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Multilabel recognition of morphological images and detection of cancerous areas are difficult to locate in the scenario of the image
redundancy and less resolution. Cancerous tissues are incredibly tiny in various scenarios. -erefore, for automatic classification, the
characteristics of cancer patches in the X-ray image are of critical importance. Due to the slight variation between the textures, using
just one feature or using a few features contributes to inaccurate classification outcomes. -e present study focuses on five different
algorithms for extracting features that can extract further different features. -e algorithms are GLCM, LBGLCM, LBP, GLRLM, and
SFTA from 8 image groups, and then, the extracted feature spaces are combined. -e dataset used for classification is most probably
imbalanced. Additionally, another focal point is to eradicate the unbalanced data problem by creating more samples using the
ADASYN algorithm so that the error rate is minimized and the accuracy is increased. By using the ReliefF algorithm, it skips less
contributing features that relieve the burden on the process. Finally, the feedforward neural network is used for the classification of data.
-e proposed method showed 99.5% micro, 99.5% macro, 0.5% misclassification, 99.5% recall rats, specificity 99.4%, precision 99.5%,
and accuracy 99.5%, showing its robustness in these results. To assess the feasibility of the new system, the INbreast database was used.

1. Introduction

Breast cancer is considered a key health issue in women
which is causing a high rate of casualty. -e initial diagnosis
of breast cancer with mammographic screening and ap-
propriate pharmacological treatments has steadily increased
the prognosis of breast cancer [1]. -ese include mam-
mography, biopsy, ultrasound image, and thermography [2].
-e biopsy is painful procedure and rather expensive.
Chemotherapy is usually frailty associated with a psychiatric
condition defined as the accumulation of several interactive
diseases, impairs, and disability: exhaustion, nausea, inad-
equate, relatively slow walking speed and physical exercise,
and unintended weight loss [3, 4]. So, some doctors rec-
ommended dispensing low-dose aspirin before and after the

detection of breast cancer [5]. But today’s world image
recognition methods have an important role to play in the
analysis of tumor images by using a machine learning
methodology. It uses a random generator, a function ex-
tractor, and a classifier to model a doctor’s enquiry and
construct a personalized questionnaire [6]. Also microwave-
based imaging techniques were developed for breast cancer
detection [7]. -e data mining as well as classification
techniques is a well-organized approach of classifying data.
Particularly in the medical field, these approaches are
commonly useable diagnostics research for decision making.
Many classification methods are used in the algorithms of
machine learning like decision tree (C45), support vector
machine (SVM), and naive Bayes algorithm [8]. Support
vector machine (SVM) discriminatory classifier is used to
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classify hyperplanes for binary groups. But, in particular case, the
major drawback is low results for a greater number of char-
acteristics than the number of samples [9]. -e decision tree
(C4.5) is a hierarchical decision support technique, but its
downside is that it is highly unreliable and data-based. A minor
shift in data leads to a completely different tree being created [9].
Naive Bayes (NB) and linear discriminant analysis (LDA) are
unable to locate a nonlinear structure concealed in high-di-
mensional results. Secondly, the singularity of inherent matrix is
a problem in which the determinant value is zero which leads to
nonclassification of matrix [9]. A fuzzy support vector machine
(FSVM) was implemented by Nedeljkovic to define and
characterize the amount of breast ultrasound [10]. In order to
eradicate such errors, algorithms were developed to assist ra-
diologists. -erefore, this distinctive attribute of the tissue
patches in the image played an important role in classification.
-emachine can extract five unique features [11]. Balance them
by ADASYN [12] and classification is by multilayer perceptron
neural network. -e advantage multilayer perceptron neural
networks (MLPNNs) MLP is an artificial neural network
feedforward architecture that is used to design recognition
schemes to identify particular patterns. It is nonparametric
learning and is enforceable on a noisy input. It is able to model
complex nonlinear and high-dimensional problems. You can
pick different kernel functions [9]. Finally, classification is used
in the doubtful areas into abnormal or normal detection.

2. Related Work

For several years, the community of medical imaging has
made attempts to develop CAD framework. With its arrival,
novel challenges started emerging, which now require
proper knowledge as well as thorough research.

Research has been done on some keymodules of CAD.-is
created a need to develop the computer-aided diagnosis system.
It has three aims. First is the detection of the abnormal breast
from mammography. -e second involves masses’ detection,
while the third one is meant to differentiate benign from
malevolent masses. In this study, the former is focused while it
is the essential process of further two attempts. In the previous
10 years, various approaches have been recommended. Milo-
sevic et al. [13] utilized the 20 GLCM features. -ey used naive
Bayes classifier for sorting, keeping up vector machines as well
as k-nearest neighbors. Petrosian et al. [14] investigated the
utility of texture characteristics for mass and normal tissue
classification based on spatial gray-level dependency (SGLD)
matrices. Iseri and Oz [15] developed a new method of ex-
traction of features, i.e., statistical analysis based on multi-
window, in order to detect microcalcification clusters. Nababan
et al. [16] use three layers of SECoSwith 16 features as proposed
for classifying benign and malignant masses. Sigh et al. [17]
utilized a support vector device that had texture, shape features,
and hierarchical technique for categorizing both malignant and
compassionate stacks. Perez et al. [18] talked about experi-
mental evaluation and the theoretical description of an inno-
vative attribute collection method that is called uFilter. Via the
integrated mammography data as well as MRI, Yang and Li
recognized breast cancer. -ey performed information inte-
gration by two techniques, i.e., MIP and TPS. In Kinoshita et al.

[19], the mixture of form and texture used provides space for
the classification of regular and infected breast lesions based on
gray-level cooccurrencematrices (GLCM). Anita and Peter [20]
proposed an automated segmentation technique to classify and
segment abnormal mass regions on the basis of the maximum
cell intensity update. In Peng et al. [21], for initial breast cancer
diagnosis in patients with breast microcalcification lesions,
FDG-PET/CT was used. Molloi et al. [22] evaluated the breast
density through spectral mammography. Kegelmeyer [23]
constructed a tool to identify satellite lesions in mammograms
and texture characteristics of computed laws from a chart of the
local edge orientations. Gorgel et al. [24] suggested spherical
wavelet transform. Mohanty et al. [25] recommended a
technique that gets ROI by cropping operation. After ROI was
extracted, 2D discrete wavelet transform was combined with
GLCM in order to obtain texture-based features. -ere are a
total of 65 features that were calculated by this combination.
Moreover, PCA was also implemented to eradicate redundant
features. At the last step, forest optimization algorithm was
implemented to get classification results.

Abdel-Nasser et al. [26] invented technique for change in
temperature on normal and abnormal breast cancer de-
tection by extracting GLCM and 22 features and used
learning-to-rank and texture analysis methods. Wang et al.
[27] developed an algorithm for classifying benign and
malignant masses into their appropriate classes. In their
work, there were 16 spectrums that contained 16,777,216
features which were further reduced to 18 features by using
PCA. -e FD was combined with Jaya for training weights
and biases of FNN. -e projected method was later named
Jaya-FNN. Welch et al. [28] did contrast enhancement and
also performed dimensioning by CLAHE based adaptive
method as well as histogram equalization. -e ROI was
extracted by using a bimodel processing algorithm in two
levels. Firstly, extraction of normal breast boundary was
done and then the abnormal breast boundary was extracted.
GLCMmethod was utilized to get the second level statistical
texture features. Shape features included eccentricity, LBP,
circularity, and Hog. Intensity features included mean
kurtoses and skewness. So the feature’s space was reduced by
a recursive approach. KNN, support vector machine, and
decision tree were used for the classification of desirable
functions. From the above literature research, segmentation,
feature extraction, and feature selection as well as classifi-
cation are considered as the major factors for categorizing to
get better effectiveness of discovery of breast stacks.
Mohanty et al. [29] used 19 (GLCM+GLRLM) features of
extraction to classify detection of benign and malignant
masses. -e category imbalance problem [16,30–34] is
heavily influenced by machine learning and statistical al-
gorithms. -e Heuristic Cover-Sampling Algorithm is a
Synthetic Minority Over-sampling Technique (SMOTE). It
produces artificial samples from the minority class by
parsing existing instances that lie close together. It has been
one of the most common methods used for data sample
selection for a few weeks [35].

Sampling data approaches are such as Random Over-
Sampling (ROS), which replicates extracted features, and
Random Under-Sampling (RUS), which removes majority-
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class samples. In order to adapt to the binary classifier ratio,
these methods distort individual counseling [12]. Sampling
learning is an active process from datasets through Adaptive
Synthetic (ADASYN) algorithm. ADASYN’s guiding theory
is the use of weighted consideration for the different ethnic
groups. -e ADASYN approach improves learning in two
ways with respect to data distribution: (1) the bias created by
the inequality of the class and (2) dynamically altering the
boundary of the classification decision to reflect on those
samples that are difficult to understand [12].

While each tissue type has its own characteristics for the
proposed work, it often hardly differentiates between normal
and abnormal cancers. Commonly, cells begin to expand in
abnormal cancers and their tissues coloring is visible. In-
discretions have been brought to completion in cell arrays.
-e cell shows more common in natural tissue and its color
is darker. However, there is also a low description of only
some low-level dimensions of certain complex systems. In
this research, different algorithms were tested to extract
features at higher levels on morphological images. So, with
extraction algorithms for GLCM features, LBP features,
LBGLCM features, GLRLM features, and SFTA features,
optimization methods have been attempted in the literature.
As an appropriate method to extract features from indi-
vidual image, each algorithm is applied to the entire dataset.

Unbalancing of dataset, therefore, using hand-crafted
features will trigger poor performance from the dataset. -e
unbalanced data problem is eliminated with the ADASYN
algorithm [12], which then deletes irrelevant features by
ReliefF that improves training time. Finally, for the classi-
fication of data, the feedforward neural network is used.

3. Proposed Method

-e methodology is adopted to distinguish among eight
classes (benign to malignant) according to Breast Imaging-
Reporting and Data System (BI-RADS). For such a purpose,
preprocessing and segmentation are skipped in this algorithm
and restrict the algorithm to four stages, i.e., features ex-
traction, features margin, oversampling, and feature selection
and reduction; finally classification is shown in Figure 1.

-e model that was mentioned was checked on the
INbreast database [36]. For each object, five hand-crafted
features (GLCM, GLRLM, LBP, LBGLCM, and SFTA) were
extracted from 8 groups of images and their values are stored
in a file. For each image, 88 features are obtained by
combining these feature vectors. -en, with the ADASYN
procedure, the feature vectors of 411 images consisting of 88
functions are oversampled. After this step, 1773 function
vectors are generated. Using the ReliefF algorithm, these
features were layered down to ten subset functions. In the
end, feedforward neural network was modified to multilayer
and trained on a selected subset to get a result.

3.1. Feature Extraction Method

3.1.1. 1e Gray Level Cooccurrence Matrix (GLCM).
GLCM is a common method of extraction of texture-based
features. By performing an operation in the images due to

the second-order statistics, the GLCM decides the textural
relationship between pixels. For this procedure, two pixels
are normally used [37]. -e frequency of variations in these
measured pixel brightness values is specified by the GLCM.
Namely, it reflects the pixel pairs’ frequency creation [38]. As
seen in Figure 2, there are several statistical characteristics
from a GLCM grey level picture type. -e square matrix of
features can be denoted by G (i, j). Four distinct forms are
used to segment the G matrix into regularized typical
forming modes. Such patterns are referred to as crossed
directions: vertical, lateral, right, and left paths. -is can be
determined for both neighboring paths.

-e Grey Level Cooccurrence Matrix was utilized to
extract 22 texture characteristics I-e dissimilarity, associa-
tion, homogeneity, liveliness dissimilarity, entropy, cluster
hue, square variance number, energy, sum variance, sum
average, entropy, sum entropy, entropy difference, maxi-
mum likelihood, cluster prominence, variance difference,
normalized autocorrelation inverse difference moment and
measurement details. [39].

3.1.2. Local Binary Pattern (LBP) Feature. A quite effective
technique that is responsive to light variations is the ex-
traction algorithm. -e LBP method can simply be defined
as follows; the image is crossed through a window with a
given neighborhood value. And an assignment of an image
pixels mark is made. In this step, the threshold is applied
according to pixel values adjacent to the middle pixel. -e
LBP matric is then determined according to clockwise or
counter clockwise values in the surrounding neighborhood.
-us, it comprehensively defined the systemic and statistical
pattern of the textural system [40]. -e LBP algorithm’s
most key qualities are resistant to changes in the grey level
and statistical versatility in real-time applications, which
could be used [41].

Mammographic images 

Feature extraction
GLCM

LBP

LBGLCM
GLRLM

SFTA

Oversampling ADASYN algorithm

Feature selectionReliefF algorithm

Feature reduction 

ClassifierFNN 

Feature merge 

Performance parameters 

Figure 1: Methodology of the proposed model.
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3.1.3. Local Binary Grey Level Cooccurrence Matrix
(LBGLCM). A combined approach applied along with Local
Binary Pattern (LBP) and GLCM is the LBGLCM feature
extraction process. -e grey level picture is related to the
LBP methodology. Instead, since the acquired LBP texture
image, GLCM features are removed. At the feature ex-
traction point, the GLCM technique takes adjacent pixels
into consideration. It does not execute any procedure in the
picture on other local patterns. Textural and spatial
knowledge in the picture is collected in accordance with the
LBGLCM process. -e availability of the LBGLCM algo-
rithm in image processing applications is improved by the
simultaneous acquisition of this information [42].

3.1.4. Grey Level Run Length Matrix (GLRLM). In extracting
the spatial properties of gray level pixels, GLRLM uses
higher-level statistical techniques. -e structure of the
features obtained is two-dimensional.

Each value in the matrix reflects the maximum value of
the grey level. -e characteristics of GLRLM are seven in
total. Short-term concentration, long-term focus, and gray-
level semi, run-long nonuniformity, take, low gray-level
running focus, and overall organization running focus are
such high statistical characteristics [43].
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3.1.5. Segmentation-Based Fractal Texture Analysis.
Limited computation time and successful attribute extrac-
tion are important in texture analysis.-e SFTA solution is a
methodology that can be tested in this theory. -roughout
the SFTA process, multiple thresholding techniques trans-
form the image into a binary form. -resholds of t1, t2, t3,
. . ., tn are rendered. Interclass and in-class variance values
are used to determine the threshold sets. -e optimal
threshold number is added to the representation regions to
minimize the in-class variance value.

Figure 3 demonstrates the extraction steps of the
pseudocode SFTA algorithm. -e obtained function vector
represents VSFTA. Initially, different threshold values (T),
all pairs of contiguous thresholds (TA), and threshold values
(TB) corresponding to the maximum grey level are deter-
mined. -en, for all threshold values in the loop, segmented
image pixels, boundaries, and VSFTA are modified. -e
obtained VSFTA vector’s asymptotic complexity is O (N•|
T|). Although N indicates the number of pixels, |T| indicates
the number of different thresholds arising from the Otsu
multilevel algorithm [44].

3.2. Oversampling with Adaptive Synthetic (ADASYN)
Algorithm. To address unbalanced class allocation issues for
classification activities, the ADAYSN approach is useful.
-is method is applied to all minority classes. In general,
ADASYN bases its operation on weighting the examples of
the minority classes according to their difficulty of being
learned; therefore more synthetic data will be generated
from the more difficult samples, and fewer samples in the
case of the easier to learn [12].-is sampling method aims to
help the classifier in two ways: first, reducing the error
produced by the imbalance of the classes and then focusing
the synthetic samples only on the difficult samples to learn
[45, 46]. To apply the oversampling method in a multiclass
problem, all of the sampled minority classes will be nearer to
1 until the imbalanced rate is nearer to 1. For example, the
second is the majority class, with 220 samples, and the first
class is with 67 samples; the imbalance rate of these classes is
0.3045. -e ADASYN process generates synthetic samples
before the rate equal to or nearest to 1 in the method
generates 154 samples, generating an imbalanced
rate�∼1.3rd class of 24 samples, the imbalance rate is
0.1090, the method generates 192 samples, the fourth class of
13 samples generates an imbalance rate of 0.05909, and the
method generates 209 samples.

In the fifth class of 8 samples, the imbalance rate is 0.0363
and the method generates 208 samples; in the sixth class of
21 samples, the imbalance rate is 0.0954 and the method
generates 207 samples; in the seventh class of 50 samples, the
imbalance rate is 0.2272 and the method generates 181
samples, and in the last class of 8 samples, the imbalance rate
is 0.0363 and the method generates 211 samples of the
minority class. ADASY displays the balance of eight groups
in Figure 3. -e multiple classes’ classification problem is
described. -e algorithm representation is shown in Algo-
rithm 1.
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Figure 2: ADASYN oversampling for multiple classes.
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3.3. Feature Selection Method. -is stage is of significant
importance as rarely distinguishable features are discarded,
which increases the computational burden on the modeling
process. In the present study, ReliefF algorithm was used for
dimensional reduction as ReliefF is proved to be compu-
tationally efficient and has been proved to be sensitive to
complex patterns of association [47–50]. It was used to
estimate attributes based upon how their values reflect
variations between instances close to each other. By using
the abovementioned method, 88 raw features were selected
and reduced to 10 optimal features because of their par-
ticipation topmost according to the weightage to get max-
imum accuracy. -e graph shows 99.5%.

Accuracy at 10 features and 12 features is 100%. -is is
shown in Figure 4. So that is why we select 10 features. -ere
is not much difference in output, so we skip the remaining
ones because that elevates the computational burden of a
model. -e graph in Figure 4 shows cumulative accuracy
against feature numbers which are selected as 10 features
that can participate more than total variances.

3.3.1. ReliefF Algorithm. ReliefF is capable of accurately
evaluating the quality of attributes with heavy correlations
between attributes in classification problems. -ey have a
global perspective by leveraging local knowledge generated
by distinct contexts. ReliefF makes a ranking of features
according to weight-age and the ones who are participating
the most come in the first predictor rank. Other features
contain nearly less contribution toward the last as shown in
Figure 5. So we can select the 10 most powerful features
according to their weight-age and skip irrelevant features
that elevate the computational burden of the model [47–49].

Original ReliefF is work done with two classes: difficulties
and a stronger class, which deal with noisy data and imperfect
data. It is used to calculate feature usability for every feature
which can later be applied in order to select features that
contain top scores for feature selection. Likewise, ReliefF
selects an instance T randomly (Step 3), but later, k observes
the closest neighbors of the same class called the nearest hit
values ofH. So we use the number of nearest neighbors as 3 to
mean a positive integer scalar (Step 4), and in the same

Initialize VSFTA, T, TA, TB

for 1: TA ∪ TB

• I ≤ mulithresholding (I)
• ∆ ≤ findboarders (I)
• VSFTA (i) Boxcounting (I)
• VSFTA (i + 1) = Mean (I)
• VSFTA (i + 2) = Pixelcounting (I)
end

Figure 3: Pseudocode of SFTA algorithm.

Input: Training dataset (Xn, Yn), with n samples
Output: (Xres, Yres);
(1) ns is the majority class, nl is the minority class;
(2) for ns ∈ y do
(3) % the imbalance index d is calculated %
(4) d� ns/nl
(5) if d< dth then
(6) % where dth is the maximum tolerance to imbalance rate
(7) % Calculate the number of synthetic data examples G, where β ∈ [0, 1] %
(8) G � (ns − nl) ∗ β
(9) for each example xn ∈ ns do
(10) Find k nearest neighbors (∆n)
(11) % Calculate the ratio rn %
(12) rn �∆n/K
(13) % Normalize rn%
(14) rn � rn/an�1rnPn

(15) % Calculate the number of synthetic data examples that need to be generated %
(16) gn � rn∗G
(17) % Generate gn samples %
(18) (Xres, Yres)� append new sample
(19) end for
(20) end if
(21) end for

ALGORITHM 1: ADASYN.
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manner, k-nearest neighbors are the value of one to one of the
various classes, called nearest missesM(T) values (Steps 5 and
6). It also updates the accuracy of theW[A] class estimate for
each attribute A, based on their values for T, hits H, and
misses M(T) (Steps 7 and 8) as in Algorithm 2.

4. Classification

4.1. Feedforward Neural Network. Classification of mor-
phological images of each class and identifying cancerous
conditions seem to be very complex. Feedforward neural
network is used to classify tumors [41]. -is algorithm is the
fastest backpropagation algorithm and is strongly recom-
mended to be used as a first choice supervised algorithm and
does not need more memory than others. -e network has
used four hidden layers. Feedforward neural network was
developed by using “newff,” command. -e first hidden
layer of the network contained 40 neurons having linear
transfer function. -e second secret layer held 20 hidden
neurons. And the third and fourth secret layers contained 10
and 8 hidden neurons. -e four-layer network shown
(Layer-4) is the output layer and the remaining three layers
are hidden layers (Layer-1, 2, 3). -e problem under con-
sideration was multilabel classification. For problems with
more than two classes, the softmax function is used with

multinomial cross-entropy as the cost function; it updated
the weight as well as bias values conferring to Lev-
enberg–Marquardt optimization. Data is classified into
training, validation, and testing as 60 percent is for prep-
aration, 20 percent is for validation, and the remaining 15
percent is for research. It is fastest for training a moderate-
sized FNN. It has been deduced that this optimization is used
for approaching second direction training speed without the
Hessian matrix. On the other hand, training feedforward
networks Hessian matrix can be as

H � J
T
J. (2)

Gradient will be

g � J
T

e, (3)

where J represents Jacobian matrix having network errors
derivate regarding biases and weights and network errors
represent vector by “e.” A network has four layers. Each
layer has a matrix of “W” mass, a vector of ‘b’ bias, and an
output vector “a.” To differentiate between matrices of
weight, vectors of output, etc., in our estimates for each one
of these layers, we are adding the layer number as a su-
perscript to the interest variable. In the four-layer network
seen in Figure 6, you can see the use of this layer notation
and in the calculations at the bottom of the diagram.
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-e network is shown in Figure 6, below R1 inputs, S1
neurons first layer, S2 neurons second layer, etc. For dif-
ferent layers, it is common to have different neuron num-
bers. For each neuron, the constant input 1 is fed to the
biases.

Notice that each intermediate layer’s outputs are the
inputs to the following layer. It is also possible to evaluate
layer 2 as a one-layer network with S1 inputs, S2 neurons,
and aW2 weight matrix of S2× S1. A1 is the input to layer 2;
a2 is the output. Now that we have identified all the vectors
and matrices of layer 2 and so on with other layers, the
output layer of the network is the last layer. -is approach
can be adjusting weight as shown in Figure 7.

5. Experimental Results and Discussion

-e proposed model for MATLAB 2017a has been created. It
was used on a Core-i7 processor personal computer with
8GB of RAM as well as 2GB of the graphics card.

Mammographic photographs have been used for the study
of the scheme proposed.-ese photographs were taken from
the INbreast dataset [26], created by multiple University of
Porto institutions, and made available to the public with the
permission of the authors. -e dataset had a total of 411
images. -e matrix of the images was 3328× 4084 or
2560× 3328 pixels, while the images were processed in
DICOM format. -e present research used 411 mammo-
gram images and was further divided into 6 classes
according to the Breast Imaging-Reporting and Data System
(BI-RADS) class [26] and the classification is shown in
Figure 8. It is a risk management and quality assurance
method developed by the American College of Radiology
that offers a generally recognized lexicon and reporting
scheme for breast imaging as shown in Table 1. -is refers to
mammography, ultrasound, and MRI.

-e archive is accessible on this web page.
http://medicalresearch.inescporto.pt/breastresearch/ind

ex.php/Get_INbreast_Database.

Input: Training feature values and the class value
Output: w of valuations of the makings of features.
Step 1 Set all weights w[A]: � 0.0;

Step 2 For i:�1 to m do begin
Step 3 Randomly select an instance ri;
Step 4 Find k-nearest hits hj;
Step 5 For each class C class(ri) do
Step 6 From class C find k nearest misses mj (c);
Step 7 For A:�1 to a
Step 8 w[A] � w[A] − diff(A, ri, hj)(m, k)kj � 1+

Step 9 [(c)1 − p(class ri diff(a, rihj))]kj � 1(m, k)C≠ class ri

Step 10 End

ALGORITHM 2: ReliefF algorithm representation.
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5.1. Performance Analysis of the Proposed Method.
Multilabel classification and the closely related problem of
multioutput classification are variations of the classification
problem where several labels can be applied to each case.
Multilabel classification is a generalization of multiclass
classification [51], which is the single-label problem of
categorizing instances into exactly one of more than two
classes; there is no restriction on how many of the classes an
instance may be allocated to in the multilabel problem. In

our case of Multiclass Classification Issue to be an 8-Class
Classification Issue since we have a dataset that has eight
class names, sensitivity, precision, and consistency are very
critical for the system. Sensitivity reflected the proportion of
both positive and genuinely positive events [52]. Specificity
showed the percentage of true negative classified cases.

Meanwhile, accuracy depicted the percentage of true
positive and true negative correctly classified mammograms.
-e confusion matrix represented in Figure 8 shows the

Input Neural network 
weight between 

Compare
Output

Target

Adjusted weight 

Figure 7: Adjusting weight and comparing the output with the target.

Negative Benign Probably benign Low suspicion for malignancy

Moderate suspicion malignancy High suspicion for malignancy High suggestive of malignancy Known biopsy-proven malignancy

BI-RADS provides standardized categories of breast Imaging

Figure 8: INbreast dataset of BI-RADS categories.

Table 1: Classification of 8 categories with respective classes.

Breast image categories Classes No. of images
BI-RADS 1 Negative 67
BI-RADS 2 Benign 220
BI-RADS 3 Probably benign 24
BI-RADS 4A Low suspicion for malignancy 13
BI-RADS 4B Moderate suspicion for malignancy 8
BI-RADS 4C High suspicion for malignancy 21
BI-RADS 5 Highly suggestive of malignancy 30
BI-RADS 6 Known biopsy-proven malignancy 8
Total 411
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actual and predicted class count obtained by the classifier.
But multiclass classification is an implementation of unlikely
binary classification of mammograms. Since the classes here
are not positive or negative, at first, it may be a little difficult
to find TP, TN, FP, and FN because there are no positive or
negative grades, but it is pretty simple. What we did here, for
each person class, was to find TP, TN, FP, and FN. We take
class BI-RADS 1 and then let us see the values of the metrics
from the confusion matrix. Confusion matrix is represented
in Figure 8, so we find about true positive (TP) of multiclass
values in the diagonal form in green color. If we want to find
an overall matrix of TP value, we should add all classes of TP
values. For false positive (FP) sum of values in the corre-
sponding column and excluding TP values and for overall,
we can sum all classes of FP values. For the false negative
(FN) number of values in the following row and except for
the TP value, all groups of FN values can be summed overall.
For the true negative (TN) class, it is not difficult to take the
number of columns and rows and deduct the column and
row class. -e assessment metrics written below are those of
the following.

Sensitivity is used to deal with positive cases only. -e
ratio of classified to the actual positive cases is shown by
sensitivity. When sensitivity is high, the false negative rate is
less.

sensitivity �
TP
TP

+ FN. (4)

Specificity deals with negative cases only. It is used to
depict the ratio of actual negative cases to classified ones.
When specificity is greater, the false positive rate is less.

specificity �
TN
TN

+ FP. (5)

Positive predictive value (PPV) is used to deal with
positive predictive cases only. -e ratio of classified to the
actual positive predictive cases is shown by PPV.

positive predictive value(PPV) �
TP

(TP + FP)
. (6)

Negative predictive value (NPV) deals with negative
predictive cases only. It is used to depict the ratio of actual
negative predictive cases to classified ones. When NPV is
greater, the false positive predictive rate is less.

negative predictive value(NPV) �
TN

(TN + FN)
. (7)

Accuracy deals with the correctness of classification
results. -e system is considered efficient when accuracy is
more.

accuracy �
TP + TN

TP + FP + TN + FN
. (8)

Data is classified into training, validation, and testing by
using 10 global features, in which 60% is for training, 20% is
considered for validation, and the remaining 20% is for
testing.

5.1.1. Training on INbreast Dataset. For the training purpose
without oversampling, 287 images out of 411 images are
used in which 277 images are correctly classified and 10 of
them are misclassified. And after using oversampling
ADASYN, we used 1241 images out of 1773 images, in which
1233 images are correctly classified and 8 images are
misclassified.

5.1.2. Validation on INbreast Dataset. For validation pur-
pose without oversampling, 62 images out of 411 images are
used for validation. 60 images are correctly classified for the
validation process and 2 are misclassified, and after over-
sampling ADASYN, 266 images out of 1773 images are used
for validation purpose. And all of the 266 images are cor-
rectly classified and no image is misclassified.

5.1.3. Testing on INbreast Dataset. For the testing purpose
without oversampling, 62 images out of 411 images are used
for testing. 59 images are correctly classified testing process
and 3 are misclassified class, and after oversampling
ADASYN, 266 images out of 1773 images are used for testing
purpose, in which 265 images are correctly classified and 1
image is misclassified.

5.1.4. Overall on INbreast Dataset. For the overall talk about
without oversampling, 411 images are used in which 396 are
correctly classified and 15 images are misclassified.

After applying oversampling ADASYN, 1773 images are
used, in which 1764 images are correctly classified and 6
images are misclassified.

5.2. Classification Results of Raw Samples. -ree phases are
included in the proposed framework: feature extraction,
feature selection, and classification. Firstly, with 411 samples,
the classification results are examined in raw form for 88
features [42]. And then the ReliefF algorithm chooses the 10
most contributory characteristics [50]. -rough comparing
the output of the classification processes by the FNN al-
gorithm, the contribution of the oversampling system is
explored. And there results of each class are shown in Ta-
ble 2. And individual class accuracy is defined in Figure 9.

Figure 9 shows individual accuracy of each class with
samples of classes.

5.3. ClassificationResults Balance byADASYN. -emethods
involve four steps: feature extraction, oversampling, feature
selection, and classification. Here is the oversampling
method ADASYN which helps balance all classes until the
imbalanced rate will be closest to 1. And it also prevents
overfit problem. ADASYN bases its operation on weighting
the examples of the minority classes according to their
difficulty of being learned; therefore more synthetic data will
be generated from the more difficult samples, and fewer
samples are in the case of the easier to learn [25]. -e
majority class only provides information to quantify the
degree of class imbalance, and the number of synthetic data
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examples to be generated for the minority class in Table 3
shows the output parameters of the 10 most significant
feature vectors consisting of 1773 samples of the ADAYSN
algorithm. Accuracy of each class is shown in Figure 10.
Growing the minority groups with synthetic samples is
shown to have a beneficial impact on the accuracy of
classification. And the results of each class are shown in
Table 3.

-e definition made with the inclusion of synthetic
samples is seen to generate a contribution of more. One of
the most relevant factors is to eliminate the imbalance be-
tween classes shown in Table 4. After accuracy level im-
proved, in the confusion matrix, the correctly classified cases
are shown in Figure 11. Diagonal is within green color, while
misclassified cases are shown in red color.-e last column of
the confusion matrix shows the sensitivity, precision, and
accuracy of the model.

-e training state is presented in Figure 12. -e gradient
is the value of the backpropagation gradient on every it-
eration. Epoch shows how many iterations should be shown
for training purposes. And MU is momentum update which
includes weight update expression to avoid the problem of a
local minimum.

-e performance plot for training is shown in Figure 13.
Training mean square error (mse) is downloading which
shows perfect training. Best training performance shows few
errors determined in Figure 13, which shows 0.0012691 error
estimates that are minimal error rate.

-e network’s ability to estimate the model target is
evaluated by showing the regression plot in Figure 14.
Regression evaluation can support a model that links be-
tween a dependent variable (which you are seeking to
forecast) and one or better independent variables (the input
of the model). Regression evaluation can determine if there
is a considerable link between the independent variables and
the dependent variable and the weight of the impact—when
the independent variables move, by how much you can
predict the dependent variable to proceed. Here we use
linear regression to achieve the number of outputs. Linear
regression is suitable for dependent variables that are stable
and can be fitted with a linear function (straight line). -e
plot shows that the linear regression of the targets relatively
achieves the numbers of outputs.

-e plot shows that the linear regression of the training,
validation, and testing and overall targets of comparison
achieves the number of outputs.

Table 2: Classification with raw samples.

Method ReliefF optimal features with raw samples
Breast image
categories

True
positive

True
negative

False
positive

False
negative

Recall
rate Precision F1-

score
Misclassification

rate Accuracy

BI-RADS 1 67 334 0 0 100 100 100 0 100
BI-RADS 2 220 191 0 0 100 100 100 0 100
BI-RADS 3 20 386 1 4 83.3 95.2 88.9 1.2% 98.5
BI-RADS 4A 8 395 3 5 61.5 72.7 66.7 1.9% 98.05
BI-RADS 4B 5 40 2 3 62.5 71.4 66.7 10% 90
BI-RADS 4C 21 382 8 0 100 72.4 84 1.9% 98.05
BI-RADS 5 50 360 1 0 100 98.0 99 0.2% 99.75
BI-RADS 6 5 403 0 3 62.5 100 76.92 0.7% 99.3
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Figure 9: Model shows multiclass samples and obtains each class accuracy.
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Table 3: Classification with ADASYN samples.

Method ReliefF optimal features with ADASYN samples
Breast image
categories

True
positive

True
negative

False
positive

False
negative

Recall
rate Precision F1-score

(%)
Misclassification

rate Accuracy

BI-RADS 1 220 1546 0 1 99.5 100 99.8 0.1 99.9
BI-RADS 2 220 1552 1 0 100 99.5 99.8 0.1 99.9
BI-RADS 3 214 1557 0 2 99.1 100 99.5 0.1 99.9
BI-RADS 4A 222 1549 0 0 100 100 100 0 100
BI-RADS 4B 215 1557 0 1 99.5 100 99.8 0.1 99.9
BI-RADS 4C 228 1317 2 0 100 99.1 99.6 0.1 99.9
BI-RADS 5 226 1539 3 5 97.8 98.7 98.3 0.5 99.5
BI-RADS 6 219 1551 3 0 100 98.6 99.3 0.2 99.8

221

99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.5%100%

220 216 222 216 228 231 219
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Figure 10: Model shows multiclass samples and obtains each class accuracy by ADASYN.

Table 4: -e comparative results between imbalance and balance samples.

Method Micro F1
(%)

Macro F1
(%)

Weight F1
(%)

Misclassification
rate (%)

Recall
rate (%)

Specificity
(%) Precision (%) Accuracy

(%)
ReliefF features with 411
samples 96.35 85.23 96.3 3.54 96.35 98.98 96.35 96.46

ReliefF features with
1773 samples 99.5 99.5 99.5 0.5 99.5 99.4 99.5 99.5
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5.4. Comparison withWork. Many researchers have worked
on those keymodules of CAD.-is created a need to develop
a computer-aided diagnosis system. It has two aims. First is
the disclosure of abnormal breasts from mammographic
images by an innovative approach. And the second is various
classes’ classification that uniquely explains all classes
according to BI-RADS. For tumor identification, few fea-
tures contribute to a poor classification due to a slight
variation in textures. -e present thesis focuses on 5 dif-
ferent algorithms for the extraction of features that can
extract different features. -en, because of the overfitting
problem, we purpose the oversampling technique by
ADASYN that increases the number of samples which also
increases algorithm complexity and train time. So for that,
we apply feature selection techniques such as ReliefF. And
for multiple class classification, we use FNN and the results
are shown by a confusion matrix.

Table 5 shows that Abdel-Nasser et al. [2] used local
database by extracting 20 optimal features and SVM clas-
sifier to obtain accuracy of 88.0%. Pérez et al. [18] in 2011
used DDSM dataset and extracted GLCM+GLCLM 19
features from a region of interest (ROI) to obtain accuracy of
94.9% and furthermore on second hand selected 12 most
contribution features of GLCM+GLCLM and got 92.3%
accuracy. For classifying tumor region, they used a Boolean

vector algorithm. Nababan et al. [16] used Mini MIAS
dataset and got 92.26% sensitivity, 92.28% specificity, and
92.27% accuracy. Wang’s 16,777,216 features were further
reduced to 18 features by using PCA and FFN. Frisk et al. [5]
used INbreast dataset and extracting GLCM16 features from
ROI and for classification used SECoS techniques obtaining
82.98% accuracy. Alam and Faruqui [39] expanded the
previous work in 2012 and classified by decision tree and
obtained accuracy of 96.7% by extracting 19 features and
also obtained accuracy of 93.3% by extracting 12 most
contributed features. Ozturk et al. used shrunken features
which includes GLCM+LBGLCM+GLRLM+SFTA, for
oversampling by SMOTE algorithms and classification use
and PCA after which they got 94% accuracy for a COVID-19
dataset. We purposed a model by using INbreast dataset; the
proposed model focuses on four steps: global feature ex-
traction, oversampling method, feature selection method,
and lastly classification and we got 99.5% sensitivity, 99.4%
specificity, and 99.5% accuracy.

6. Conclusion

Various investigations have been carried out in the field of
medicine to study medical disorders and thus to find their
correct diagnosis. For this purpose, in the present work, data

Table 5: Result of proposed system and comparison with methodology by using features.

Existing solution Methodology Features Accuracy (%)
Abdel-Nasser et al. [2] Local database +GLCM+SVM 20 88.0%
Pérez et al. [18] DDSM+ROI +GLCM+GLCLM+Boolean vector 19 12 94.9% 92.3%
Nababan et al. [16] Mini MIAS+WFRFT+ Jaya-FNN 18 92.27%
Nababan [5] INbreast + ROI +GLCM+SECoS 16 82.98%
Mohanty et al. [49] DDSM+ROI+GLCM+GLCLM+decision tree 19 12 96.7% 93.6%
Ozturk et al. [42] Shrunken features + SMOTE+PCA 20 94.23%
Proposed system INbreast + (GLCM, LBP, LBGLCM, GLRLM, and SFTA) +ADASYN+FNN 10 99.5%
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Figure 14: Regression plot for training, testing, and validation.

Journal of Healthcare Engineering 13



mining techniques were considered. By utilizing fewer
numbers of features, the computational time was reduced
without dropping the accuracy of diagnosis. Instead of using
complex systems to strengthen the classification accuracy, an
effort was made to adopt a simple method to produce a
significant result. -e results showed 99.5% accuracy which
proved the effectiveness as well as the robustness of the
proposed system.
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