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+is paper presents chip implementation of the integrated neural recording and stimulation system with stimulation-induced
artifact suppression. +e implemented chip consists of low-power neural recording circuits, stimulation circuits, and action
potential detection circuits. +ese circuits constitute a closed-loop simultaneous neural recording and stimulation system for
biomedical devices, and a proposed artifact suppression technique is used in the system. Moreover, this paper also presents the
measurement and experiment results of the implemented 4-to-4 channel neural recording and stimulation chip with 0.18 µm
CMOS technology. +e function and efficacy of simultaneous neural recording and stimulation is validated in both in vivo and
animal experiments.

1. Introduction

+e neural prosthesis system includes a neural/muscular
stimulator and neural recording circuit. +ese stimulators
and recorders of the system have been widely used in many
medical fields for decades, such as cochlear/retinal pros-
thesis, cell activation, and cardiac pacemaker [1–5]. Func-
tionally, neural stimulation is used to activate the prosthesis
and wake up the sensory function [6], while neural recording
can sense nerve signals or complete the evaluation of
stimulation effect [7–9]. Combining neural stimulator and
neural recorder, the closed-loop controlled simultaneous
neural recording and stimulation system is formed to re-
cover the basic functions of the injured individuals [10–16],
such as the system for epileptic seizure detection and sup-
pression [17, 18].

As shown in Figure 1, in the closed-loop neural re-
cording and stimulation system for epileptic seizure de-
tection and suppression, neural recording is used to detect
the epileptic signals in brain, and electrical stimulation is

used to suppress epileptic seizures. However, the electrical
stimulation pulse will cause artifacts and prevent the re-
cording amplifier from normal operation, so the closed-loop
system cannot make timely and correct sense-and-trigger
response. +e problem of stimulation artifact also affects the
function of the system in other biomedical devices for brain
stimulation and recording [20–22].

1.1. Stimulation-Induced Artifact in the Closed-Loop System.
To realize multiple functions in biomedical equipment, the
neural/muscular recording and stimulation system generally
includes multiple recording and stimulation channels, with
recording circuits, data processing circuits, stimulation
circuits, and electrodes. A bipolar stimulation system is
shown in Figure 2(a), which includes a recording circuit with
an electrode and a stimulator with one working electrode
and one reference electrode. +e stimulator with the
working electrode provides bidirectional and well-matched
stimulation current. During the stimulation, biphasic
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current flows through the tissue between two electrodes.
+erefore, the voltage variation emerges at the stimulation
site near the working electrode due to its resistive and ca-
pacitive feature. +e amplitude of this voltage variation
usually ranges from a few hundred millivolts to a few volts,
which is mainly determined by the current level and the
electrode impedance [23–26]. +en, the voltage waveform
generated at the stimulation site has transmitted to the
neural recording front end (RFE) through tissue, and it
saturates the high-gain recording amplifier. +e output
signal from the saturated amplifier is called stimulation-
induced artefact. +e amplifier usually takes a long time to
recover from this undesired saturation [23, 24].

Figure 2(b) shows the output voltage waveform of the
recording front end, which includes an artifact spike, an
artifact tail, and an action potential (AP). +is AP has been
recorded after the unexpected artifact spike. When the ar-
tifact happens, the RFE generally needs 2–10ms to fully
recover and be ready to record the next action potential [27].
+us, neural recording cannot work normally within this
duration, and the next action potential can only be observed

after the recording amplifier is fully recovered. Such an
artifact problem can be found in most simultaneous re-
cording and stimulation systems [14, 15, 19, 28–30].

1.2. Stimulation Artifact Suppression. Several artifact sup-
pression techniques have been reported previously. In the
blanking technique [15, 31–34], the RFE is switched off
during the stimulation period and turned on during the
neural recording. However, the neural signals during the
“blanking” period cannot be recorded. In the signal post-
processing technique [35–39], neural signal can be recovered
by subtracting the artifact template from the recorded signal.
+e advantage of the digital processing method is that no
neural signal is missed during neural recording. But it is
computationally intensive and requests RFE to have a very
large dynamic range (several volts) to record artifact signal.
In order to obtain a large input dynamic range to record the
artifact signal, a track-and-zoom ADC is proposed in [40].
+e dynamic input range of RFE is exponentially expanded
with the recording signal, which prevents the saturation of
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Figure 1: Concept of the system for epileptic seizure detection and suppression.
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Figure 2: (a) Simplified interface between a bidirectional current stimulator and a signal recorder. (b) +e output voltage waveform of the
recording front end.
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neural recording. Another method is to replace the amplifier
with a voltage-controlled oscillator (VCO) [41].+is method
eliminates the problem of artifact-induced saturation of the
amplifier. But the VCO needs further noise optimization to
improve the signal-to-noise ratio of neural recording.

Another technique reported is localized stimulation
[42, 43]. In this method, the biphasic current can flow
through the tissue and return to a local ground. +is reduces
the artifact amplitude and allows the amplifier to quickly
recover to the normal recording state, but the artifact is still
not well suppressed. An improved method is dual electrode
in-phase stimulation, which carries out differential acqui-
sition at the recording amplifiers [44].+is method has good
artifacts suppression effect, but it requires strict impedance
matching among the recording electrodes. It is desired to
design an extra accurate impedance matching network.

In this paper, we present our implemented closed-loop
neural recording and stimulation chip with an artifact
cancellation technique. Using the referenced and tuned
push-pull stimulation (RTPPS) scheme with a tripolar
electrode, the problem of artifact can be solved. A tripolar
stimulation configuration with two working electrodes and
one reference electrode are used in our method. +e
stimulation currents delivered by two working electrodes are
complementary to each other. By doing so, the impact of
large stimulation voltage fluctuation propagated to the re-
cording site can be significantly reduced. +e proposed
concept is demonstrated with a prototype system including
four recording channels and four stimulation channels, in
both in vitro and in vivo experiments.

+e rest of the paper is organized as follows. Section 2
explains the proposed stimulation artifact suppression
technique and describes the implementation of the proto-
type recording and stimulation system. Section 3 presents
the bench-top measurement results, as well as the in vitro
and in vivo experiment results. Conclusion is given in
Section 4.

2. Implemented Closed-Loop Neural Prosthesis
System with Artifact Cancellation

2.1. 4-Channel Neural Recording and Stimulation Chip
Implementation. A 4-channel neural recording and stimu-
lation system is designed and presented in this work. Fig-
ure 3 shows the system block diagram.+e system consists of
four-channel RFEs, four action potential detectors (APD), a
global digital (DIG) control block, power down (PD) con-
trol, bandgap reference block (BGB) for biasing circuit, and
four high-voltage artifact-suppressed stimulators (HVAS).
+e system can be configured either for multichannel neural
recording applications using RFE channels or multichannel
neural/muscular stimulation using HVAS channels. With
both RFE and HVAS channels active, the system can be
configured in four modes: recording (REC), stimulation
(STIM), closed-loop recording-stimulation (REC-STIM),
and stimulation-recording (STIM-REC). In the REC-STIM
mode, the system performs neural signal recording, action
potential detection, and action-potential-triggered stimu-
lation. In STIM-REC mode, the stimulator generates

stimulation pulses for the specific muscles or neurons, while
the RFE is used to monitor stimulation invoked neural
signals. In all stimulation-related modes, passive charge
balancing (PCB) circuit is used to remove the residual charge
after each stimulation pulse to prevent tissue damage. As
shown in Figure 3, the PCB circuit is a passive path between
the stimulating electrodes and the ground, controlled by
CMOS switches.+e PCB is only activated at the end of each
stimulation pulse.

An artifact cancellation scheme is used in this system
design. +e so-called RTPPS scheme mentioned in Section 1
aims to cancel the artifact at the stimulation site so that the
artifact will not affect the recording site. In conventional
bipolar stimulation configuration, the biphasic current (ca-
thodic-then-anodic) flows from a working electrode to a
reference electrode. As a result, the stimulation current causes
a voltage change at the interface of the working electrodes.
+is voltage signal is coupled to the input of RFE through
tissue and causes artifact. In our implemented stimulator [45],
two working electrodes (WE) and one reference electrode
(RE) are used to form a tripolar electrode. In this case, the
second working electrode counteracts the stimulation from
the first working electrode and thus cancels the coupling from
the stimulation site to the input of the recording front end.
+e stimulation currents for the two electrodes are generated
by two current generators, namely, the stimulation current
generator (SCG) and the countercurrent generator (CCG). By
using such stimulation scheme, this system eliminates the
voltage fluctuation on the stimulation site and hence reduces
the stimulation induced artifact.

2.2. High-Voltage Artifact-Suppressed Stimulator.
Figure 4 shows the circuit schematic of one stimulator
channel, which includes two 10-bit current steering digital-
to-analog converters (DACs) and two high-voltage current
drivers (HVCD). SCG and CCG have a similar structure and
are composed of one DAC and one HVCD. +e SCG and
CCG produce the same biphasic currents in amplitude to the
stimulation target through the electrodes with identical
impedance, but with inversed phase. +e stimulation pulse
width is determined by the timing control of the signals
cathodic and anodic in high-voltage current drivers. In the
neural stimulator based on constant current stimulation
(CCS), the voltage on the electrode depends on the char-
acteristic impedance of the electrode-tissue interface. For
larger impedance, HVCD is required. HVCD contains
current mirrors with a ratio of 10 to amplify the output
current from DAC. +e MOS switches connected to the
transistors gates are used to activate or deactivate the current
generator. To reduce the chip power consumption, the DAC
is powered by a 1.8V supply, and the HVCD is powered by
24V. +e output voltage compliance is therefore large to
deliver sufficient stimulation current. +e reference voltage
is set to a half VDD_h. +e current amplitudes of both SCG
and CCG are set by DACs and controlled by digital blocks.
Besides, the amplitudes of the currents from CCG and SCG
are made tunable to compensate for any mismatch between
the two electrode interfaces.
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2.3. Recording Front End and Action Potential Detector.
+eneural amplifier is one of themost important parts in the
neural prosthesis system. As shown in Figure 5(a), the neural
recording front end consists of a neural amplifier, a band
pass filter (BPF), and a buffer. +e capacitor feedback

topology with pseudoresistance is selected to achieve low
power consumption and low noise. Since the low-pass cut-
off frequency of the recording system is determined by the
BPF, the bandwidth of the RFE is set to be slightly larger than
the nerve signal bandwidth. +e gain of the amplifier can be
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Figure 4: Schematic of high-voltage artifact-suppressed stimulator (in each channel).
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adjusted by the ratio of input capacitance to feedback ca-
pacitance. RFE has a programmable gain of 54/60 dB. +e
high- and low-pass cut-off frequencies can be programmed
for different recording modes (spikes only, LPF only, or
both). +e details of the amplifier design in RFE are de-
scribed in [46, 47].

+e APD is a simple threshold detector, as shown in
Figure 5(b). It contains four comparators and two flip-flops
(FF). +e APD detects both positive and negative spikes,
depending on which comes first. +e upper 2 comparators
and FF are to detect positive spikes. +e threshold voltage
levels can be tuned by Vtp_H and Vtp_L, and the output
trigger signal is asserted when the amplitude of the spike
exceeds Vtp_H and becomes nil when the amplitude of the
spike drops below Vtp_L as shown in Figure 5(c). +is
hysteresis window (between Vtp_H and Vtp_L) provides
some noise immunity to the detector. Similarly, the lower
two comparators and FF are used to detect negative spikes.
+e hysteresis window can be tuned by Vtn_L and Vtn_H.
+e trigger signal generated from APD is sent to the digital
control block of the system which controls the stimulator.
With these two triggering signals from positive and negative
threshold detectors, simple spike pattern recognition such as
distinguishing biphasic spikes from electrical glitches is
enabled.

2.4. Digital Control Block. +e main functions of the digital
control block are to set stimulation parameters and control

the stimulation. +e digital block has a default command
which determines the stimulation parameters such as am-
plitude and duration. +ese parameters can also be pro-
grammed by an external FPGA through a serial command.
+e command format, control timing, and function flow of
the digital block are shown in Figure 6(a).

Stimulation parameters are decoded from the command
frame and stored in global digital control registers. +e
cathodic and anodic stimulation pulse width (T1 and T2) use
8-bit control, respectively, and the interphasic delay (Tint)
between the two stimulation phases is in 10-bit control. +e
stimulation current amplitude (VGCM1/VGCM2) control is
also in 10-bit. In a typical scenario, several command frames
are sent first to configure stimulation parameters. When a
spike signal is detected by APD, the embedded finite state
machine (FSM) generates control signals such as bs/c< 0 :
4>, Iin_s/c< 0 : 4>, cathodic, anodic, and idle to deliver a
predefined biphasic stimulus. After each stimulation pulse,
the external switches connect electrodes WE1, WE2, and RE
during the idle phase for passive charge balancing (PCB), as
shown in Figure 6(b). +e interphasic delay between ca-
thodic and anodic phases can be programmed in the range
from 0 μs to 255 μs. +e detailed stimulation control timing
and output waveforms are shown in Figure 6(c). For arbi-
trary stimulation waveform generation, the pulse width of
cathodic and anodic stimulation is divided into 16 steps,
respectively, as shown in Figure 6(d). As a result, the current
amplitude (D1′–D16′, D1–D16) of each step can be set by
sending different commands to the DAC registers.
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Figure 5: (a) Neural recording front-end (RFE) circuit. (b) Action potential detector circuit. (c) Signal waveforms for functionality il-
lustration of the circuit.
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3. Measurement Results

3.1. Bench-Top Measurement Results. +e 4-to-4-channel
closed-loop neural recording and stimulation system is
implemented in 0.18-μm high-voltage CMOS technology
with LDMOS option.+e chip microphotograph is shown in
Figure 7. +e total chip area is 2mm by 2mm. Figure 8(a)
shows the measured output waveforms of two independent
HVAS channels of the system. In each channel, the cathodic
and anodic current amplitudes are set by two independent
10-bit DACs. It can generate arbitrary stimulation current
waveforms including exponential, triangular, ramp, and
constant waveforms, respectively, depending on the appli-
cation requirement. Pulse durations T1 and T2 are also
adjustable in the range from 16 μs to 4ms.

Figure 8(b) demonstrates test results of the chip configured
in the REC-STIM mode. In this configuration, the recording
electrodes of RFE and the stimulation electrodes of HVAS are
electrically isolated. An ECG signal generated from a function
generator is used as a dummy neural action potential signal to
the input of one RFE channel. +e amplitude of ECG pulse is
set as 800μV peak-to-peak with a frequency of 100Hz. +e
gain of RFE is set as 60dB (1000V/V). +e band-pass filter of
RFE is turned off. As shown in Figure 8(c), the APD detects the
output of RFE and generates the trigger signal for HVAS.

Biphasic stimulation pulses are generated by HVAS and de-
livered to the electrode nodes, namely,WE1,WE2, and RE.+e
current waveform is configured as constant current of 600μA
with a pulse duration of 320μs. +e reference voltage on RE is
set at 12 (V). A dummy load (a 10 kΩ resistor and a 100nF
capacitor in series) is used between each stimulation output
and the reference voltage source.

To demonstrate the proposed artifact-suppression tech-
nique, an experiment is done with recording and stimulation
electrodes in phosphate-buffered saline (PBS) as shown in
Figure 8(c). In the REC-STIM mode, one recording channel is
used to record the ECG signal when the ECG spike is detected
the stimulator is triggered, delivering the stimulation current to
the PBS solution. It is observed that when CCG is disabled, the
stimulation artifact saturates the output of the recording
amplifier, as shown in Figure 8(d), which needs a long period of
time to recover to the normal state before it can perform
recording again. However, with CCG enabled in Figure 8(e), an
intact ECG signal is recorded during the stimulation period
and the saturation is not observed at the output of the re-
cording amplifier.

3.2. Animal Experiment. Two in vivo experiments on the rat
are carried out using the implemented neural recording and
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stimulation system. +e first experiment is to demonstrate
that the artifact generated from muscle stimulation can be
suppressed at the input of the recording channel by using
RTPPS.

+e experiment setup for muscle stimulation is shown in
Figure 9(a) [48]. +e same chip configuration and ground/
power arrangement are used as in Figure 8(c). +e recording
needle electrode is inserted into the sciatic nerve on the left
side of an anesthetized rat, and two concentric stimulation
electrodes are inserted in the tibialis anterior (TIB) muscle of
the right leg. Two concentric electrodes are put together and
share the same reference voltage to form a tripolar stimu-
lation electrode. +e voltage waveforms on recording and
stimulation electrodes are probed and observed using an
oscilloscope. First of all, a biphasic stimulation pulse
(amplitude� 90 μA, pulse width� 320 μs) is delivered to the
muscle through WE1 and RE by activating SCG only.
Figure 9(b) shows the output waveforms at RFE output. It is
observed that the stimulation artifact is coupled to the input
of RFE through the tissue and saturates its output.
Figure 9(c) shows the RFE output when both SCG and CCG
are enabled and tripolar stimulation is performed. +e ar-
tifact is still observed. +is is due to the asymmetry between
the two electrode-tissue interfaces of WE1 and WE2. In
Figure 9(d), the current amplitude generated from CCG is
tuned (to a larger value in this case). To compensate the
voltage on the recording site due to electrode asymmetry, the
pulse width of CCG is divided into 16 steps and the current is
different for each step. In the experiment, we tune the
current amplitude of each step one by one by sending
different commands to the DAC registers, until the artifact
voltage cancellation is observed at the recording site. After
the tuning, the stimulation artifact is significantly sup-
pressed. Lastly, for comparison, in Figure 9(e), the reference
voltage is disconnected from the tripolar electrode config-
uration to emulate the conventional push-pull bipolar
stimulator [42]. In this case, we find that the artifact is a little
smaller than the conventional bipolar stimulator, but still
cannot be substantially suppressed due to the asymmetry of

two stimulation interfaces. In conventional push-pull
stimulators, the current tuning is inapplicable since there is
no reference point for tuning. +erefore, the shared refer-
ence electrode must be present. In aforementioned exper-
iments, successful muscle recruitment on the right foot of
the rat is observed.

Another experiment setup for nerve stimulation and
recording is shown Figure 9(f), when the system conducts
concurrent neural stimulation and recording on the sciatic
nerve of an anesthetized rat. +e chips configuration and
ground/power arrangement are the same as in Figure 8(c).
Two concentric electrodes are tied together to form a tripolar
(WE1, WE2, and RE) electrode and attached to the sciatic
nerve. Note that these two concentric electrodes, however,
may not be positioned well within the nerve cross section.
+is coarse arrangement leads to a possible asymmetric
coupling between stimulation and recording sites, which
results in asymmetric voltage waveforms atWE1 andWE2 for
artifact suppression in this experiment. Two single-needle
electrodes are used for recording. One recording electrode is
inserted into the nerve which is about 5mm away from the
stimulation site, while the other one is placed in the animal
body as a reference. Firstly, a stimulation pulse train is
delivered to the nerve from the stimulator. For each pulse,
the amplitude is set to 53 μA and the pulse width is 320 μs
for both cathodic and anodic phases, with an interphasic
delay of 25 μs. Foot dorsiflexion (FD) is observed, and
evoked compound action potential (CAP) is recorded. In
Figure 9(g), the two test results with and without RTPPS
are superimposed in the same graph. +e top trace is the
stimulation pulse waveform used in RTPPS mode. Middle
trace is the recorded RFE response with RTPPS, and the
bottom trace is the recorded REF response without
RTPPS. Without RTPPS (CCG disabled), the large arti-
fact is caused by saturation of the amplifier and DC
voltage drift is observed at the RFE output. When RTPPS
is enabled, the stimulation artifact is substantially sup-
pressed. A series of evoked neural spikes can be clearly
seen, and the amplitude of the suppressed artifact is
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Figure 8: (a) Arbitrary stimulation waveforms from two HVAS channels. (b) Test-bench measurement results on one channel: output
waveforms of recording circuit, APD, and the HVAS stimulator. (c) In vitro test setup and (d, e) Measurement results with and without
RTPPS: the top and middle traces show recording outputs from REF channels 1 and 2, respectively. +e bottom two traces are the measured
voltages on two working stimulation electrodes.
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reduced to 80–150mV peak-to-peak, which is only 10%–
20% of the CAP signal recorded. +e comparison of the
prototype neural recording and stimulation chip to prior

works is shown in Table 1. It can be found that we have
achieved artifact suppression even with a high-gain re-
corder and large voltage compliance.

Table 1: Comparison of stimulators for stimulation and recording.

Reference [49]
(REC and STIM)

Reference [50]
(REC and STIM)

Reference [37]
(REC and
STIM)

Reference [40]
(REC and
STIM)

Reference [24]
(REC and
STIM)

+is work
(REC and
STIM)

Process 0.13 µm 65 nm 40/0.18 µm HV 0.13 µm 0.18 µm HV 0.18 µm HV

Artifact suppression Differential
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filter ASAR Track-and-

zoom Resetting RFE RTPPS
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Supply voltage (V) 1.2 1.2/2.5 0.6/1.8/1.2/±5 0.6/1.2/3.3 1 1
Gain (dB) — 20 — 92 90 54/60

Input noise (µVrms) 2.6 2.9 2.2 1.6 71 nV/rtHz 4.9
NEF 3.56 — — 2.86 7.8 2.2

Power per channel
(µW) 0.73 3.21 8.2 1.7 8 4.54

STIM

Compliance voltage
(V) 3.3 ±11 ±8.5 3.3 3/6/9/12 24

Pulse amplitude (A) — 2m 20 µ–5.1m 3m 5.04m 1.2 µ–1.4m
Pulse duration (s) — 10 µ–2m 10 µ–1.28m — 15–500 µ 16 µ–4m
Pulse waveform 8 bits, arbitrary 8 bits, arbitrary 8 bits, arbitrary 8 bits, arbitrary 6 bits, arbitrary 5 bits, arbitrary
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Journal of Healthcare Engineering 9



4. Conclusions

A neural prosthesis chip with stimulation artifact suppression
is presented in this work. +e implemented 4-to-4 channel
neural recording and stimulation system can be configured
in recording, stimulation, recording-to-stimulation, and
stimulation-to-recording modes, respectively. +e function
and efficacy of the proposed system has been demonstrated in
both bench-top and in vivo experiments.+e results show the
stimulation induced artifact can be greatly suppressed during
closed-loop neural recording and stimulation.
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