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Cognitive impairment has a significantly negative impact on global healthcare and the community. Holding a person’s cognition
and mental retention among older adults is improbable with aging. Early detection of cognitive impairment will decline the most
significant impact of extended disease to permanent mental damage. +is paper aims to develop a machine learning model to
detect and differentiate cognitive impairment categories like severe, moderate, mild, and normal by analyzing neurophysical and
physical data. Keystroke and smartwatch have been used to extract individuals’ neurophysical and physical data, respectively. An
advanced ensemble learning algorithm named Gradient Boosting Machine (GBM) is proposed to classify the cognitive severity
level (absence, mild, moderate, and severe) based on the Standardised Mini-Mental State Examination (SMMSE) questionnaire
scores. +e statistical method “Pearson’s correlation” and the wrapper feature selection technique have been used to analyze and
select the best features. +en, we have conducted our proposed algorithm GBM on those features. And the result has shown an
accuracy of more than 94%. +is paper has added a new dimension to the state-of-the-art to predict cognitive impairment by
implementing neurophysical data and physical data together.

1. Introduction

Cognitive impairment, also known as neurocognitive dis-
orders, is a loss of cognitive function. It has destructive
effects on people and the community as well. People with
this condition have problems with perception, attention, and
memory; meanwhile, these are essential things to build
human cognition and psychiatric disorders (e.g., depression,
insomnia, psychotic symptoms, etc.) [1–3] and even physical
diseases, such as diabetes mellitus (DM) and cardiovascular
diseases [4]. People with cognitive impairment also expe-
rience a diminished quality of life [5].

Cognitive impairment can cause many psychological
symptoms in patients [6]. Its devastating consequences may

increase the risk of dementia [7]. A study has shown that
about 30–40% of cases with cognitive impairment subse-
quently progress to dementia [8]. +e total assessed expense
of dementia was US$818 billion in 2015, implying 1.09% of
worldwide total domestic product [9]. +e economic diffi-
culty and pathological complexities among victims with
cognitive impairment are undoubtedly more crucial [10].
Researchers have figured out that by 2030, people with
dementia will be about 75 million, and this contingency will
cost the community US$ 2 trillion [11]. Early detection of
cognitive impairment status supports a sufferer by allowing
them to plan for the future and early treatment [12–14].

At present, an ideal approach to confine or limit this
overwhelming course is identifying danger in individuals
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and starting intervention early [15]. Many researchers have
explored neurobiological, hereditary, EEG signal, and
neuroimaging biomarkers for cognitive impairment diag-
nosis, especially in Alzheimer’s disease [15, 16] and also
dementia [17]. Magnetic resonance imaging (MRI) [18] and
neuroimaging techniques were broadly used to detect
cognitive impairment [19–21]. Many AI-inspired ap-
proaches have been discovered, yet no quantitative analysis
of accomplishment is proposed. AI approaches using ma-
chine learning, artificial neural network, and deep learning
show some significant improvement in impairment detec-
tion but still have challenging issues.

We have proposed an advanced ensemble learning al-
gorithm named Gradient Boosting Machine (GBM) to de-
tect cognitive impairment among older adults. Data
obtained from the smartwatch and keystroke were pre-
processed and analyzed through Pearson’s correlations.
+en, the wrapper feature selection technique was used to
select the best features. Experimented algorithms were
chosen by observing the distribution (standard deviation,
outliers, etc.) of our dataset. +e selective features have been
trained and tested with proposed algorithms to determine
the best prediction results. Our proposed method highlights
the following:

(1) We have proposed a combination of physical and
neurophysical data to detect cognitive impairment
levels.

(2) A conventional customized machine learning tech-
nique is performed to detect cognitive impairment,
and classification performances are compared with
other models.

(3) +e accuracy is higher for this quantitative analysis
of detecting cognitive impairment.

(4) In particular, our proposed method has the best
accuracy of predicting mild cognitive impairment
(MCI) than previous work.

+e health care services area is perhaps the leading re-
gion for AI applications. It is quite possibly the most
complex field [22] and may be the most testing, particularly
in the areas of conclusion and expectation [23]. Given that
early mediation can decrease cognitive deterioration, cur-
rent cognitive appraisals can be ineffective and develop older
adults’ technology use. So, our proposed methodology can
make a turnover to lead a happy life for older adults.

2. Related Works

+ere are many kinds of research ongoing on the prediction
of cognitive impairment using simple-to-deep learning al-
gorithms. Artificial neural network (ANN) algorithm has
been used to distinguish the cognitive state using multi-
center neuropsychological test data with magnificent ac-
curacy [24]. Reference [24] was confined to
neuropsychological tools for diagnosing cognitive impair-
ment. Random forest survival analysis and semiparametric

survival analysis (Cox proportional hazards) were com-
binedly used to evaluate the relative significance of 52
predictors in predicting cognitive impairment and dementia
immensely [25]. Reference [25] was time-consuming re-
search, having some limitations. One is that predictive
correlations were focused on correlational analysis, which is
implicitly bidirectional. +e other is that cognitive outcome
calculations were based on a success index for self-re-
spondents and a ranking measure for proxy respondents
rather than on clinical diagnosis. Artificial Intelligence (AI)
approaches, including supervised and unsupervised ma-
chine learning (ML), deep learning, and natural language
processing, have been applied for cognitive impairment by
providing a conceptual overview of this topic, emphasizing
the features explored [26]. A more effective method has been
experimented for monitoring cognitive function using
keystrokes [27] and linguistic characteristics with IT [28].
+ere are some limitations mentioned that should be solved,
like security concerns about providing personal data. +e
“Panoramix suite-6” serious digital games (“Episodix,”
“Attentix,” “Semantix,” “Workix,” “Procedurix,” and
“Gnosix”) scores datasets have been experimented through
some renowned ML (SVM, CART, and LR) algorithms to
detect cognitive impairment [29]. But it may discriminate in
result when targeting older adults. Based on the b test’s
accuracy, a model has been developed to detect cognitive
symptoms malingering in predicting malingerers of mild
cognitive impairment [30]. +is research was based on the
medical symptoms of patient datasets. +ese models’ ap-
plicability has spread in different directions [31, 32]. Mag-
netic resonance imaging (MRI) [33], in combination with
multiplex neural networks [34], and resting-state functional
magnetic resonance imaging (rs-fMRI), in combination with
graph theory [35], have been used to isolate healthy brains
from progressive mild cognitive impairment (pMCI), in the
diagnosis of AD and MCI. +ese researches were based on
functional data. When applied to functional data from
groups of healthy control subjects andMCI and AD patients,
AD and MCI could be identified as induced causes to the
brain network. Based on the cognitive neuroscience re-
searchers’ abnormal activity routines datasets, a novel hybrid
statistical-symbolical technique can detect cognitive im-
pairment [36]. +is study achieved promising results. But
the recognition method was based on only nonprobabilistic
rules that strictly determine the detection of an abnormal
behavior based on a user-defined set of observations. Be-
sides, based on routine primary care patient datasets, con-
ventional statistical methods and modern machine learning
algorithms have been used to develop a risk score [37] to
determine how people may build dementia [38]. Few re-
search studies have been published where a systematic [39],
quantitative, and critical review [40] has been analyzed to
predict cognitive impairment and dementia using different
machine learning techniques. Few research studies have also
developed machine learning algorithms to detect cognitive
impairment based on authorized clinical questionnaires’
datasets only [41, 42].
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3. Materials and Method

+is study aims to develop a model for classifying cognitive
impairment levels using keystroke patterns and physical
activity information. Figure 1 represents a flowchart de-
scribing the whole development of the system, which
consists of four phases. In the data collection phase
(Figure 1(a)), three types (keystroke patterns, physical, and
SMMSE score) of data have been collected. In the data
collection phase, keystroke patterns data as neurophysical
data are collected from a developed android application.
Regular physical activity data is collected from smart-
watches, and SMMSE data is collected from the question-
naire session, as shown in Figure 1(a). After extracting
features, feature analysis has been performed to determine
the correlations in features and then select the highly cor-
related features, as shown in Figure 1(b). After Analyzing the
dataset feature, a machine learning algorithm has been
chosen, as shown in the machine learning approach phase
(Figure 1(c)). +e result analysis phase has demonstrated the
relation between features output and SMMSE score output
using the regression model and showing the validation using
“10-fold cross-validation” (Figure 1(d)).

Participants’ mental health status in terms of cognitive
impairment has been assessed using the twelve-item
Standardised Mini-Mental State Examination (SMMSE).
+e British Columbia Ministry of Health validates this
SMMSE approach, and the questionnaire can also be found
on their website [43]. Several research types [44–47] used
these questions for related cognitive issues. For this study,
we also selected these questions, and 33 participants were
asked SMMSE questions to generate the SMMSE score. +is
score represents the cognitive impairment’s actual value to
label the participant for group selection. +ere are 26 males
and seven females whose age range is between 50 and 65.
+ey were followed up for up to 6months. In this study, the
participant’s cognitive impairment levels have been cate-
gorized into four types based on SMMSE score: normal
(SMMSE score ≥ 25), mild (21 ≤ SMMSE score ≥ 24),
moderate (10 ≤ SMMSE score ≥ 21), and severe (SMMSE
score ≤ 9). Table 1 represents the distribution of the cog-
nitive impairment scores based on the SMMSE. Every day,
SMMSE scores were collected from participants. Some data
were excluded because of insufficient information. Table 2
represents a sample of our datasets.

3.1.DataCollection. We have collected the datasets from the
Bangladesh research organization.+e study’s motive was to
detect cognitive impairment via keyboard stroke patterns
and activities they performed every day, such as sleeping,
walking, etc. +is study’s data is collected using smart en-
vironment technologies, including android applications and
wearable smartwatches.

On a particular day, the participant came to the research
center smart apartment and performed keyboard stroke
patterns activity, and this neurophysical data was recorded.
Physical data were collected from the smartwatch they wore

all day long. Also, the SMMSE score was generated through a
questionnaire session.

Participants were assigned identifiers during the study.
+e identifiers have been randomized before this data was
made available to the research.

3.2. Data Preprocessing

3.2.1. SMMSE Score Estimation. +e SMMSE score has been
taken at the beginning of the study and represents the
participant’s cognitive impairment severity. +e presented
study explores each extracted feature correlated with cog-
nitive impairment symptoms that can differentiate partici-
pants from cognitive impairment. +is questionnaire score
was estimated by using a linear regression model [48] on
extracted features. +e standard linear regression model can
be represented as follows:

Eiesmmse � α0 + α1f1 + α2f2 + · · · + αnfn, (1)

where �Eiesmmse is the estimated score of SMMSE for ith
participants, fn is the n number of features, and
α0, α1, α2, ..., αn are the coefficients of the linear regression
model.

+e lasso regularization [49] was used to minimize the
error between the estimated score and the actual SMMSE
score. +e lasso regularization restricted the regression
model coefficient to become too high. It performed well in
the model as all the features were highly correlated.
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where �Elr is the lasso regularization.+e first part of equation
(2) represents the “residual sum of squares,” and the other
part represents as the “sum of the absolute value of the
magnitude of coefficients,” and λ denotes the amount of
shrinkage.

3.2.2. Data Augmentation. +e class imbalance may damage
the predictive model’s performance, most of the time, in
machine learning algorithms because machine learning al-
gorithms focus more on detecting the larger classes. Our
dataset has class imbalance problems, which suggest that the
predictive models could poorly detect the minority class. We
have tried to mitigate the class imbalance problem by
augmenting 10% of our datasets’ data using the Conditional
Tabular GAN (CTGAN) [50] algorithm with high fidelity.
CTGAN is another GAN designed to synthesize tabular data
proposed in 2019 by the same authors as TGAN [51]. As
shown in Figure 2, the statistical descriptions between
original data and augmented data have been given. Every
value like mean, standard deviation, minimum, and maxi-
mum into original and augmented data is almost the same. It
indicates that, after augmentation, the distributions of
datasets remain the same.
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3.3. Feature Extraction. A total of 11 features have been
extracted from participants’ classified neurophysical be-
havior and physical activity patterns information. Four
features for neurophysical behavior from our developed
application and another seven physical activity features from
wearable devices are shown in Table 3.

3.4. Feature Subgroup. Our analysis has explored
that working and nonworking day’s features have some
relationship based on the extracted features of days. So,
we have divided our extracted features into three sub-
groups: (i) baseline, (ii) weekdays, and (iii) weekend
days.
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Figure 1: +e graphical abstract of research planning. (a) Data acquisition. (b) Data preprocessing and analyzing features. (c) Machine
learning approach. (d) Result analysis.

Table 1: SMMSE scores of the participants.

SMMSE score ≤ 9 10 ≤ SMMSE score ≥ 21 21 ≤ SMMSE score ≥ 24 SMMSE score ≥ 25
Participants 2 3 6 22
Cognitive impairment Severe Moderate Mild Normal
Gender One male; one female Two males; one female Four males; two females 19 males; three females
Age± SD 64± 1 60± 2 56± 1 52± 2
No. of months activity recorded 6 6 6 6

Table 2: Dataset sample.

Application data Wearable device data Group
TNW TT (sec) ENW AVG (sec) AE (kcal) QST (hour) WS St (hour) HPD DC (metre) CT (hour) Class
10 8 1 1.33 305.5 7 650 10 84 1400 1.5 0 (N)
12 10 2 1.66 240.67 8 755 12 78 1800 2.5 1 (MCI)
8 7 1 1 332.5 6 750 9 65 1200 2 3 (S)
15 12 2 2 357.5 5 595 10 73 1500 1.25 2 (M)
13 10 3 1.67 190.87 7 580 11 79 1300 3 3 (S)
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En � 

n

i�1
Di. (3)

In the equation, �En represents the feature subgroup, n is
the total number of days based on feature subgroups:
baseline, n� 7; weekdays (Sunday to +ursday), n� 5; and
weekend days (Friday and Saturday), n� 2. Di represents the
ith day features.

3.5. Feature Selection. Feature selection is a strategy to
choose optimal features from datasets. +is technique im-
proves model performance and reduces complexity and
computational costs. Also, it can improve the accuracy,
reduce the overfitting, speed up training, improve data vi-
sualization, and increase the explainability of the model. In

this study, we have used the Pearson correlation coefficient
[53] to analyze the feature. Pearson’s correlation coefficient
formula is

r �
 xi − x(  yi − y 

���������������������

 xi − x( 
2

−  yi − y 
2

 , (4)

where r is the correlation coefficient, xi is the x-variable in a
sample, x is the mean of the values of the x-variable, yi is the
values of the y-variable in a sample, and y is the mean of the
values of the y-variable.

Using Pearson’s correlation, we can generate an “r” value
of individual features to rank the datasets’ significant fea-
tures. +is “r” value can vary between −1 and 1. Figure 3
shows the total scenario of every feature’s correlation with
each other. +e “p” value also plays a significant role in
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Figure 2: +e distribution of datasets between original data and augmented data.
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choosing the features. Figure 4 shows the correlation with
each other based on “p” values. If this “p” value of any
feature is less than 0.05 and near to 0, that feature would be a
significant feature. Our analysis has been shown from the “r”
values heatmap and the “p” values heatmap. As shown in
Figures 3 and 4, we can observe that some features are highly
correlated, while some features are less correlated. It indi-
cates that some features would be significant, and some
would not be so for our model.

+en, the wrapper feature selection method [54] has
been used to select the model’s best features. Regression and
a classification algorithm have been used to evaluate the
selected feature’s performance after “10-fold cross-valida-
tion” of the data. Regression model features have been se-
lected using the root mean square deviation (RMSD) of the
SMMSE score estimation.

3.6. Methods. Cognitive impairment was classified into four
categories (Table 3), and for evaluating the classification
performance, we mainly focus on supervised learning. Two
famous classification algorithms, Ensemble Learning (EL)
and Support Vector Machine (SVM), were considered to
detect the users’ cognitive impairment.

3.6.1. Gradient Boosting Machine (GBM). +e Gradient
Boosting Machine (GBM) [55] algorithm is an advanced
algorithm of Ensemble Learning (EL) algorithm. It is a
supervised machine learning algorithm for regression and
classification problems. It generates a prediction model,
commonly decision trees. Meanwhile, a decision tree is a
weak learner, and the resulting algorithm is called gradient
boosted trees, which usually outperforms random forest. It

Table 3: Participants’ neurophysical and physical activity features.

Feature Abbr. Extraction process

Total number of words TNW

�Etnw represents t0068e total number of words in a complete sentence. In the formula, the user-given
sentence’s total number of words is represented byWn. +e total number of word parameters is acquired

using our application, developed for this study.
�Etnw�W1 +W2+...+Wn

Total time TT
�Ete represents total time. In the formula, user taken time is represented by Tt. +e total time parameters

are acquired using our application, developed for this study.
�Ete�Tt

Error number count of
word ENW

�E represents the calculated error number count of words parameter. In the formula, Enw indicates an error
count of the current iteration. �Eec is the current calculated value of error count, and �Eec− 1 is the previously
calculated value of the error count. +e error number count of word parameters is acquired using our

application, developed for this study.
�Eec � (Eec − 1 + Enw)/2

Average time AVG Sl represents sentence length. �Ete represents total time.
AVG� Ete/Sl

Absolute energy AE
Energy is assessed in two main parts: active energy (eae) and rest (ere) energy. �Eem is a representation of
absolute energy in the given formula. +e energy parameter is acquired using a smartwatch daily basis.

�Eem� eae + ere

Quality sleeping time QST

Based on the National Sleep Foundation’s professional’s research, an age-specific sleep duration
recommendation is called Sleep Health Index (SHI) [52]. �Eqst identifies the quality sleeping timing

parameter. It is a consistent incentive for every day, relying upon sleep time. +e quality sleeping time
parameter is acquired using a smartwatch daily basis.

�Eqst�Qst

Walking steps WS

Walking steps (ews) value was taken for a period of time. �Ews stands for walking steps parameter, which is
the sum of the incremental steps over the day. +e walking steps quantity parameter is acquired using a

smartwatch daily basis.
�Ews� ews

Sitting time ST

+e sitting time (est) value was taken while the participant was in an idle mood and not sleeping. �Est
stands for sitting time parameter, which is the sum of the different idle periods over the day. +e sitting

time parameter is acquired using a smartwatch daily basis.
�Est� est

Heart Pulse data HPD

+e average heartbeat value is denoted as the base heartbeat value (Hb). All base and abnormal heartbeats
(H) are calculated, and the average value of heartbeats is calculated for each hour. +e daily value is
calculated as the average value of hourly values.+is heart pulse parameter is acquired using a smartwatch

hourly.
�Ehb� (Hb + 

n
k�0 H )/(n + 1)

Distance Covered DC

Distance covered (edc) value was taken while the participant was running. �Edc stands for distance covered
parameter, representing how long the participant was running over the day in the hour’s scale. +e

distance covered parameter is acquired using a smartwatch daily basis.
�Edc� edc

Cycling time CT

Cycling time (ect) value was taken while the participant was cycling. �Ect stands for cycling time parameter,
representing how long the participant was cycling over the day in the hour’s scale. +e cycling time

parameter is acquired using a smartwatch daily basis.
�Ect� ect
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creates the model sequentially as other boosting techniques
do. +en, subsequence models are trying to reduce the error
of the previous model. Each model reduces the error of the
previous model by building the model on the error of re-
siduals of the previous prediction. +is is done to determine
if there are any patterns in the errors that the previous model
missed. And we repeat the same process: either the error
becomes zero or we have reached the stopping criteria,
which is the limit to the number of models we have built.
+en, it concludes them by allowing optimization of an
absolute differentiable loss function. We have given GBM
working procedures step by step in a block diagram as shown
in Figure 5. In a nutshell, we built our first model, which has
features x and target y. And the first model was named H0,
which is a function of x and y. +en, we built the next model
on the error of the previous model repeatedly till the nth
model, as shown in Figure 6.

H0 gives some predictions and generates error e0 by the
function “F0 (X)” as shown in equation (4). +en, the next

model added the new predicted errors e1 with “F0 (X)”
creating a new function “F1 (X)” as shown in equation (5).
Similarly, we built the next model as shown in equation (6)
till the nth model.

F0(X) � c0H(x, y) + e0. (5)

F1(X) � F0(X) + c1H1 X, e0(  + e1. (6)

F2(X) � F1(X) + c2H2 X, e1(  + e2, (7)

and the final equation is something like that shown in
equation (7). In equation (7), “Fn-1 (X)” is the prediction by
the previous model. Some new predicted errors were added
to this model. Finally, we are left with some errors named en.
So, at every step, we are trying to model the errors that help
us reduce the overall error, and our focus is that the error
tends to be zero (i.e., en � 0). Each model here is trying to
boost the performance of the model.We add a coefficient “c”
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and the proper value of this coefficient will be decided using
the gradient descent technique.

Fn(X) � Fn−1(X) + cnHn X, en−1(  + en. (8)

+e generalized equation will be like that shown in
equation (8). It represents “Fn (X)” as all the previous
models, cn represents the coefficient, and “H(X, en)” the

current working model function, where X represents the
features and en means the model’s error.

Fn+1(X) � Fn(X) + cnH X, en( . (9)

If we dive deeper into equation (9), to understand about
loss function and calculate cn. We consider a loss function as
shown in equation (10) where y is the actual value and y′ is

Fe
at

ur
es

TNW

TT

ENW

AVG

AE

QST

WS

ST

HPD

DC

CT

CLASS

TNW TT ENW AVG AE QST
Features

WS ST HPD DC CT CLASS

Correlation Matrix ʹʹpʹʹ values HEATMAP

0.9

1

0.6

0.7

0.8

0.5

0.4

0.2

0.3

0.1

0

Figure 4: Correlation matrix heatmap with “p” values of features.

Build a model and make
predictions on given

data

Calculate the error and
set this error as target

Step 1 Step 2

Step 5

Step 3 Step 4

Bulid model on the
errors and make

predictions

Update predictions of
model 1

Figure 5: +e “GBM” model working procedure steps.

8 Journal of Healthcare Engineering



the predicted value for the last model. So, the square dif-
ference of this would be the loss.

L � y − y′( 
2
. (10)

In our case, the target here is y, where y′ can be con-
sidered the updated prediction of the last model. So, we can
replace y′ with Fn (X), and the new equation will be as
follows:

L � y − Fn(X)( 
2
. (11)

Here, we will use gradient descent techniques and dif-
ferentiate this equation (10) with respect to Fn(X). We will
get something like that shown in the following equation:

dL

dFn(X)
� −2 y − Fn(X)( . (12)

To simplify this equation (12), we will multiply both sides
with “−1”. And we will get something like that shown in the
following equation:

−
dL

dFn(X)
� 2 y − Fn(X)( . (13)

Now the right-hand side of the equation is similar to the
error we are discussing. Here, we consider the error en,which
is actually (y − Fn(X)). So, it can be said that en is also equal to
the left-hand side of the equation. So, it can be replaced, that
is, H (X, −dL/dFn(X)), and our final equation will be as
follows:

Fn+1(X) � Fn(X) + cnH X, −
dL

dFn(X)
 . (14)

Now the aim is to minimize the overall loss function. So,
the overall loss would be the loss we get from all the models
we have built so far, as shown in the following equation:

LOSS � L(y, F(X)) + cnL H X, −
dL

dFn(X)
  . (15)

+e first part of the overall loss is fixed as these are the
predictions we have generated from the previous models we

built. So, this cannot be changed. +e second part of this
equation has another loss of the current model, and this loss
cannot be changed. But we can still change the gamma value.
Now it needs to select a value of gamma such that the overall
loss is minimized. And this value would be selected using a
gradient descent process. +e idea is to minimize the overall
loss by deciding the right value of gamma for eachmodel. So,
the next model, when we built that model, will again have the
coefficient of cn, and we try to select the right value such that
the overall loss is minimum. For this, we will be focusing on
a special case of gradient boosting model, which is the
Gradient Boosting Decision Tree (GBDT). In this case, each
of the models we built like each of theseH (X, −dL/dFn(X))

would be a tree.+ere is an interesting part about GBDT; the
gamma value, in this case, is calculated at every leaf level. It
would be something like that shown in Figure 7. In the
figure, each leaf of the tree would have a gamma value.

3.6.2. Support Vector Machine (SVM). +e Support Vector
Machine (SVM) [56] is a very popular and widely used
algorithm in machine learning for classification and re-
gression [57]. It builds an intricate model as basically as
conceivable, so it very well may be effectively investigated
numerically. SVM sets aside a less figuring effort to rec-
ognize a hyperplane in an n-dimensional space (n being the
number of features) that exclusively groups the information.
+e current research utilized a Sequential Minimal Opti-
mization (SMO) algorithm with the polynomial piece to
upgrade the SVM classifier model. SVM was considered for
dealing with the issue of overfitting of high-dimensional
information.

3.7.Tuning<eModel. Ourmodel has been tuned with some
hyperparameters to set some customized values to improve
our model performance. In this case, we have selected
“alpha” to 1.0, “criterion” to friedman_mse. +e “n_esti-
mators” is set to 32, which will create 32 DTs within GBM.
+e “learning rate” is set to 0.1, which determines each tree’s
impact on the outcome.+e “random state” is set to 96; it is a
random number seed so that the same random numbers are

M0 M1
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Target

y-y' y-y''

y

H0 (x,y) H1 (x,c0) H2 (x,c1) Hn (x,cn-1)

x x x

c0 c1 cn-1

M2 Mn

Figure 6: +e “GBM” mathematical modeling block.

Journal of Healthcare Engineering 9



generated every time. +e “colsapmle_bytree” is set to 0.7,
which works for random feature selection at the tree. +e
“max_depth” is to 6; it is a stopping criterion (i.e., a max-
imum depth to which a tree can grow).

3.8. <e Model Evaluation and Validation. We have used
conventional machine learning algorithms to analyze our
participants’ neurophysical conditions in this study. We
have given accuracy, precision, recall, F1-score, and ROC
curve; those are employed as evaluation metrics in our
experiments to represent our work contribution.We divided
our dataset into two parts: two-thirds of the datasets for the
training process, and another one-third was for the testing
process. To validate the model, we applied 10-fold cross-
validation with a 5∗2 approach on the dataset. First, the
dataset was divided into two halves randomly. Second, one
part was employed in training and another in testing, and we
repeated the same procedure as vice versa. +is procedure
was applied five times repeatedly. Finally, we averaged the
results and generated a projected score and compared it with
the actual score. +is cross-validation procedure has the
advantage that all data are used for both validation and
training. We have presented a graph comparing the gen-
erated score with the actual score in the Results section. +e
root mean square deviations (RMSDs) have been used to
calculate the error between the estimated score (�Eesc) and the
actual score (�Eiesmmse). +e RMSD value defined the model
performance and has been calculated as follows:

RMSD �

��������������������

1
N



N

i�1
Eiesmmse − Eesc( 

2
.




(16)

4. Results

4.1. SMMSE Score Prediction. From participants’ neuro-
physical behavior and physical activities pattern, 11 features
have been extracted and divided into three subgroups. +e
linear regression model has been used to estimate each
feature’s corresponding cognitive impairment score.
According to the cognitive impairment levels’ score, four

groups have been categorized (normal (SMMSE score ≥ 25),
mild (21 ≤ SMMSE score ≥ 24), moderate (10 ≤ SMMSE
score ≥ 21), and severe (SMMSE score ≤ 9)). Each sub-
group’s feature data distribution has a relationship with
cognitive impairment symptoms. It has also been found that
seven features have a high correlation with cognitive im-
pairment symptoms as their “p” values are less than 0.05 to
close to 0, as discussed in Section 3.5. +ese seven features
are total time (TT), error number of words (ENW), average
time (AVG), absolute energy (AE), quality sleeping time
(QST), walking step (WS), and heart pulse data (HPD).

Table 4 represents the relationship between the regres-
sion model estimated SMMSE score and the actual score,
evaluated using RMSD. +e error has been minimized using
the lasso regularization method, as discussed in section 3.2.1.
Each of the features’ results shown in Table 4 is calculated by
using leave-one-out cross-validation. A subset has been
selected using the wrapper feature selection method among
33 features from three subgroups (base, weekday, and
weekend), and this technique shows the lowest RMSD of
3.125. +is value demonstrates that the predicted SMMSE
score has stronger correlations with the actual SMMSE
score.

4.2. Cognitive Impairment Level Detection. As shown in
Figure 8, data distribution analysis demonstrates that the
features are highly distributed, with high standard deviation
and too many outliers in features. A rule-based algorithm
like “decision trees” or “ensemble learning” should work
efficiently for these kinds of feature datasets. In this regard,
we have the Gradient Boosting Machine (GBM), an en-
semble learning algorithm. For evaluating and proving our
selection, we have experimented with a distance-based al-
gorithm, the “support vector machine (SVM)” also. Table 5
represents the overall accuracy of our used models. We can
see that the “gradient boosting machine (GBM)” has the
highest accuracy of 94.8%.

In terms of the four cognitive levels—(i) normal, (ii)
mild, (iii) moderate, and (iv) severe—the classification al-
gorithm results are shown in Table 6, where classification
performance has been demonstrated by showing the results

γn
1 γn

2 γn
3 γn

4

Figure 7: +e “GBDT” block with gamma value in the leaf.
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Table 4: +e error rate between the actual score and the estimated score.

Feature Base subgroup Weekday subgroup Weekend subgroup Wrapper selected features
TNW 5.102 4.795 4.988

3.125

TT 4.112 4.256 4.394
ENW 4.226 4.129 4.186
AVG 4.274 4.202 4.195
AE 4.245 4.195 4.113
QST 4.114 4.052 4.123
WS 4.218 4.253 4.209
ST 5.044 4.725 4.826
HPD 4.032 4.107 3.975
DC 5.096 4.923 4.753
CT 5.077 4.889 4.662

1.0
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0.4
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al

e

0.2

0.0

TNW TT ENW AVG AE QST
Features
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Figure 8: +e distribution of values of the dataset. Features values have been normalized between 0 and 1 and the interquartile range (IQR)
in the box between 25% and 75%. +e median line 50% of the values of the features falls between 25% and upper 75%, and the “+” sign
represents outliers of features.

Table 5: Summary of overall classification accuracy.

Classifier name Accuracy (%)
Gradient boosting machine (GBM) 94.8
Support vector machine (SVM) 61.5

Table 6: Summary of classification results.

Cognitive level Classifier Precision (%) Recall (%) F1-score (%) Accuracy (%)
Normal GBM 92.2 99.2 95.5 96.6

SVM 80.1 94.4 87.7 87.8

Mild GBM 93.3 99.2 96.5 97.7
SVM 49.9 40.1 44.4 45.5

Moderate GBM 89.1 90.2 87.8 91.1
SVM 64.5 48.5 54.5 56.6

Severe GBM 91.1 92.2 88.2 94.4
SVM 64.5 49.9 55.5 58.7
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of accuracy of the individual classifier as well as individual
classes. We can easily decide on an excellent algorithm to
analyze Table 6 as the particular classifier precision, recall,
F1-score, and accuracy have been given. +e accuracy result
has shown that GBM generally has done an excellent per-
formance compared with other classification algorithms. In
the “normal” class, the SVM accuracy level looks slightly
good, but GBM performed well on all four cognitive im-
pairment levels.

+e GBM classifier’s performance using the receiver
operating characteristic (ROC) curve has been shown in
Figure 9. As shown in Figure 9, by considering the “normal”
cognitive impairment as a negative test sample, the ROC
curve in terms of cognitive impairment reached a maximum
true positive rate of approximately: (i) 99% for mild cog-
nitive impairment, (ii) 96% for severe cognitive impairment,
and (iii) 94% for moderate cognitive impairment. In Fig-
ure 10, we have shown the random 15-day data of our
participants for every cognitive impairment class.+is figure
demonstrates and validates the accuracy of the model. +e
mild (21 ≤ SMMSE score ≥ 24), moderate (10 ≤ SMMSE
score ≥ 21), and severe ( SMMSE score ≤ 9) levels have a
range, and if the value is within range, we have counted as an
actual prediction, otherwise false prediction.

5. Discussion

+is study used keystroke pattern data and smart wearable
device data to extract information about our participants’
neurophysical behavior and physical behavior patterns. We
have used the “10-fold-cross-validation” with a 5∗2 ap-
proach to validate our model. +e model can detect four
different cognitive impairment levels (i.e., normal, mild,
moderate, and severe) with 94.8% accuracy. +is accuracy is
higher than that in a previous study, which recorded an
accuracy rate of 86% [58]; however, this study focused on
predicting dementia and mild cognitive impairment. Our
extracted features from our developed application and
wearable devices data have shown a strong correlation with
the SMMSE score and are found in the regression model.

+e study by Vizer and Sears [28] was based on typed
text’s keystroke and linguistic features to detect cognitive
impairment. Some researchers like Sofi et al. [59] did a meta-
analysis on physical activity. In the present study, we have
combined keystroke pattern behavior with our participants’
physical activity to detect cognitive impairment.

In our study, using the “Pearson” correlation for feature
analysis and wrapper method to select the features has done
a great job to achieve higher accuracy classification
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Figure 9: +e ROC curve demonstrates the performance of the classification of each cognitive impairment level. +e yellow curve (mild
cognitive impairment) shows higher performance, while the red curve (severe cognitive impairment) has a little bit lower result, and the blue
(moderate cognitive impairment) shows lower performance.
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performance for each cognitive impairment level (normal,
mild, moderate, and severe). To evaluate the classification
performance, we have used two popular classification al-
gorithms: GBM, SVM, and the GBM have shown better
performance and higher accuracy in every cognitive level.

Limitations. Although the model used in this research
predicted cognitive impairment level with high accuracy,
there are some limitations when interpreting the results.+is
research did not assess a clinically cognitive impaired
population because the sample only comprised older adults.
+e assessment used to evaluate cognitive impairment was a
self-report scale called the SMMSE rather than a clinical
evaluation. Typing errors, taking a long time to complete
sentences, or being unable to remember words might be
critical factors for cognitive impairment. Some physical
issues can be related to what this research tried to find out.
But noncognitive impaired people might have those same
problems for several reasons. Besides, some participants may

not have followed our instructions carefully, which would
make some data errors. Like answering misconceptions,
participants may not always wear smartwatches, etc.

6. Conclusions

Machine Learning (ML) innovation holds noteworthy
guarantees for changing how we determine and treat pa-
tients with neurocognitive disorders. +ere exists an enor-
mous assortment of potential highlights that in a mix can
exhaustively describe the biopsychosocial determinants of
an exceptional individual and consequently empower amore
customized comprehension of intellectual decay. ML cal-
culation presentation and potential clinical utility for dis-
tinguishing, diagnosing, and predicting psychological
decline utilizing these highlights will keep on improving as
we influence multifeature datasets on massive datasets.
Setting up rules for research, including AI applications in
medical services, will be essential to guarantee the nature of
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results and clinicians’ commitment, besides allowing pa-
tients and their caregivers to contribute their ability to refine
AI calculations. +is study demonstrated the capability to
passively detect cognitive impairment symptoms by moni-
toring daily physical activities and keystroke patterns. Given
that the detection of cognitive impairment level is not de-
pendent on traditional self-report psychometric instru-
ments, such a method may improve the identification of
cognitive impairment. Early detection of these progressions
can allow for interventions that can lessen, delay, or thwart
related functional impairments. +erefore, more effective
techniques that support the early detection of cognitive
changes, mostly solutions that continuously leverage normal
daily activities, could significantly impact older adults’
health and independence. Given the connection between
cognitive processes expected to utilize innovation and those
affected by cognitive impairment and stress, this examina-
tion will investigate keystroke and physical attributes of
unexpectedly composed content as a potential methodology
for checking cognitive changes. +is methodology has a few
points of interest over conventional techniques for observing
cognitive function. +erefore, the proposed model in this
study can examine the totality of the data not just at specific
stages. It is subtle and assembles standard information for
examination and finding just as constant information for
everyday monitoring.

Data Availability

+e datasets in this study are collected from users as a part of
this study. +us, these can be shared upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is research was supported by the Ministry of Trade, In-
dustry & Energy of the Republic of Korea, as IoT Home
Appliance Big-Data Utilization Support Project
(A0080517000103) and conducted under a research grant
from Kwangwoon University in 2021.

References

[1] M. Folstein, J. C. Anthony, I. Parhad, B. Duffy, and
E. M. Gruenberg, “+e meaning of cognitive impairment in
the elderly,” Journal of the American Geriatrics Society, vol. 33,
no. 4, pp. 228–235, 1985.

[2] P. Werner and A. D. Korczyn, “Mild cognitive impairment:
conceptual, assessment, ethical, and social issues,” Clinical
Interventions in Aging, vol. Volume 3, pp. 413–420, 2008.

[3] S. Bennett and A. J. +omas, “Depression and dementia:
cause, consequence or coincidence?”Maturitas, vol. 79, no. 2,
pp. 184–190, 2014.

[4] X.-Y. Yuan and X.-G. Wang, “Mild cognitive impairment in
type 2 diabetes mellitus and related risk factors: a review,”
Reviews in the Neurosciences, vol. 28, no. 7, pp. 715–723, 2017.

[5] C.-W. Pan, X. Wang, Q. Ma, H.-P. Sun, Y. Xu, and P. Wang,
“Cognitive dysfunction and health-related quality of life
among older Chinese,” Scientific Reports, vol. 5, no. 1,
p. 17301, 2015.

[6] D. Song, P.W. C. Li, and D. S. F. Yu, “+e association between
depression and mild cognitive impairment: a cross-sectional
study,” International Journal of Geriatric Psychiatry, vol. 33,
no. 4, pp. 672–674, 2018.

[7] S. T. Farias, D.Mungas, B. R. Reed, D. Harvey, and C. DeCarli,
“Progression of mild cognitive impairment to dementia in
clinic- vs community-based cohorts,” Archives of Neurology,
vol. 66, no. 9, pp. 1151–1157, 2009.

[8] R. C. Petersen, “Mild cognitive impairment,” New England
Journal of Medicine, vol. 364, no. 23, pp. 2227–2234, 2011.

[9] Gbd 2015 DALYs and Hale Collaborators, “Global, regional,
and national disability-adjusted life-years (DALYs) for 315
diseases and injuries and healthy life expectancy (hale),”
Lancet, vol. 388, pp. 1603–1658, 2016.

[10] T. G. N. Ton, T. DeLeire, S. G. May et al., “+e financial
burden and health care utilization patterns associated with
amnestic mild cognitive impairment,” Alzheimer’s and De-
mentia, vol. 13, no. 3, pp. 217–224, 2017.

[11] M. Prince, A. Wimo, M. Guerchet, G. Ali, Y. Wu, and
M. Prina, <e Global Impact of Dementia, an Analysis of
Prevalence, Incidence, Cost, and Trends, World Alzheimer
Report, King’s College, London, UK, 2015.

[12] Alzheimer’s Association, Facts, and Figure, http://www.alz.
org/alzheimers_disease_facts_and_figures.asp, 2021.

[13] T. D. Marcotte, J. C. Scott, R. Kamat, and R. K. Heaton,
“Neuropsychology and the prediction of everyday function-
ing,” in Neuropsychology of Everyday Functioning,
T. D. Marcotte and I. Grant, Eds., pp. 5–38, +e Guilford
Press, New York, 2010, https://psycnet.apa.org/record/2010-
01073-001.

[14] E. Aretouli and J. Brandt, “Everyday functioning in mild
cognitive impairment and its relationship with executive
cognition,” International Journal of Geriatric Psychiatry,
vol. 25, no. 3, pp. 224–233, 2010.

[15] G. B. Frisoni, M. Boccardi, F. Barkhof et al., “Strategic
roadmap for an early diagnosis of Alzheimer’s disease based
on biomarkers,” <e Lancet Neurology, vol. 16, no. 8,
pp. 661–676, 2017.

[16] B. Winblad, P. Amouyel, S. Andrieu et al., “Defeating Alz-
heimer’s disease and other dementias: a priority for European
science and society,” <e Lancet Neurology, vol. 15, no. 5,
pp. 455–532, 2016.

[17] C. Ieracitano, N. Mammone, A. Hussain, and F. C. Morabito,
“A novel multi-modal machine learning based approach for
automatic classification of EEG recordings in dementia,”
Neural Networks, vol. 123, pp. 176–190, 2020.

[18] S. Leandrou, S. Petroudi, P. A. Kyriacou, C. C. Reyes-Alda-
soro, and C. S. Pattichis, “Quantitative MRI brain studies in
mild cognitive impairment and alzheimer’s disease: a meth-
odological review,” IEEE Reviews in Biomedical Engineering,
vol. 11, pp. 97–111, 2018.

[19] S. Rathore, M. Habes, M. A. Iftikhar, A. Shacklett, and
C. Davatzikos, “A review on neuroimaging-based classifica-
tion studies and associated feature extraction methods for
Alzheimer’s disease and its prodromal stages,” NeuroImage,
vol. 155, pp. 530–548, 2017.

[20] M. R. Arbabshirani, S. Plis, J. Sui, and V. D. Calhoun, “Single
subject prediction of brain disorders in neuroimaging:
promises and pitfalls,” NeuroImage, vol. 145, pp. 137–165,
2017.

14 Journal of Healthcare Engineering

http://www.alz.org/alzheimers_disease_facts_and_figures.asp
http://www.alz.org/alzheimers_disease_facts_and_figures.asp
https://psycnet.apa.org/record/2010-01073-001
https://psycnet.apa.org/record/2010-01073-001


[21] A. Sarica, A. Cerasa, and A. Quattrone, “Random forest al-
gorithm for the classification of neuroimaging data in alz-
heimer’s disease: a systematic review,” Frontiers in Aging
Neuroscience, vol. 9, p. 329, 2017.

[22] T. Panch, P. Szolovits, and R. Atun, “Artificial intelligence,
machine learning and health systems,” Journal of global
health, vol. 8, no. 2, Article ID 020303, 2018.

[23] K.-H. Yu, A. L. Beam, and I. S. Kohane, “Artificial intelligence
in healthcare,” Nature Biomedical Engineering, vol. 2, no. 10,
pp. 719–731, 2018.

[24] M. J. Kang, S. Y. Kim, D. L. Na et al., “Prediction of cognitive
impairment via deep learning trained with multi-center
neuropsychological test data,” BMC Medical Informatics and
Decision Making, vol. 19, no. 1, p. 231, 2019.

[25] D. Aschwanden, S. Aichele, P. Ghisletta et al., “Predicting
cognitive impairment and dementia: a machine learning
approach,” Journal of Alzheimer’s Disease, vol. 75, no. 3,
pp. 717–728, 2020.

[26] S. A. Graham, E. E. Lee, D. V. Jeste et al., “Artificial intelli-
gence approaches to predicting and detecting cognitive de-
cline in older adults: a conceptual review,” Psychiatry
Research, vol. 284, p. 112732, 2020.

[27] L. M. Vizer, “Detecting cognitive and physical stress through
typing behavior,” in CHI’09 Extended Abstracts on Human
Factors in Computing Systems, pp. 3113–3116, ACM, Balti-
more, MD, USA, 2009.

[28] L. M. Vizer and A. Sears, “Detecting cognitive impairment
using keystroke and linguistic features of typed text: toward an
adaptive method for continuous monitoring of cognitive
status,” in Information Quality in E-Health. USAB 2011,
Lecture Notes in Computer Science , A. Holzinger and
KM. Simonic, Eds., vol. 7058, pp. 483–500, Springer, Berlin,
Heidelberg, 2011.
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