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Low-dose computed tomography (CT) has proved effective in lowering radiation risk for the patients, but the resultant noise and
bar artifacts in CT images can be a disturbance for medical diagnosis. *e difficulty of modeling statistical features in the image
domain makes it impossible for the existing methods that directly process reconstructed images to maintain the detailed texture
structure of images while reducing noise, which accounts for the failure in CT diagnostic images in practical application. To
overcome this defect, this paper proposes a CT image-denoising method based on an improved residual encoder-decoder
network. Firstly, in our approach, the notion of recursion is integrated into the original residual encoder-decoder network to lower
the algorithm complexity and boost efficiency in image denoising. *e original CT images and the postrecursion result graph
output after recursion are used as the input for the next recursion simultaneously, and the shallow encoder-decoder network is
recycled. Secondly, the root-mean-square error loss function and perceptual loss function are introduced to ensure the texture of
denoised CT images. On this basis, the tissue processing technology based on clustering segmentation is optimized considering
that the images after improved RED-CNN training will still have certain artifacts. Finally, the experimental results of the TCGA-
COAD clinical data set show that under the same experimental conditions, our method outperforms WGAN in average
postdenoising PSNR and SSIM of CT images. Moreover, with a lower algorithm complexity and shorter execution time, our
method is a significant improvement on RED-CNN and is applicable for actual scenarios.

1. Introduction

*e high radiation technology dose to the human body
continues to develop in the computed tomography (CT)
scanning process, and CT images have seen ever-wider
application in medical diagnosis [1, 2]. By cutting X-ray tube
current, low-dose scanning requires less radiation dose and
therefore lowers the signal-to-noise ratio in projection data.
Noise and artifacts are blended into CT images recon-
structed by the filtered back projection (FBP) algorithm,
which affects the accuracy of subsequent clinical diagnosis.
*erefore, studying how to reconstruct the reconstructed CT
image from original noisy projection data is of great sig-
nificance and practical value [3].

At this stage, the methods of improving the quality of
low-dose CT (LDCT) images can be divided into projection
domain denoising algorithm [4], image reconstruction

algorithm [5], and image domain denoising algorithm [6].
*ese image-denoising methods, however, prove ineffective
in improving CT image quality. Furthermore, it is difficult to
describe these methods with a precise model since they have
a large number of iterations and take a long time, and the
distribution of image noise after processing becomes
complicated. And there may be artifacts in images. *us, the
traditional image-denoising methods can hardly attain the
desired effects. *us, it is difficult to achieve the desired
effects with traditional image denoising methods. *e tra-
ditional methods can suppress noise and artifacts, but they
are prone to the loss of edge and detailed information.
*erefore, the resultant denoised CT images cannot meet the
actual clinical diagnosis application [7].

*e rapid development of deep neural networks offers
new insights into how to address the problem in LDCT
image denoising [8, 9]. Because of the powerful feature
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learning and mapping capabilities of deep neural networks,
deep neural networks show better reconstruction quality and
faster speed than traditional methods. To date, the deep
neural network has achieved good results in LDCT image
denoising. However, since these networks use mean square
error (MSE) as loss function, minimizingMSE usually incurs
detail and loss and excessive edge smoothness. At the same
time, the image texture that is important to the human eye
perception is ignored [10].

We, therefore, propose RED-CNN, a CT image-
denoising algorithm based on residual encoder-decoder
(RED) convolutional neural network, namely, RED-CNN.
Using sampling operations to learn end-to-end nonlinear
mapping in a multiscale space, our method is able to re-
construct the denoised images directly. At the same time,
convolution and deconvolution operations are used to better
extract features and restore the details of CT images. *e
main innovations of the paper are as follows:

(1) *e proposed CT image-denoising method based on
an improved RED network uses the same shallow
RED network to recursively construct a new net-
work, thereby reducing network complexity.

(2) In order to improve the visual artifacts of CT images
after denoising, a new joint loss is proposed by
combining the advantages of MSE loss function and
perceptual loss function, which can better recon-
struct the details and texture of images.

(3) Residual learning is combined with traditional op-
timization processing techniques. Introducing dis-
tance images into water images can help reduce data
inconsistency and better improve the denoising ef-
fect of CT images.

2. Related Work

As a noninvasive imaging technique, computed tomography
is widely used in industry, medicine, and many other fields.
Of all the image reconstructionmethods applied in X-ray CT
imaging, FEP is the most widely used one. Generally, a good
image can be reconstructed when the projection data is
complete [11, 12].

*e projection domain filtering algorithm filters the
original data in the projection domain and then uses FBP to
reconstruct CT images. Typical methods include bilateral
filtering method [13], adaptive convolution filtering method
[14], penalty weighted least square (PWLS) method [15], and
so on.

Both the projection domain denoising algorithm and
image reconstruction algorithm need to use projection
data. In practical applications, however, projection data is
usually used as an intermediate result of a CTscanner and is
not accessible to ordinary users. As a method not reliant on
projection data, the image domain denoising algorithm is
able to denoise reconstructed CT images directly. It,
therefore, has become a research hotspot in the field of
LDCT image denoising [16–18]. In accordance with the
theory that image data can be decomposed into informa-
tion and time uncorrelated noise, reference [19] proposed a

CT image-denoising method based on wavelet transfor-
mation. It could use the average and weighted wavelet
coefficients of input images to reconstruct final denoising
images. Reference [20] combined 3D filter with blind
source separation (BSS) to extract noise statistics from
noise components. A denoising method for CT images
based on BSS for multiframe low-dose image sequences was
proposed. Reference [21] proposed an improved SNCSR
model and used the improved total variation (ITV) model
to preprocess images. Aiming at the fringe artifacts in CT
images, reference [22] proposed an image denoising al-
gorithm based on discriminative weighted nuclear norm
minimization (D-WNNM). *e local entropy of images
was used to distinguish fringe artifacts and organizational
structure, and the weight coefficient of the weighted nu-
clear norm minimization (WNNM) denoising method was
adaptively adjusted.

For its ability to extract features and map, deep learning
is now widely used in image processing, and this method has
greater advantages over traditional ones in removing
complex noise from LDCT images. Reference [23] proposed
a CT image denoising method based on generative adver-
sarial network (GAN). By integrating visual perception into
image denoising, this method reduces image noise while
retaining relevant key information. Reference [24] incor-
porated structural similarity index into the GAN model and
introduced a least square loss function penalty term to
constrain CT images and further maintaining the texture
detail and sharpness of CT images.

Although the projection domain denoising algorithm
can make full use of statistical law for noise distribution in
the projection domain, data inconsistencies may occur in the
process of noise reduction in the projection domain. It is
easy to introduce new noise or artifacts into reconstructed
images, and the traditional single image denoising method
cannot achieve desired effects [25]. Although the CT image
denoising method based on deep learning can greatly
remove the stripe artifacts and reduce the noise of CT
images, the peak signal-to-noise ratio has been improved.
However, the upsampling and downsampling links in net-
work structure andmethods based onMSE or weightedMSE
are prone to cause loss of image details in the process of
image denoising. In addition, the complex network structure
model showed greater instability during the training process,
and the network is difficult to converge [26, 27]. *e RED-
CNN is simple in structure, and continuously deepening the
network structure can achieve effective denoising of CT
images in complex and multinoise scenarios. For example,
reference [28] proposed an image denoising method based
on RED-CNN.*e best denoising effect has been achieved in
the objective evaluation index.

Based on easy expansion and strong adaptability of the
RED-CNN deep neural network, this paper also proposes a
new CT image denoising method combined with the re-
cursive notion of network structure model. *is method can
better extract and recognize the feature information of
images and use the same network structure to recursively
construct a new network. By reducing the number of layers
and convolution kernels in the RED network, the network
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complexity is lowered to achieve rapid denoising of CT
images. On this basis, the principle of k-means clustering
segmentation is integrated. CT images are optimized based
on the threshold, which improves the details and texture of
denoised images.

*e remainder of this paper is arranged as follows.
Section 3 introduces CT image denoisingmodel based on the
improved RED network and its corresponding network
structure model in detail. Section 4 presents the experi-
mental analysis of CT images in the TCGA-COAD clinical
data set to verify the effectiveness of the proposed method.
*is paper is summarized in Section 5.

3. RED Network-Based CT Image Denoising

*is section introduces the denoising model, network
structure of RED-CNN, overall structure of recursive
network, and the image optimization process after the
RED-CNN model. Besides, root MSE and perceptual loss
function are used as the loss functions of the overall
network, which can partially address the problem of detail
loss and preserve the image texture as well. Finally, the
image optimization process after the RED-CNN model is
introduced.

3.1. Noise Reduction Model. Assuming x ∈RN×N is normal-
dose CT (NDCT) image, and x ∈RN×N is LDCT image. *e
purpose of CT image denoising is to map z to x by finding a
suitable function G, which can be expressed as follows:

G: z⟶ x, (1)

where x ∈RN×N is the sample of CT image distribution Pr

under normal dose and x ∈RN×N is the sample of LDCT
image distribution PL. *e function G maps LDCT image
distribution PL to a specific image distribution Pg and make
the generated distribution Pg as close as possible to the real
sample distribution Pr.

3.2. Network Structure. Figure 1 shows the overall structure
of constructed image denoising network based on a shallow
RED network. *e RED network consists of 8 layers, with 4
of them being convolutional layers and the remainders
deconvolutional layers arranged symmetrically. Each of the
first 7 hidden layers has 64 convolution kernels, and the last
layer is 1 convolution kernel.

In the overall network structure, the shallow encoder-
decoder network in Figure 2 is recycled to generate the final
denoising image. *e specific notion is as follows: in each
recursion, the original CT image and the result image output
after the s recursion are simultaneously used as the input for
the next recursion. It can avoid the loss of original image
features in the recursive process, better extract the features of
original input images, and retain the detailed information of
images.

*e recursive process of the network can be expressed as
follows:

C

RED-Net s=1

C

RED-Net s=2

C

RED-Net

s=S

Figure 1: Overall architecture of RED-Net with S stage recursion.
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Figure 2: *e architecture of shallow RED-Net.
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I1 � X,

Os � FRED− Net Is( 􏼁, 1≤ s< S,

Is+1 � fin Os, X( 􏼁, 1≤ s< S,

(2)

where S represents the number of recursions, X represents
the network input, RED-Net is the shallow RED network, Os
is the denoising CT image obtained from the s recursion, fin
represents the cascade operation between output Os of the s
recursion and original LDCT image, and X. Is+ 1 is the input
of the s+ 1 recursion.

3.3. Loss Function. In conventional learning-based image
reconstruction methods, root MSE is usually used as the
objective function. *e pixel-by-pixel comparison method
can achieve a high signal-to-noise ratio, but the partial loss of
detailed information tends to blur the image denoising
results. Perceptual loss based on feature comparison is more
in line with real visual perception and can help restore
clearer images. However, pixel space, when covered evenly,
can sometimes generate subtle visual artifacts.

A new joint loss is proposed so as to better reconstruct
the details and image texture, a combination of both
advantages.

LJoint � LMSE + LPer, (3)

where LMSE and LPer represent the loss function of pixel-by-
pixel comparison and semantic feature comparison,
respectively.

(1) MSE loss function. *e pixel-by-pixel loss function
uses the traditional MSE method to calculate root
MSE between denoised CT images and real images
through pixel-by-pixel comparing and matching.
MSE loss function can be expressed as follows:

LMSE �
1

W · H
F xdetail( 􏼁 − (x − y)

����
����
2
, (4)

where x is the noise image, y is the real CT image,
and W and H are the width and height of input
image to x, y􏼈 􏼉, respectively.

(2) Perceptual loss function. *e traditional MSE loss
pixel-by-pixel comparison method often causes the
loss of high-frequency information. A perceptual loss
function is introduced to improve the denoising
effect of the existing blur, realize edge enhancement,
and enhance its texture details. By comparing the
differences between image features, the perceptual
loss can reconstruct more details and obtain better
denoising effects. Experiments prove that the neural
network used for image classification and segmen-
tation can learn well the semantic features such as
texture edges of images. *e pretrained convolu-
tional networks, therefore, can be connected in series
to extract the required feature maps.

SegNet model comprising a set of convolutional coding
layers and mirrored deconvolutional decoding layers can

achieve better effect in semantic segmentation and thus is
selected for the loss network. *e encoding part uses the
visual geometry group (VGG) model with strong general-
ization ability, and the decoding part uses a symmetrical
structure to recover the information lost in pooling. Besides,
the pretrained Caffe model is used to ensure the ability of the
loss network to extract features.

After determining the loss network, perceptual loss
needs to be defined at the semantic feature level. *e specific
steps are as follows: input the fuzzy denoising result x −

F(xdetail) and real image y initially generated by the front-
end network into SegNet. *e feature maps of these two are
extracted from the fixed convolutional layer, and then the
Euclidean distance represented by these two features is
calculated, as shown in the following equation:

LPer �
1

WiHi

φi x − F xdetail( 􏼁( 􏼁 − φi(y)
����

����
2
, (5)

where Wi and Hi represent the width and height of the
selected feature map, respectively, and φi is the feature map
extractor.

*e joint perceptual loss consists of two parts, namely
MSE and perceptual loss. *e structural model is shown in
Figure 3. *e method is implemented as follows: first, noisy
CT image and real CT image y are input into the denoising
network. *e difference between these two is compared and
learned pixel by pixel through theMSE loss function, and the
initial denoising result x − F(xdetail) that matches pixel y is
obtained. At this time, the CT image after initial denoising is
blurry. On this basis, y and x − F(xdetail) are input into the
loss network SegNet, respectively.*en the two feature maps
φ(x − F(xdetail)) and φ(y) are extracted from one of the
convolutional layers to define the perceptual loss function.
*e network continues to train by minimizing perceptual
loss to learn the difference in semantic features of these two
images, reconstruct the edge and detail information, and
make the two images more similar in feature perception.
Finally, a clearer CT image denoising result is generated.

3.4. Optimization Process. *e signal-to-noise ratio of CT
images after training on the RED-CNN is significantly
improved. To further eliminate the residual artifact noise of
CT images, improve its detailed texture, and achieve a better
correction effect, CT noise images generated by the RED
network are processed by tissue processing technology based
on clustering segmentation.

*e residual artifact noise is weak. In the process of
neural network training, this part of artifact noise is not
obvious enough, so it is difficult for the network to accurately
identify and remove it. To clear all the residual noise in CT
images, there is a need to process the water equivalent tissue.
Given that water equivalent tissues are similar in X-ray
attenuation and dominate images, a uniform value must be
assigned to these pixels so as to clear the residual metal
artifacts in flat areas.

Firstly, the k-means clustering segmentation principle is
followed, and CT images are automatically segmented into
three parts: bone, water (including water equivalent tissue),
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and air based on two thresholds. To avoid clustering errors,
the bone-water threshold is set to be no less than 320HU. On
this basis, the image after cluster segmentation is trans-
formed into a binary image. Among them, the water pixel is
1, and the remaining pixels are 0. However, when the water
pixel area is a constant value, a false boundary or structure
will appear as a result of discontinuity in boundary data.
*erefore, based on the calculation of the distance between
two pixels, a transition area of L� 5 pixels is set in the water
pixel area. If the distance between the pixel and its nearest 0
pixel is greater than L, the pixel value is set to L; otherwise, it
is set to distanceD between the two.*e weighted average of
water pixels for optimized images of the image trained by the
neural network is shown in the following equation:

y
− Net,w

�
􏽐iDiy

Net
i

􏽐iDi

. (6)

Furthermore, the prior image is obtained as shown in the
following equation:

yi
prior

�
Di

L
y
− Net,w

+ 1 −
Di

L
􏼒 􏼓y

Net
i . (7)

In the algorithm, RED-CNN training and optimization are
two mutually beneficial steps. CT images trained by the RED-
CNN can eliminate most artifact noise. On this basis, the
residual fine artifact noise is further eliminated, and misclas-
sification is avoided combined with optimized processing
technology. In this paper, the transition area of water equiv-
alent organization is added to the optimization processing link
to eliminate the data discontinuity caused by the same
threshold allocation. When a clear and accurate edge structure
is restored, the residual artifact noise in the area is cleared, and
the generated images attain a higher signal-to-noise ratio.

4. Experiment and Analysis

*e hardware environment of the experimental platform is
as follows: the operating system is Windows 10, central
processing unit (CPU) is Intel Core i7-1065G7, and the
graphics card model is Radeon Graphics 8 core. TensorFlow
deep learning framework is used to perform denoising tests
on CT images from the TCGA-COAD clinical data set. *e
experiment selects 200 different CT images with a size of
512× 512 pixels as training data. LDCT images in the ex-
periment can be simulated by adding noise to the NDCT
image projection domain.

4.1. Experimental Parameters and Evaluation Indicators.
*e experimental parameters of the CT image denoising
algorithm based on the RED network are set as follows: the
size of the image block is 48 ∗ 48, the learning rate
α� 10− 5, and the number of cycles S � 5. *e number of
layers in the encoder-decoder network is 8; the number of
convolution kernels in the last layer is 1; the number of
other layers is 64; and the convolution kernels in all layers
have a size of 3 ∗ 3. *e step size of convolution and
deconvolution is set to 1 without zero padding. *e
convolution and deconvolution kernels are initialized
with a random Gaussian distribution with a mean value of
0 and a standard deviation of 0.01. *e network saves
parameter information every 1,000 training, and termi-
nates training after 50,000 iterations.

In order to better evaluate the denoising effect of the
algorithm on noisy CT images, quantitative evaluation in-
dexes of peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) are introduced [29, 30].*e two evaluation
indicators are defined as follows:

(1) PSNR:

PSNR � 20 log10
255

���������������������������
1/mn􏽐

m− 1
i�0 􏽐

n− 1
j�1[I(i, j) − K(i, j)]

2
􏽱 ,

(8)

where I is the real CT image ofm× n and K is the CT
image after noise removal.

(2) SSIM:

SSIM �
2μxμx′ + c1( 􏼁 2σxx′ + c2( 􏼁

μ2x + μ2x′ + c1􏼐 􏼑 σ2x + σ2x′ + c2􏼐 􏼑
, (9)

where μx and μx′ are the mean values of images x and
x′, respectively, and σx and σx′ are the standard
deviations of images x and x′, respectively. σxx′ is the
covariance of x and x′, and c1 and c2 are constants.

4.2. ConvergenceAnalysis. As the network rises in depth, the
model’s accuracy will reach saturation and then degenerate
rapidly, which makes convergence unattainable and cause
the training accuracy of the network to decline. *e residual
network, however, can speed up the convergence of network
loss function and solve the problem of gradient disap-
pearance and degradation caused by the increase in the
number of network layers. Figure 4 shows the convergence
speed of loss function for residual network and nonresidual
network with the number of iterations. It can be seen from
Figure 4 that compared to the nonresidual network, the
residual network converges faster, and the loss value after
convergence is smaller. *is demonstrates that the residual
learning has outstripped direct mapping in the learning
effect, which can minimize the difference between input
images and target images. *e mapping after the intro-
duction of residual is more sensitive to the change of output,
which improves the model accuracy while maintaining the
depth of the network.

Noise map

Codec
denoising
network

Real map

Real map

Pre-trained loss
network Perceptual loss

MSE loss Joint loss+

Figure 3: Proposed joint loss of cascaded network.
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*e performance of the training model is determined by
the number of layers of neural network and residual units. In
order to further determine the appropriate number of re-
sidual network layers and residual units, this paper has
trained and tested the network with the number of layers at
4, 8, and 12 and the number of residual units at 2, 3, and 4,
respectively. Table 1 shows the average time required for
different network models to iterate once under the same
training set. As can be seen from Table 1, the 8-layer RED
network iteration takes 247.349 s, which is shorter in time
and faster in training speed.

*is paper selects hip joint prosthesis as the test set to
evaluate the image quality of the network after training with
the number of layers at 4, 8, and 12, respectively. Table 2
shows SSIM value, RMSE value, and PSNR value of images
after three network training. As can be seen from Table 2,
when the number of RED network layers is 8, the output
image shows a better evaluation index: a larger SSIM value, a
smaller RMSE value, and a larger PSNR value, which in-
dicate that the network has a higher performance in image
restoration. In summary, when the network model has 8
layers, it can achieve faster convergence speed, higher image
quality after correction, and better performance of metal
artifact correction.

4.3. Subjective Effects. Nine CT images were randomly se-
lected from the TCGA-COAD clinical data set as test
charts. It does not overlap with 200 images used for
training, as shown in Figure 5. *is paper selects the
WGAN algorithm proposed in reference [23] and the basic
RED-CNN algorithm proposed in reference [28] as the
comparison method. Figure 6 shows the denoising effect by
taking the test chart (a) and test chart (c) of Figure 5 as
examples.

WGAN and basic RED-CNN are very similar to the
proposed improved RED-CNN in subjective visual effects
after denoising. However, after careful observation of these
pictures, it is found that our proposed network is slightly
better than the two in terms of detail retention.

4.4. Objective Indicators. For quantitative analysis, PSNR
and SSIM are used to evaluate the denoising effect of LDCT
images. Detailed data of the test chart are shown in Table 3.
As can be seen from Table 3, our proposed method out-
performs WGAN and basic RED-CNN in eight test images
in objective indicators. *e averaged PSNR is 1.865 dB,
higher than that of theWGANmethod, and 1.174 dB, higher
than that of the RED-CNNmethod. SSIM is slightly ahead of
WGAN in terms of indicators.

4.5. Complexity Comparison. *e network complexity E can
be defined by the following equation:

E � O 􏽘
l

nl− 1f
2
l nl

⎧⎨

⎩

⎫⎬

⎭nl, (10)

where nl is the number of feature maps output by the l layer of
the network and fl is the size of the l layer convolution kernel.

By calculating the average time consumption of 30
forward propagation for each test chart, the average CPU
time consumption data is obtained. By calling the Caffe
interface in python, the average GPU time consumption is
obtained, as shown in Table 4.
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Figure 4: Loss function of residual network and nonresidual network.

Table 1: *e average training time for 1 epoch of RED-CNN with
the number of layers at 4, 8, and 12.

Network layers Training time (s)
4 452.287
8 247.349
12 873.374

Table 2: SSIM, RMSE, and PSNR values under RED-CNN with the
number of layers at 4, 8, and 12.

Network layers SSIM RMSE PSNR
4 0.9584 0.0065 68.625
8 0.9592 0.0062 68.634
12 0.9576 0.0067 68.612
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(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

Figure 5: Experimental data.

(a) (b) (c) (d) (e)

Figure 6: Denoising results comparison images. (a) Original CT image. (b) Low-dose CT image. (c) WGAN. (d) RED-CNN. (e) Proposed
algorithm.

Table 3: PSNR and SSIM in experiments.

Number Index LDCT image WGAN [23] RED-CNN [28] Proposed algorithm

a PSNR/dB 25.375 28.346 28.783 30.245
SSIM 0.768 0.912 0.921 0.942

b PSNR/dB 24.653 26.398 29.012 29.374
SSIM 0.731 0.892 0.901 0.911

c PSNR/dB 24.987 29.321 30.876 31.238
SSIM 0.763 0.924 0.932 0.953

d PSNR/dB 23.826 27.873 28.987 30.872
SSIM 0.711 0.865 0.912 0.934

e PSNR/dB 30.145 32.146 31.273 31.698
SSIM 0.863 0.962 0.920 0.925

f PSNR/dB 27.836 30.124 30.023 30.836
SSIM 0.792 0.845 0.823 0.912

g
PSNR/dB 26.834 29.834 29.867 31.345
SSIM 0.723 0.835 0.844 0.902

h PSNR/dB 26.214 30.013 29.839 31.314
SSIM 0.719 0.862 0.843 0.909

i PSNR/dB 22.245 26.215 27.831 30.134
SSIM 0.712 0.821 0.873 0.901

Average PSNR/dB 25.791 28.919 29.610 30.784
SSIM 0.75 0.876 0.885 0.916
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Table 4 demonstrates that RED-CNN can save 40% of the
time compared to WGAN. At the same time, the proposed
method reduces the complexity of the algorithm through the
notion of recursion, speeds up the convergence speed
compared with the original RED-CNN, and reduces the time
consumption by 75% compared with WGAN. Furthermore,
it has better performance on GPU.

5. Conclusion

Due to the difficulty of modeling statistical features in the image
domain, the existing methods of directly processing recon-
structed images cannot eliminate image noise while maintaining
image structure details. Deep learning offers great potential for
the research in noise artifact restoration of LDCT images. In an
attempt to overcome the problems of poor denoising perfor-
mance for traditional algorithms, complex network model, and
difficulty in training, this paper proposes a CT image denoising
method based on an improved RED network. It is mainly di-
vided into three parts: (1) the RED network is used to restore
noisy CT images, and the notion of recursion is integrated into
the RED network to reduce network complexity and boost
operation efficiency; (2) with the advantages of MSE loss
function and perceptual loss function combined, a joint loss
function is proposed, and the edge and detail information are
reconstructed through pixel-by-pixel comparison and mini-
mizing the difference in image semantic features; and (3) the CT
noise images generated by the RED network based on clustering
segmentation technology are optimized to further suppress the
artifacts and restore details. As shown in experimental simu-
lation analysis of the TCGA-COAD clinical data set, the pro-
posed method can generate higher PSNR and SSIM when
compared with the WGAN method and original RED-CNN
method. Furthermore, our method is low in algorithm com-
plexity and can be well adapted to practical applications.

In the future, our proposed method is applicable to
scenarios involving noise suppression, structure preserva-
tion, damage detection, and so on.
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