors has played a quite important role in
monitoring the physiological parameters of a person to
minimize any malfunctioning happening in the body. In
recent years, the advancement of sensing technologies,
embedded systems, wireless communication technologies,
nanotechnologies, and miniaturization makes it possible to
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develop smart wearable sensors to monitor activities of
human beings continuously. Nag et al. [11] provide a review
on some of the significant research work done on wearable
flexible sensors. Chen et al. [12] propose a novel intelligent
fall detectionmethod, named as ESAEs-OCCCH, which uses
acceleration data from a wrist-worn smart watch. ESAEs-
OCCCH is first adopted for unsupervised feature extraction
to overcome the disadvantages of artificial feature extraction.
Yacchirema et al. [13] propose an innovative IoT (Internet of
.ing) based online system for detecting falls of the aged.
Sensory readings are processed and analyzed using a deci-
sion tree based Big Data model running on a Smart IoT
Gateway [14]. Although these wearable sensors have high
sensitivity and good real-time characteristics, higher de-
tection accuracy cannot typically be achieved due to the
interference from diverse activities of hand or wrist. Hence,
it is easy to cause misjudgment and missed detection of fall
actions relying only on wearable sensory data.

Secondly, a few scholars apply environmental sensors to
detect falls. Li et al. [15] propose a phase transform (SRP-
PHAT) method which can locate the original source of a
certain voice. In terms of sound classification phase, they
apply the Mel-Frequency Cepstral Coefficients (MFCC)
features with a Nearest Neighbor (NN) approach to improve
fall detection performance. However, expensive acoustic
devices have high requirements on the environment, and it is
not feasible to promote accurate detection with certain
ambient noise. Adnan et al. [16] adopt acoustic Local Ter-
nary Patterns (acoustic-LTPs) to detect fall events by ana-
lyzing environmental noise. Acoustic features are extracted
from the separated source components using the proposed
acoustic-LTPs scheme. Subsequently, fall events would be
identified with SVM based classifier. However, it will cause
noise during the audio signal acquisition, which could lead
to low accuracy and frequent false alarms.

.irdly, vision-based fall detection typically uses image
processing techniques to construct a human body model to
detect fall. In general, video-based fall detection systems
have shown some potential and reliability in detecting falls
in public places. Due to the popularity of video surveillance,
vision-based fall detection methods have already become
one research hotspot. .e boundary extraction method is
used to obtain the aspect ratio of the human body and then
to judge falls. Sase and Bhandari [17] used contour-based
template matching to distinguish human and nonhuman
and then judged human fall according to the distance be-
tween the top and center of the external rectangle of the
human body. Shen et al. [18] propose a fall detection method
using the Deeper Cut model to exact human key points, and
it is implemented using Raspberry Pi platform. Vision-based
fall detection can use relatively cheap cameras to quantify
and judge various activities; nevertheless, it requires com-
plex handling methods to construct a human body model
and it is unsuitable for real-time detection mode.

In addition, some results have suggested that a single
detection model from individual DataSet could easily lead to
false detection. Recently, there are already a few methods on
the basis of wearable sensors and surveillance cameras to
classify body activities. Kepski and Kwolek [19] apply a

Kinect camera and a device consisting of an accelerometer
and a gyroscope, and then a fuzzy inference system is used to
separate fall from daily activities. Hondori et al. [20] present
a detection system that helps monitor various dining ac-
tivities of poststroke patients using a Kinect camera and an
accelerometer. Nizam et al. [21] propose a novel approach
that uses a depth sensor and employs a unique procedure
that identifies the fall risk levels to adapt the algorithm for
different people with their physical strength to withstand
falls. Bogdan et al. [22] present a low-cost system for reliable
fall detection with a very low false alarm ratio on the basis of
accelerometric data and depth maps. .e single drawback of
the above methods is that Kinect camera is not cheap since a
considerable computational power is needed to execute
image processing algorithms. He et al. [23] propose a
method to integrate the information of video images, sound,
infrared, pulse, and other information into the elderly care
system. However, it is not very realistic to detect fall acci-
dents with so many sensors.

To overcome these shortcomings, we use an ordinary
camera and accelerometer as a data source in this paper so as
to improve the practicability of the detection system. Fur-
thermore, a novel data fusion based fall detection online
system and one GBDT based detection algorithm is provided
in detail. Data fusion of human activity features obtained by
posture sensor and surveillance cameras plays a significant
role in the recognition of abnormal activities. In addition,
the proposed platform uses NB-IoT communication and
Ethernet to transmit manifold data to the Cloud Server for
further analysis. .e platform is able to effectively monitor
the daily life of the elderly. When an unexpected fall incident
occurs, the proposed system will send an alarm signal to
inform the family relatives or other related guardians. In
conclusion, the proposed system would meet the require-
ments of high sensitivity and precision. As a result, necessary
assistance could be provided in times with high coverage
communication technology, so it is suitable for application
in the elderly care system.

.e rest of the paper is organized as follows. Section 2
describes the whole online fall detection platform framework
and comprehensive data source. In Section 3, GBDT based
fall detection algorithm using comprehensive data from an
accelerometer based posture sensor and human skeleton
extraction is presented in detail. Comparable experimental
results and actual operating interface are described in
Section 4. Finally, a conclusion is drawn in Section 5.

2. System Framework and Comprehensive
Data Source

Our complete framework of the fall detection system for
seniors is illustrated in Figure 1. Each user is equipped with a
kind of self-made MEMS (Micro Electro Mechanical Sys-
tems) based wearable sensor with hardware block diagram in
Figure 2, which uses triaxial acceleration and angular ve-
locity sensor to capture the body posture. Besides, NB-IoT
(Narrow Band Internet of .ings) [24] communication
mode is used to transmit sensory data to the Cloud Server.
With the development of Internet of .ings technology, the

2 Journal of Healthcare Engineering



health care field is also affected deeply. As we know, NB-IoT
is an emerging technology with many good features such as
wide coverage, multiple connections, low speed, low power
consumption, etc. In our IoT based health monitoring
system, various detection devices are connected together for
data exchange, so as to deliver warnings to medical staff or
guardians in time when the elderly fall. Moreover, it is also
supposed that each user is covered by at least one surveil-
lance camera and so we can monitor and record each user’s
activity. Today, almost all surveillance cameras have the
ability to transmit video sequences to the Internet through
Ethernet or wireless networks. .erefore, the Cloud Server
could obtain both attitude data and video data and store it at
the local database for further analysis. .e fall detection
algorithm is running on the Cloud Server with high per-
formance. Once fall events are detected, the Cloud Server
will send an alarm signal to the specific guardian through 4G
LTE (Long Term Evolution) communication technology. As
a result, each user can get instant help and timely treatment
in case of any abnormality with our proposed framework.

.e principle of the fall detection process is demon-
strated in Figure 3. In this system framework, real-time
acceleration data from posture sensors are transmitted by
NB-IoTcommunication mode to the Cloud Server, and then
form a data collection named as Acceleration DataSet
(ADS). Surveillance cameras are used to collect human
activities’ video, and key point coordinates of human body
are obtained through OpenPose software [25] processing to
form Video DataSet (VDS). Video DataSet and Acceleration
DataSet together make up the so-called Merged DataSet
(MDS). After processing by sliding window strategy [26],

one ensemble learning method named Gradient Boost
Decision Tree (GBDT) [27] is applied for self-learning with
MDS, so as to classify fall and other normal activities in a
robust way.

Since human activity frequency generally does not ex-
ceed 20Hz [28], the acceleration acquisition frequency is set
to 30Hz so as to process data more accurately, and video
acquisition frequency is adjusted to 30 fps (frames per
second) after software processing. .e entire self-made
DataSet comprises six kinds of human activities involving
fall, walk, sit, squat, lie down, and jump.

Due to the diversity and complexity of fall accidents, it
is hard to identify the way and direction of fall events. To
overcome this shortcoming, we use the sum vector of
triaxial acceleration value to measure the human activity.
Let ax, ay, az denote acceleration value in three dimen-
sions, respectively; A3-axis represent the actual value of
triaxial acceleration, which can be calculated with the
following equation:

A3−axis �
����������
a2

x + a2
y + a2

z


. (1)

.e measured sensory data are illustrated in Figure 4 to
compare the acceleration variation curve of falls and that of
other normal activities, including squat, lie down, jump,
walk, and sit down.

.e other fall characteristics are key skeleton coordinates
of the human body as shown in Figure 5. .e rectangular
coordinate system is established in Figure 5, and the hori-
zontal and vertical coordinates ofN� 18 key points would be
obtained, respectively. (Xsk−i, Ysk−i) (i� 1, 2, . . ., N) denotes
the respective coordinates of each key point. Hence, the
collection of key skeleton coordinates is as follows:

Xsk, Ysk(  � Xsk−1, Ysk−1( , Xsk−2, Ysk−2( , . . . , Xsk−18, Ysk−18(  .

(2)

However, the total 18 key points extracted using
OpenPose software are not all effective and necessary for
identifying fall events. Redundant data will only increase
computation complexity and even introduce unnecessary
noises. .erefore, the maximum and minimum x-coordi-
nate and y-coordinate of each key skeleton point Xsk−max,
Xsk−min, Ysk−max and Ysk−min are picked out, respectively, and
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then a body circumscribed rectangle is introduced to rep-
resent the contour of the human body. .e behavior change
of the human body can be identified only by paying attention
to the changes of length and width of body rectangle, so as to
reduce calculation complexity significantly compared to that
using all the key skeleton points.

Figure 6 illustrates three different scenarios of standing,
losing balance, and falling down completely. .e colored
rectangle denotes the outline of the human body, and it is
very clear that the length and width of the body rectangle
have changed a lot. We regard the aspect ratio R between
body width and length as a feature from Video DataSet,
which is calculated as follows:

R �
Xsk−max − Xsk−min

Ysk−max − Ysk−min
. (3)

Due to complex surroundings in different monitoring
scenarios, sometimes there is no guarantee that OpenPose
software can obtain 18 key points completely. In this case,
the median of the previous occurrence of this point and the
next occurrence of this point will be used instead. Figure 7
compares the aspect ratio R between falls and other normal
activities.

Since the fall process is a continuous dynamic event in
the time dimension, it could not be identified by acceleration
data or video data in a moment. In order to search and detect
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Figure 3: .e principle of GBDT-FD algorithm.
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4 Journal of Healthcare Engineering



Ysk

Xsk

13

12

10

9

8 11 7

6

52

3

4

1

1716
14 15

0

Figure 5: Skeleton scattergram of human body.

(a) (b) (c)

Figure 6: .ree different scenarios during a fall process. (a) Standing. (b) Losing balance. (c) Falling down.

0

2

4

6

R

Fall down

321 4
t (s)

(a)

0

2

4

6

R

Squat

321 4
t (s)

(b)

0

2

4

6

R

Lie down

321 4
t (s)

(c)

Figure 7: Continued.

Journal of Healthcare Engineering 5



the complete process of the falling event, we use a sliding
window method to intercept the derived data flow as Fig-
ure 8, where A and R denote the sum vector of triaxial
acceleration value and the aspect ratio of the human body,
respectively. Following the study in Ref. [29], the complete
fall process ranges from 0.3 s to 0.4 s, so we set width value
and step value to 0.5 s and 0.1 s, respectively. In our GBDT-
FD algorithm, the data acquisition frequency is 30Hz, so
there areW� 15 pieces of data in a 0.5 s sliding window, and
the step value between each two data sequences is S� 3
pieces of data.

After obtainingA3-axis and R, it is necessary to extract the
statistical characteristic so as to carry out the classification
process. When fall incident occurs, the acceleration and
posture of the human body will exceed normal range and

change rapidly. In conclusion, we should only pay attention
to the overall size and change rate of A3-axis and R within
each sliding window. For both Acceleration DataSet and
Video DataSet, 7 characteristic values including mean,
standard deviation (std), maximum value (max), minimum
value (min), average change rate (d), number of mean
crossings (MCV), and root mean square (RMS) of each
sliding window are calculated, respectively. MCV means the
number of samples above the mean value in a set of data, so
too large or too small MCV means this dataset change too
dramatically. As a result, the above 14-dimensional statis-
tical characteristics are listed in Table 1.

We extracted 14-dimensional statistical characteristics
from each sliding window to constitute the Merged DataSet,
which is stored as in the following matrix:

Amean1, Astd1, Amax 1, Amin 1, Ad1, AMCV1, ARMS1, Rmean1, Rstd1, Rmax 1, Rmin 1, Rd1, RMCV1, RRMS1

Amean2, Astd2, Amax 2, Amin 2, Ad2, AMCV2, ARMS2, Rmean2, Rstd2, Rmax 2, Rmin 2, Rd2, RMCV2, RRMS2

Amean3, Astd3, Amax 3, Amin 3, Ad3, AMCV3, ARMS3, Rmean3, Rstd3, Rmax 3, Rmin 3, Rd3, RMCV3, RRMS3

. . .

Ameani, Astdi, Amax i, Amin i, Adi, AMCVi, ARMSi, Rmeani, Rstdi, Rmax i, Rmin i, Rdi, RMCVi, RRMSi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where subscript i denotes that this characteristic sequence is
extracted from the i-th sliding window.

3. GBDT-Based Fall Detection Algorithm

3.1. Ensemble Learning-Based Fall Detection. Ensemble
learning [30] is a machine learning method that combines
multiple weak learners into a strong one. Several individual
learners with complementary results are trained concur-
rently, and the results from each individual learner are
merged into the final prediction result by a certain com-
bination strategy, so as to achieve the effect of extensive
learning and effective classification. If each individual
learner is the same type in ensemble learning, these indi-
vidual learners are called base learners. .e advantage of
ensemble learning lies in its strong robustness, which

enables it to reduce the interference of noisy data effectively.
Moreover, normalization is not required in the data pre-
processing stage. Gradient boosting is a machine learning
technique for regression problems, which produces a pre-
diction model in the form of an ensemble of weak prediction
models. GBDT (Gradient Boosting Decision Tree) is a
boosting method using Classification and Regression Tree
(CART) [31] as its base learner which is illustrated in Fig-
ure 9. GBDTuses decision tree as the weak prediction model
in gradient boosting so it has high accuracy.

.e described residual is the difference between the
correct result and the actual result. In GBDT-FD algorithm,
we use the logarithmic loss function to define residuals as
follows:

L(y, f(X)) � log(1 + exp(−yf(X))). (5)
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.e 14-dimensional Merged DataSet MDS defined in
Section 2 is as follows:

MDS � X1, y1( , X2, y2( , . . . , Xm, ym(  , (6)

where X denotes 14-dimensional data, which is shown as
follows: y denotes labels, y � 1 means fall, and y � −1 means
normal activity:

X � Amean, Astd, Amax, Amin, Ad, AN, ARMS, Rmean, Rstd,(

Rmax, Rmin, Rd, RN, RRMS.

(7)

.e optimal parameters of the GBDT model-based fall
detection algorithm are determined by the evaluation
method with k-fold cross-validation, which means that the
whole DataSet is divided into k mutually exclusive subsets
with approximately equal size. One subset is taken as the test
set and the rest as the training set while training GBDT
model. In this way, the model can be trained and tested for k
times to evaluate the performance of the model more
objectively.

GBDT classifier is regarded as an additional model
composed of CART [31] illustrated in equation (8). Clas-
sification is realized by continuously decreasing the residuals
generated in the training process as follows:

f(X) � 
N

n�1
h X; θn( , (8)

where f(X) denotes the overall model, h(X; θn) denotes the
n-th decision tree, θn denote parameters of the n-th decision
tree, N denotes the number of decision trees.

.e purpose of GBDT is to make loss function reduce as
fast as possible and preferably fall along its gradient di-
rection. At each round, the negative gradient of the log-
likelihood loss function is used to fit the new CART, which
could accelerate the reduction and convergence of loss
function as soon as possible and finally speed up the training
process. GBDT-FD will train CART for fall detection
through several iterations.

.e following describes the main steps of the GBDT-FD
algorithm.

3.1.1. Initialization. Firstly, GBDT-FD algorithm chooses
one feature from X as the CART node and then selects an
appropriate eigenvalue as the segmentation point. For ex-
ample, Amean is taken as the root node. In general, Amean
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value of a fall is usually much larger than that of normal
activity. Finally, the Merged DataSet is divided into two
categories with the eigenvalue boundary of preset seg-
mentation. It can be roughly considered that these two
categories represent falls and normal activities, respectively,
but the loss function will be very large. GBDT-FD will iterate
through all combinations of features and segmentation
points to minimize the loss function of CART. .erefore,
initial CART has only one root node as in the following
equation and M denotes the number of samples:

f0(X) � argmin 
M

m�1
L ym, c( . (9)

3.1.2. Iterations. Suppose the number of iterations is T, and
etm denotes the negative gradient error ofm-th sample in the
t-round iteration; hence,

etm � −
zL ym, f Xm( ( 

zf xm( 
 

f(X)�ft−1(X)

�
ym

1 + exp ymf xm( ( 
.

(10)

GBDT-FDwill train the CARTof this iteration according
to (Xm, etm)(i � 1, 2, . . . , M). Leaf node region
Retj(j � 1, 2, . . . , J) will be obtained by J denoting the
number of regression leaf nodes. Using linear search, esti-
mate the value of the leaf node region and minimize the loss
function:

ctj � argmin 
Xm∈Retj

log 1 + exp −ym ft−1 Xm(  + c( ( ( .

(11)

Since equation (11) is difficult to optimize, we use ap-
proximation as follows:

ctj �
Xm∈Retj

etm

Xm∈Retj
etm


 1 − etm


 

. (12)

.en a new learner generated by this iteration process
can be expressed as follows:

ft(X) � ft−1(X) + 

J

j�1
ctjI, Xm ∈ Retj. (13)

However, in order to avoid overfitting, learning rate v

ranging in (0, 1] should be considered when updating
learners, so the evolution rule of a new learner is as follows:

ft(X) � ft−1(X) + v · 

J

j�1
ctjI, Xm ∈ Retj. (14)

In general, much more iterations mean smaller loss
function and better performance. However, the loss function
will decrease less obviously as the number of iterations
increases. In order to save training time and computational
resources, GBDT-FD sets training termination conditions:

.e training process will stop if,

ΔL(y, f(X))< ε, (15)

where ΔL(y, f(X)) denotes the decrease of the loss func-
tion, and ε is the training termination threshold set by the
GBDT-FD algorithm.

3.1.3. Classification. GBDT-FD classification process is as
follows:

(1) Input unclassified test dataset
(2) .e trained CART will start from the root node and

compare with the input data based on features and
segmentation points

(3) After the comparison process is completed, CART
will output the category of each input data

(4) Test datasets are classified into two categories: fall
and nonfall

3.2. Performance Metrics. As we know, for the dichotomous
problem, the final classifying results can be divided into four
categories: True Positive samples (TP), False Negative samples
(FN), False Positive samples (FP), and True Negative samples
(TN) on the basis of different combinations of real category
and predicted category, which are summarized in Table 2.

Since fall detection belongs to a typical dichotomous
problem (fall and nonfall), five integrated metrics are used to
verify performance usually [2].

(1) Precision: the ratio between real falling samples and
predicted falling samples:

Ipre �
TP

TP + FP
. (16)

(2) Sensitivity: the ratio between samples correctly
identified as falls and real falling samples:

Isens �
TP

TP + FN
. (17)

(3) Specificity: the ratio between samples correctly
identified as nonfalls and real nonfalling samples:

Ispec �
TN

TN + FP
. (18)

(4) Accuracy: the ratio between samples correctly
identified and the total sample set:

Iacc �
TP + TN

TP + FN + TN + FP
. (19)

(5) F-score: weighted harmonic mean of precision and
sensitivity:

Iβ−score �
β2 + 1  · Ipre · Isens

β2 · Ipre + Isens
, (20)
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where β is a nonnegative parameter, and different β indicates
different weights between precision and sensitivity. Ap-
parently, there are three main cases:

(1) β � 1, denoting the weight of Ipre and Isens is equal
(2) β> 1, denoting the weight of Isens is greater than that

of Ipre

(3) β< 1, denoting the weight of Ipre is greater than that
of Isens

According to the difference of β, I1-score, I0.5-score, and
I2-score are commonly used in statistical occasions. In terms
of fall detection, we should pay attention to the sensitivity of
the detection model so as to reduce health hazards effec-
tively, and moreover, ensure the wounded could get im-
mediate medical assistance when fall occurs. Meanwhile,
wrong fall alarm may lead to a waste of communication
resource, so it is necessary to pay attention to the precision of
the model, but it is not as important as the sensitivity metric.

4. Experimental Results

4.1. Experimental Setup. .e experimental scene at our
school is illustrated in Figure 10. Ten graduate students (6
male and 4 female) with average age 26 are volunteered for
this research testing. Each user’s real-time acceleration data
during daily activities is gathered by our wearable posture
sensor, and monitoring video is recorded using a surveil-
lance camera. In order to imitate the real behavior of the
aged, we also tie sandbags on our feet, so there is amount of
falling down slowly situations in our training data set. With
this scenario, we got more than 150 videos with each lasting
for 1–1.5 minutes. Finally, more than 6000 activities records
are used to verify our GBDT based algorithm, 20% of them
are used for training, and the rest 80% is used for testing. For
safety’s sake, the experimental environment is padded
completely and tight. .e acceleration data and video data
are combined to form the merged data to store in Cloud
Server and finally input to GBDT based fall down classifier.

Firstly, how to determine optimal parameters for GBDT
based fall detection algorithm is discussed. We treat I2-score
and accuracy as main evaluation criteria and I1-score and
I0.5-score as the reference when training GBDT based de-
tection dichotomy model.

In the whole GBDT model, the iteration times have an
important influence on the quality of the model. When the
iteration times increase from 20 to 300, the I2-score and
accuracy value of the GBDTmodel will increase. However, it
is clear from Figure 11 when the iteration times exceed 110,
I2-score and accuracy of GDBT model no longer increase

significantly. But we can find from Figure 11 that the time
required for the training model is still approximately linear,
so the optimal value of iteration times is set to 110 in this
paper.

Some main parameters of GBDT-FD are shown in
Table 3.

4.2. Experimental Results. .e original sensory data of body
activities in a typical fall case are illustrated in Table 4 and
Figure 12. Table 4 displays a complete fall process with 6 key
frames. Figure 12 demonstrates the detailed change law of
the A3-axis during this process. It is clear that both types of
acceleration sensory data and human posture perception
data can reflect the fall process on many occasions.

Unfortunately, the previous situation is not always
guaranteed. In some cases, only a single type of sensory data
is difficult to classify falls and normal behaviors accurately.
When a user lies down, the aspect ratio R will change a lot as
given in Figure 13(a), so it will be recognized as fall activity
using separated video data. But it is a misjudgment clearly
and we can verify this from A3−axis variation curve. Nev-
ertheless, the fall classification result of this case should be
right using the accelerometric data, which is displayed in
Figure 13(b).

In either case, when a user jumps up, it is possible to
identify this kind of activity as fall because the acceleration
value changes extremely violently. But it is not a fall through
video data from Figure 14 because there is no great change of
aspect ratio R. To summarize, these two special examples
verify that more accurate fall detection results could be
achieved with data fusion using theMerged DataSet, and not
from a single dataset. Hence, this discovery is also the main
purpose and significance of this article.

Secondly, we compare the detection accuracy influence
of each feature. GBDTcan output the relative importance of
each feature to model training so as to help understand the
influence of each feature on fall down detection. As shown in
Figure 15, the sum of importance ratio of features in Video
DataSet (VDS) is 50.4%, and that in Acceleration DataSet
(ADS) is 49.6%. .is indicates that both datasets play an
important role in classification, so we choose all these
characteristics as our source data in GBDT-FD.

Table 2: Different combinations of real category and predicted
category.

Real category
Predicted category

Fall Non-fall
Fall TP FN
Non-fall FP TN

Figure 10: Experimental scene.
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Furthermore, we compare the fall judgment results of
support vector machine (SVM) based Fall Detection (SVM-
FD) [32], Naive Bayes (NB) based Fall Detection (NB-FD)
[33], Decision Tree (DT) based Fall Detection (DT-FD) [34],
K-Nearest Neighbor (KNN) based Fall Detection (KNN-FD)
[35], Neural Network (NN) based Fall Detection (NN-FD)
[36], Random Forest (RF) based Fall Detection (RF-FD)
[37], and GBDT based Fall Detection (GDBT-FD) with the
Merged DataSet, acceleration DataSet, and skeleton DataSet,
respectively. .e results in Tables 5–7 explain the
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Accuracy
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0.5
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Iteration = 110

t = 0.48s
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Figure 11: .e influence of iteration times of GBDT-FD.

Table 3: GBDT-FD parameters.

Parameter Symbol Optimal value
Learning rate v 0.35
Iteration rounds T 110
Cross validation k 5
Total sample number M 5160
Terminal condition ε 10− 4

Table 4: Fall process.

Frame no. Scene

1

20

30

49

Table 4: Continued.

Frame no. Scene

65

85
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Figure 12: A3−axis variation when falling down.
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Figure 13: Sensory data when lying down. (a) Video skeleton data when lying down. (b) A3-axis variation when lying down.
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Figure 14: Continued.
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comparable detection results of these algorithms with three
kinds of DataSet, respectively.

It is clear from Table 5 that I2-score and accuracy of
GBDT-FD are, respectively, 0.878 and 95%. .e results of
GBDT based fall detection algorithm outperform that of
SVM-FD, NB-FD, DT-FD, KNN-FD, NN-FD, and RF-FD,
which indicates that GBDT-FD can identify fall events ac-
curately. NN-FD and RF-FD are slightly worse than GBDT-
FD. Due to the simplicity of the Naive Bayes model, the
performance of the NB-FD algorithm is not ideal too. .e
Accuracy of SVM-FD and KNN-FD is not much worse than
that of GBDT-FD, but there is a big gap between them in I2-
score.

From detection results in Tables 6 and 7 with inde-
pendent DataSet, it is clear that GBDT-FD has good gen-
eralization ability and can handle various types of DataSet.
Moreover, the recognition results with Video DataSet are
slightly better than that of Acceleration DataSet. .is is
because the characteristics of video skeleton data are more
directly perceived than that of acceleration. However, the

performance is still not good as that with Merged DataSet
since the Merged DataSet expands the data dimensions, and
more features are used to make the model much easier to
train..e results verify that using a posture sensor and video
skeleton fusion will be more accurate than the traditional
individual detection method. However, the other methods
have poor generalization ability due to the defects of al-
gorithms. .erefore, the detection results are not
satisfactory.

Finally, the most important index I2-score of each algo-
rithm using three different DataSet is compared in Figure 16.
.e performance advantages of the proposed GBDT-FD al-
gorithm are obvious. From the aspect of system imple-
mentation, theWeb interface is shown in Figure 17..ere are
a few users who have already connected and transmitted
sensory data to the Cloud Server. GDBT-FD algorithm is
executed on the Server. At present, the well-designed fall
detection online platform is already in trial operation in
nursing homes, and so it is with a good result in application
and worth popularization.
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Figure 15: Feature importance in GBDT-FD algorithm.
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Figure 14: Sensory data when jumping up. (a) Video skeleton data when jumping up. (b) A3-axis variation when jumping up.
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Table 6: Detection results of each algorithm with Acceleration DataSet.

Acceleration DataSet
Model I0.5-score I1-score I2-score Accuracy (%)
SVM-FD 0.707 0.600 0.516 85.8
NB-FD 0.619 0.557 0.506 83.1
DT-FD 0.659 0.613 0.602 83.8
KNN-FD 0.707 0.656 0.613 86.3
NN-FD 0.685 0.670 0.655 85.8
RF-FD 0.741 0.656 0.588 87.1
GBDT-FD 0.777 0.737 0.696 89.2

Table 7: Detection results of each algorithm with Video DataSet.

Video DataSet
Model I0.5-score I1-score I2-score Accuracy (%)
SVM-FD 0.728 0.639 0.574 86.6
NB-FD 0.608 0.587 0.567 82.6
DT-FD 0.678 0.677 0.631 84.6
KNN-FD 0.692 0.658 0.628 85.9
NN-FD 0.707 0.692 0.677 86.7
RF-FD 0.739 0.695 0.656 87.6
GBDT-FD 0.754 0.728 0.706 88.6
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Figure 16: I2-score comparison of each algorithm with different DataSets.

Table 5: Detection results of each algorithm with merged DataSet.

Merged DataSet
Model I0.5-score I1-score I2-score Accuracy (%)
SVM-FD 0.842 0.793 0.749 91.6
NB-FD 0.630 0.579 0.535 83.5
DT-FD 0.806 0.805 0.789 90.9
KNN-FD 0.785 0.751 0.72 89.7
NN-FD 0.846 0.835 0.825 92.8
RF-FD 0.846 0.831 0.818 92.7
GBDT-FD 0.878 0.886 0.878 95
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5. Conclusions

In this paper, we propose one kind of comprehensive
framework of the fall detection system using inertial triaxial
acceleration sensors and monitoring cameras to detect fall
accidents. .e wearable triaxial accelerometer is used to
detect the body’s posture, and a monitoring camera is used
to extract key points of human skeletons information. .e
fall detection is operated on the basis of fusion based data
including accelerometric data and human skeleton key
points. In order to reduce false positives of falling incidents,
GBDTclassifier based fall detection algorithm is investigated
in depth. .e good performance of the proposed GBDT-FD
algorithm is compared with SVM-FD, NB-FD, DT-FD,
KNN-FD, NN-FD, and RF-FD in terms of I0.5-score, I1-score, I2-
score, and accuracy, so as to verify the performance im-
provements of GBDT-FD. In our future work, multiview
human skeleton extraction will be adopted, and detection
speed will be improved so as to enhance the real-time
performance of our system.
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