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)e aim of this study is to explore the clinical effect of deep learning-basedMRI-assisted arthroscopy in the early treatment of knee
meniscus sports injury. Based on convolutional neural network algorithm, Adam algorithmwas introduced to optimize it, and the
magnetic resonance imaging (MRI) image super-resolution reconstruction model (SRCNN) was established. Peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) were compared between SRCNN and other algorithms. Sixty patients with meniscus
injury of knee joint were studied. Arthroscopic surgery was performed according to the patients’ actual type of injury, and knee
scores were evaluated for all patients.)en, postoperative scores andMRI results were analyzed.)e results showed that the PSNR
and SSIM values of the SRCNN algorithm were (42.19± 4.37) dB and 0.9951, respectively, which were significantly higher than
those of other algorithms (P< 0.05). Among patients with meniscus injury, 17 cases (28.33%) were treated with meniscus suture,
39 cases (65.00%) underwent secondary resection, 3 cases (5.00%) underwent partial resection, and 1 case (1.67%) underwent full
resection. After meniscus suture, secondary resection, partial resection, and total resection, the knee function scores of patients
after treatment were (83.17± 8.63), (80.06± 7.96), (84.34± 7.74), and (85.52± 5.97), respectively. )ere was no great difference in
knee function scores after different methods of treatment (P> 0.05), and there were considerable differences compared with those
before treatment (P< 0.01). Compared with the results of arthroscopy, there was no significant difference in the grading of
meniscus injury by MRI (P> 0.05). To sum up, the SRCNN algorithm based on the deep convolutional network algorithm
improved theMRI image quality and the diagnosis of knee meniscus injuries. Arthroscopic knee surgery had good results and had
great clinical application and promotion value.

1. Introduction

)e knee joint is the largest, most complex, and weight-
bearing main joint in the human body. Patients with tibial
plateau fractures are often accompanied by meniscal in-
juries, and the incidence is about 50% [1]. Meniscus injuries
are difficult to repair themselves, which is a difficult and
urgent problem in orthopedic treatment. Meniscus injuries
are often diagnosed by arthroscopy, knee ultrasound, CT,
and magnetic resonance imaging (MRI). Arthroscopy is the
gold standard for meniscus diagnosis, but it is invasive and
increases the probability of infection in patients [2]. )e
diagnostic accuracy of B-ultrasound for knee joint meniscus
injury is not high [3]. CT cannot correctly grade the

diagnosis. MRI has the characteristics of noninvasiveness,
nonradiation, high soft tissue resolution, and high speci-
ficity. Moreover, MRI has high sensitivity and specificity to
the injured area, so MRI has become an important method
for knee joint injury following arthroscopy [4]. However,
affected by the resolution of MRI images, the false positives
and false negatives of meniscus injury diagnosis are rela-
tively high.

MRI images are susceptible to noise pollution, resulting
in distortion of MR images [5]. At present, MRI images are
often processed by filtering-based denoising methods, but
the image information is lost seriously in the denoising
process, and additional noise may be introduced [6].
Convolutional neural networks have achieved very good
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results in natural image processing. At present, some
scholars have applied them in the field of medical images.
High-resolution MRI images can be obtained after being
processed by super-resolution reconstruction algorithm [7].
Kobayashi et al. [8] pointed out that the image resolution
processed by the three-layer convolutional neural network
(CNN) (super-resolution CNN, SRCNN) was significantly
improved. However, there are still obvious misdiagnosis and
missed diagnosis in the diagnosis of clinical diseases, which
need to be further improved.

In summary, the resolution of MRI images requires to be
further improved. SRCNN based on deep CNN algorithm
should be further optimized to increase its image quality.
)erefore, SRCNN was optimized based on the deep CNN
algorithm in this research. Patients with knee meniscus
injury were taken as the research object to explore the di-
agnostic value of MRI images of deep CNN algorithm for
meniscus injury. Moreover, the clinical effect of arthroscopic
surgery based on MRI images in knee meniscus injuries was
evaluated to provide guidance for the treatment of knee
meniscus injuries.

2. Materials and Methods

2.1. Research Objects and Grouping. Sixty patients with knee
meniscus injury who were admitted to the Orthopedics De-
partment of our hospital from August 2019 to December 2020
were selected as the research objects. )e age range was 18–70
years old, and the average age was (48.54± 5.46) years old.
Among them, 41 were males and 19 were females. )e me-
niscus injury time was seven days to five years, and the average
injury time was (2.24± 1.04) years. )ere were 37 cases on the
left and 23 cases on the right knee. All patients had no history of
knee surgery and received knee MRI and knee arthroscopy
during examination and treatment. Inclusion criteria were as
follows: (i) age> 18 years; (ii) MRI examination showing
meniscus injury, which was confirmed by knee arthroscopy;
(iii) those who were hospitalized in time and can receive
surgery; and (vi) those with no contraindications to surgery.
Exclusion criteria were as follows: (i) patients with other
fractures or severe system diseases; (ii) patients with meniscus
congenital diseases or developmental abnormalities; (iii) pa-
tients combined with knee joint infection, tuberculosis, and so
on; and (iv) meniscus injury caused by severe bone and joint
disease.)e experimental procedure had been approved by the
hospital ethics committee, and all subjects included in the study
had signed the informed consent form.

2.2. MRI Image Super-Resolution Algorithm Based on Deep
CNN Algorithm. )e convolutional layer of the deep CNN
(DCNN) is mainly responsible for extracting features from
the input data [9], and the extracted feature map Xl output
by the first layer is expressed as follows:

Xl � Xl−1 ⊙Al + bl, (1)

where Xl−1 is the output of the l-th layer, ⊙ is the con-
volution operation, Al is the convolution layer parameter,
and bl is the bias. )e activation function in DCNN can

improve the expressive power of the entire network by
introducing nonlinear operations [10]. )e ReLU function
can avoid the disappearance of the gradient when the input
is saturated [11]. )e ReLU function is expressed as follows:

g(x) �
x, (x≥ 0),

0, (x< 0).
 (2)

)e training goal of DCNN is minimizing the loss
function of the network [12]. )e commonly used loss
functions include mean square error loss function, cross-
entropy loss function, and log-likelihood loss function. )e
mean square error loss function is expressed as follows:

B �


m
i�1 yi − yi( 

2

m
. (3)

)e cross-entropy loss function is expressed as follows:

B �
1
m



m

i�1
yilog h0 xi(   + 1 − yi( log 1 − h0 xi(  . (4)

)e log-likelihood loss function is expressed as follows:

B � − 
m

i�1
yi ln h0 xi( , (5)

where m is the number of input samples, yi is the corre-
sponding model output of xi, yi is the corresponding target
output, and h0(xi) is the corresponding model probability
output of xi.

)e DCNN-based super-resolution reconstruction al-
gorithm (SRCNN) mainly includes image feature extraction,
nonlinear mapping, and image reconstruction when pro-
cessing low-resolution images. After the low-resolution
images go through image data preprocessing, DCNN feature
extraction, and nonlinear mapping and image reconstruc-
tion modules in the SRCNN module, a high-resolution MRI
image is obtained. SRCNN processing flow for low-reso-
lution images is shown in Figure 1.

Before low-resolution MRI image processing, it is nec-
essary to perform preprocessing such as normalization, low-
resolution image generation, image feature extraction, and
data enhancement. )e data types of MRI images are mostly
32-bit floating-point numbers. )e calculation method for
normalizing MRI images is as follows:

Ci
′ �

Ci

max Ci( 
, (6)

where Ci is the matrix of the original i-th MRI image and C′
is the normalized MRI image of the i-th image.

)e neural network training process is divided into
forward propagation process and backpropagation process.
)e forward propagation process uses the network input and
existing parameters to calculate the network output. )e
backpropagation process first calculates the loss based on the
network output and then transmits the loss back to each
node in the network, thereby updating the weight value of
each node [13]. For the simplest gradient descent algorithm,
the weight update process is expressed as follows:
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ωi+1 � ωi − αdω,

ei+1 � ei − αde,
 (7)

where ωi is the current weight, dω is the gradient of the loss
function to ω, ωi+1 is the updated weight, ei is the current
bias term weight, de is the gradient of the loss function to e,
ei+1 is the updated bias term weight, and α is learning rate.

)emomentum gradient descent algorithm is a common
algorithm for parameter update in the network, and its
update parameters are expressed as follows:

Ddω � βDdω +(1 − β)dω,

Dde � βDde +(1 − β)de,

ωi+1 � ωi − αDdω,

ei+1 � ei − αDde,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where dω and de represent the current gradients, Ddω and
Dde represent momentums, and β is a self-set
hyperparameter.

)e RMSProp algorithm has the advantages of fast
convergence speed and small oscillation amplitude [14], and

its parameter update process is expressed as shown in
equation (9), where θ is a very small constant.

Edω � βEdω +(1 − β)(dω)
,2

Ede � βEde +(1 − β)(de)
2
,

ωi+1 � ωi − α
dω

���
Edω


+ θ

,

ei+1 � ei − α
de

���
Ede


+ θ

.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Adaptive moment estimation (Adam) optimization al-
gorithm combines the momentum gradient descent algo-
rithm and the RMSProp algorithm, which can reduce the
oscillation amplitude and accelerate the convergence speed
of the network [15]. )e Adam optimization algorithm was
used to update the parameters. )e parameter update
process during the initial training of the Adam optimization
algorithm is expressed as follows:
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Figure 1: SRCNN processing flow for low-resolution image.
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Ddω � β1Ddω + 1 − β1( dω,
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At the t-th iteration, the cumulative amount of the
modified gradient is expressed as follows:
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(11)

)e parameters are updated according to the momen-
tum and RMSProp algorithm, which are expressed as
follows:
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In equations (9)-(12), β1 and β2 are 0.9 and 0.999, re-
spectively, θ is 10−8, yi is the corresponding target output,
and h0(xi) is the corresponding model probability output of
xi.

2.3. Analysis of Reconstruction Performance of MRI Image
Super-Resolution Algorithm Based on Deep CNN Algorithm.
To avoid the impact of loss function, SRCNN still uses the
same loss function as DCNN. )e quality of the recon-
structed image is evaluated regarding peak signal-to-noise
ratio (PSNR) and structural similar image metric (SSIM).
PSNR is commonly used to evaluate the differences between
the image to be estimated and the ideal image, and its
calculation equation is as follows:

PSNR(f, g) � 10 log10
L
2

MSE(f, g)
 , (13)

where L is the peak signal, f is the ideal image, g is the image
to be estimated, MSE(f, g) is the mean square error of the
image, MSE(f, g) � 1/MN

M
i�1 

N
j�1(f(i, j) − g(i, j))2, and

M×N is the size of the image to be estimated.
)e structural similarity (SSIM) evaluation result is

similar to the human senses, which is calculated as follows:

SSIM(f, g) � (L(f, g))
α

· (C(f, g))
β
•(S(f, g))

c
, (14)

where μf, μg, σf, and σg are the mean values and standard
deviations of the ideal image f and the image g to be
evaluated, respectively, σfg is the covariance of f and g,
c1 � (k1 R)2, c2 � (k2R)2, R is the range of image pixel
values, k1 and k2 are 0.01 and 0.03, respectively, c3 � c2/2,
α � β � c � 1, and L(f, g), C(f, g), and S(f, g) represent
image brightness, structure, and contrast, respectively.

2.4. Knee MRI Examination and Diagnostic Criteria. 1.5 T
superconducting MRI (Siemens, Germany) was used to
examine the patient that was in the supine position, the knee
joint was naturally externally rotated 25° during the ex-
amination, and the knee joint was fixed during the scan. )e
scanning layer thickness was 3mm, the layer spacing was
0.2∼0.4mm, the matrix was 256×256, and the joint space
was used as the scanning center. All patients underwent
coronal and sagittal scans. )e repetition time (TR) of T2WI
was 800–1000ms, and the echo time (TE) was 26ms. )e
spin echo sequence T1WI had TR of 450–500ms and TE of
14ms. MRI diagnostic criteria were as follows: all patients’
MRI scan images were individually read by three radiologists
with senior titles, who provided reports to evaluate the
lateral meniscus injury and its damage morphology.

2.5. Surgical Methods and Observation Indicators.
Schatzker classification standard in the study of Kumar et al.
[16] was referred, and the types of platform fractures of MRI
images of all patients in the study were classified into six
types. Different types of platform fractures received different
surgical treatments.

)e grading standard of meniscus injury was as follows.
Grade 1: there is a patchy signal, showing mild degeneration.
Grade 2: there is a linear signal, showing serious degener-
ation. Grade 3: there is a linear signal, showing a meniscus
tear [17]. All patients were scored according to Lysholm knee
joint function score before and after surgery, and the
changes of knee joint function scores before and after
treatment were compared to analyze the effect of surgical
treatment.

2.6. Statistical Methods. )e test data were processed using
SPSS 19.0. )e results of intraoperative exploration or ar-
throscopy were used as the standard to analyze the accuracy
of MRI diagnosis. Enumeration data were expressed as a
percentage (%), tested by the χ2 test. P< 0.05 indicated that
the difference was statistically considerable.

3. Results

3.1.<e Influence of LossFunctionandNumberofConvolution
Kernels on Reconstruction Performance. )e comparison of
training curves of the three loss functions is shown in
Figure 2. PSNRs of the three loss functions all increased first
and then became stable with the increase of the number of
iterations. )e PSNR of the mean square error loss function
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was relatively higher under the same number of iterations,
and the convergence was relatively faster during the training.

PSNRs of MRI reconstructed images under different
numbers of convolution kernels are compared in Figure 3.
With the increase of the number of iterations, the PSNR of
the MRI reconstructed image under different convolutions
and numbers showed a state of increasing first and then
being stable in a certain region. As the number of convo-
lution kernels increased, the PSNR of the MRI reconstructed
image increased significantly. )e number of convolution
kernels was increased from 1 to 3, and the PSNR of the MRI
reconstructed image was increased by 0.68 dB. )e number
of convolution kernels was increased from 3 to 5, and the
PSNR of the MRI reconstructed image was increased by
0.16 dB.

3.2. Quality Analysis of Reconstructed MRI Image. PSNR
value of the SRCNN algorithm was compared with the
average PSNR value of DCNN, cubic spline interpolation,
and deeply recursive convolutional network (DRCN) based
on the residual learning algorithm (Figure 4). )e PSNR of
the SRCNN algorithm was (42.19± 4.37) dB, which was
greatly higher than that of other algorithms, and the dif-
ference was remarkable (P< 0.05).

)e average SSIMs of different algorithms were com-
pared (Figure 5). )e average SSIM of DCNN, cubic spline
interpolation, DRCN, and SRCNN algorithms was 0.9447,
0.9316, 0.9764, and 0.9951, respectively. )e SSIM of
SRCNN algorithm was notably higher than that of other
algorithms, and the difference was substantial (P< 0.05).

3.3. MRI Diagnosis Results of Meniscus Injury. )e MRI
results of patients with meniscus injury before and after
treatment were analyzed (Figure 6). )e normal meniscus
MRI image showed uniform low signal and regular shape
(Figure 6(a)). )e MRI signal of meniscus injury patients
showed focal ellipse or round high signal, which did not
touch the articular surface of the meniscus (Figure 6(b)).)e
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horizontal linear hyperintensity shadow extended to the
edge of the joint capsule of the meniscus but did not exceed
the articular surface of the meniscus (Figure 6(c)). In ad-
dition, there was an irregular high signal shadow in the
meniscus (Figure 6(d)).

3.4. MRI Diagnosis Result of Meniscus Injury Degree. )e
results of arthroscopy or intraoperative exploration were
used as the gold standard to evaluate the accuracy of MRI in
the diagnosis of meniscus injury (Figure 7). )ere were 19
cases (31.67%), 34 cases (56.67%), and 7 cases (11.67%) of
meniscus injury diagnosed by arthroscopy as grades I, II, and
III, respectively. )ere were 20 cases (33.33%), 27 cases
(45.99%), and 13 cases (21.67%) of meniscus injuries di-
agnosed by MRI as grades I, II, and III, respectively. )ere
was no obvious difference in the grading of meniscus injury
between results of MRI and arthroscopy (P> 0.05).

3.5. Statistics of Treatment Methods of MRI-Diagnosed Me-
niscus Injury. According to the degree and type of meniscus
injury, different treatment methods were implemented for
the 60 patients included in the study, and the proportion of
patients in different methods was calculated (Figure 8).
Seventeen cases (28.33%) were treated with meniscus suture,
39 cases (65.00%) underwent secondary resection, 3 cases
(5.00%) underwent partial resection, and 1 case (1.67%)
underwent total resection.

3.6. Knee Function Scores of Patients Treated with Different
Methods before and after Treatment. )e knee function
scores of patients with different treatment methods were
compared before and after treatment (Figure 9). )ere
was no statistical difference in the knee function scores of
all patients before treatment (P> 0.05). After meniscus
suture, secondary resection, partial resection, and total
resection were used to treat meniscus injury patients, and
the knee function scores were (83.17 ± 8.63),
(80.06 ± 7.96), (84.34 ± 7.74), and (85.52 ± 5.97), respec-
tively. In addition, there was no great difference in the
knee function scores among patients treated by different
treatment methods after treatment (P> 0.05). )e knee

function scores of each group after treatment were sig-
nificantly different from those before treatment
(P< 0.01).

(a) (b) (c) (d)

Figure 6: MRI image of meniscus. (a) MRI image of normal meniscus. (b) MRI image of grade I injury in the posterior horn of the medial
meniscus (female, 24 years old). (c)MRI image of grade II injury of the posterior horn of themedial meniscus (female, 62 years old). (d)MRI
image of grade III injury of the posterior horn of medial meniscus (male, 36 years old).
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4. Discussion

)e entire training process of SRCNN based on the deep
CNN algorithm was calculating this round of loss according
to the loss function after all levels and processing are passed
through the input previous to the propagation. In this re-
search, appropriate optimization methods such as stochastic
gradient descent was adopted to update the parameters of
each layer in the direction of reducing the loss.)erefore, the
loss function was the instructor of the entire network
learning, which had a great influence on the quality of the
final learning result [18]. )en, the training curves of the
three commonly used loss functions were compared. It was
found that the PSNR of the mean square error loss function
was high, and the convergence was fast during the training.
)e mean square error loss function belongs to the pixel-by-
pixel loss function, which can well converge to the local
minimum [19]. )erefore, the mean square error loss
function was selected as the loss function.)e depth of CNN
has a great impact on network performance, and the depth of
SRCNN is mainly determined by the number of convolution
kernels in the network [20]. PSNRs of MRI reconstructed
images under different numbers of convolution kernels were
compared. It was found that as the number of convolution
kernels increased, the PSNR of the MRI reconstructed image
increased significantly. )e number of convolution kernels
was increased from 1 to 3, and the PSNR of the MRI
reconstructed image was increased by 0.68 dB. )e number
of convolution kernels was increased from 3 to 5, and the
PSNR of the MRI reconstructed image was increased by
0.16 dB.)ese results indicated that the PSNR increased with
the increase in the number of S3D-RDBs, suggesting that the
quality of the MRI images reconstructed by the SRCNN
network was getting better and better. It was because the

more the number of convolution kernels in the SRCNN
network, the deeper the network depth, which can capture
more feature maps of different levels to highlight more
detailed information [21]. As the number of convolution
kernels increased, the increase in PSNR became small. It may
be because as the network deepened, information loss still
occurred when information was transmitted in the network,
which made the backpropagation of the gradient in the
network more difficult [22].

Meniscus injury has a significant correlation with the
stability of the knee joint, postoperative inflammation, and
other complications [23]. Iqbal et al. [24] found that MRI
diagnosis of articular surface collapse was consistent with
the arthroscopic diagnosis. In this research, the results
showed that the different degrees of MRI meniscus injury
were not statistically significant with the results of ar-
throscopy (P> 0.05). It showed that there were still a small
number of false positives and false negatives in MRI di-
agnosis. It may be related to the uneven confounding signal
of connective tissues such as synovium and muscle health,
which led to artifacts of meniscus damage duringMRI scan.
However, there was no considerable difference between
MRI diagnosis results and arthroscopic diagnosis results,
indicating that MRI had a certain potential value in the
diagnosis of meniscus injury. Lu et al. [25] pointed out that
arthroscopy had the characteristics of less surgical trauma
and fast recovery speed and is used in the clinical treatment
of meniscus injuries. Based on the imaging characteristics,
different methods were used to treat patients with different
degrees of meniscus injury. )e results showed that there
was no great difference in knee function scores among
patients treated by different treatment methods after
treatment (P> 0.05). )e knee function scores of each
group after treatment were significantly different from
those before treatment (P< 0.01), which suggested that the
effect of arthroscopic surgery on knee meniscus injury was
significant.

5. Conclusion

Based on the deep CNN algorithm, the Adam optimization
algorithm was introduced to optimize it, which was then
applied to the knee joint meniscus injury diagnosis. )e
clinical effect of arthroscopic surgery in knee meniscus injury
based on MRI images was evaluated. )e results revealed that
SRCNN based on deep CNN algorithm significantly im-
proved the quality of knee MRI images. However, there are
still some shortcomings in this research, which does not
perform a statistical analysis on the parameters and calcu-
lation cost of the algorithm in MRI image processing. In the
future work, we will further analyze it to clarify the value and
significance of SRCNN based on deep CNN algorithm in the
diagnosis of knee meniscus injury. In summary, the SRCNN
algorithm based on the deep convolutional network algorithm
improved the MRI image quality and the diagnosis of knee
meniscus injuries. Moreover, arthroscopic knee surgery had
good results and had great clinical application and promotion
value.
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